劉珊廷 易顯榮 周民武 吳瀟 齊開杰 徐志美 趙碧英
摘? ? 要:【目的】闡明廣西地方梨種質的遺傳多樣性、親緣關系及群體結構,加快梨種質的鑒定、評價和保護,促進地方優(yōu)質梨種質資源的合理有效利用,助推品種改良和種質創(chuàng)新?!痉椒ā坷煤Y選獲得的15個SSR分子標記對71份廣西地方梨種質和48份外地梨種質進行遺傳多樣性和群體結構分析?!窘Y果】共檢測出190個等位基因(Na),平均等位基因數(shù)(Na)為12.667,平均有效等位基因數(shù)(Ne)為5.454,位點多態(tài)性信息指數(shù)(PIC)平均值為0.762,較好地揭示了梨的遺傳多樣性;觀測雜合度(Ho)和期望雜合度(He)平均值分別為0.682和0.788,說明梨群體內存在近緣交配;香農指數(shù)(I)平均值為1.876,反映梨群體的遺傳多樣性豐富。廣西地方種質的平均等位基因數(shù)為11.53,平均有效等位基因數(shù)為5.606,香農指數(shù)(I)為1.894,均高于外地種質,說明廣西地方種質的遺傳多樣性更豐富。聚類分析顯示大部分廣西地方種質與外地種質的親緣關系較遠,隸屬兩個不同類群,但二者存在少量的相互交叉,少數(shù)的廣西梨和外地梨聚為一類,有較近的親緣關系。群體遺傳結構分析也表明大部分廣西梨和外地梨的遺傳結構差異較大,并且2個居群的近交系數(shù)(Fis)均值都大于0,存在近緣交配。進一步研究發(fā)現(xiàn),71份廣西地方種質聚為3個類群,從群體遺傳結構上可劃分為4個不同群體,但群體間未表現(xiàn)明顯的區(qū)域分化特征。分子方差分析結果表明,供試梨種質的變異主要來源于個體內,群體間和個體間的遺傳分化程度較低,應關注對群體內個體的選擇和保護?!窘Y論】廣西地方梨種質遺傳多樣性相對豐富,居群內普遍存在近緣交配,沒有明顯的區(qū)域分化特征,其遺傳背景和外地一些栽培種或雜交種差異較大,建議加強對廣西地方梨種質的保護和利用。
關鍵詞:梨;廣西;SSR分子標記;遺傳多樣性;群體結構
中圖分類號:S661.2 文獻標志碼:A 文章編號:1009-9980(2024)03-0379-13
Analysis of genetic diversity and population structure of pear germplasm resources in Guangxi
LIU Shanting1, YI Xianrong1, ZHOU Minwu1, WU Xiao2, QI Kaijie2, XU Zhimei1, ZHAO Biying1*
(1Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi/Guangxi Academy of Specialty Crops, Guilin 541004, Guangxi, China; 2Jiangsu Engineering Research Center for Pear/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China)
Abstract: 【Objective】 Pear, one of the most economically important temperate fruit trees, belongs to the genus Pyrus. China is one of the origin centers of Pyrus plants with a wide range of germplasm resources and has a long history of cultivation. As one of the important producing areas in southern China, pear cultivation area and production of Guangxi were 2.1×104 hm2 and 5.08×105 tons in 2022, respectively. There is a rich wild pear germplasm resources in Guangxi according to the previous investigation. However, the understanding of the genetic diversity and population structure of the pear resources in Guangxi is still limited. It is of great significance for accelerating the identification, evaluation and conservation of the pear germplasm, and promoting the effective utilization of the local high-quality pear germplasm resources by clarifying the genetic diversity, population structure of the local pear germplasms in Guangxi, as well as its relationship with the nonlocal germplasms. 【Methods】 A total of 119 pear cultivars and landraces were collected and subjected to analyze the genetic diversity and the population structure using 15 pair of SSR primers reported in previous research. The genomic DNA was extracted by genomic DNA extraction kit of magnetic bead method, and the purity concentration and integrity of the extracts were assessed by NanoDROP and agarose gel electrophoresis. A 10 μL PCR system was adopted, including 5.0 μL of 2×Taq PCR Master Mix, 0.5 μL of each of forward and reverse primers (10 pmol·μL-1), 1.0 μL genomic DNA (20 ng·μL-1), and 3.0 μL of ddH2O. The DNA was amplified according to the molecular weight records using capillary electrophoresis technology. According to the polymorphic bands, the data matrix was obtained. The number of alleles (Na), the number of effective alleles (Ne), the Shannon information index (I), the expected heterozygosity (He), the observed heterozygosity (Ho), the polymorphic information content (PIC), and the inbreeding coefficient (Fis) were calculated using GenAlEx version 6.501 software. The Neis genetic distance among between 119 accessions of the germplasm resources were calculated using Powermarker software. The UMPGA cluster trees of the 119 pear germplasm resources based on the Neis genetic distance were constructed using MEGA7.0 software. The genetic structure analysis of the populations of pear was performed using STRUCTURE 2.3.4 software. The population number (K) was set to 1-20. Each K value was simulated 20 times, and the Markov Chain Monte Carlo (MCMC) was set 100 000 times. Finally, the optimal ?K value was calculated using the online tool STRUCTURE HARVESTER. The genetic linkage map was constructed using CLUMMP and DISTRUCT software. The principal coordinate analysis (PCoA) was accomplished using GenAIEx software. 【Results】 A total of 190 alleles were detected in the pear germplasm resources by the 15 polymorphic SSR markers. The average number of alleles was 12.667. The average effective allele per SSR marker was 5.454. The average polymorphic information content (PIC) was 0.762. These results showed that there was a relatively high genetic diversity within this population. The average observed heterozygosity (Ho) and expected heterozygosity (He) were 0.682 and 0.788, respectively, suggesting that the presence of inbreeding would exist within the pear population. The average Shannon information index (I) was 1.876, reflecting that there was a high genetic diversity in the local pear population. Compared with the nonlocal germplasms, the genetic diversity of the local pear was higher with an average allele of 11.53, an average effective allele of 5.606, and a Shannon information index (I) of 1.894. The cluster analysis showed that the majority of the local germplasms in Guangxi and nonlocal germplasms were divided into two different groups, with a distant genetic relationship. The analysis of population genetic structure also indicated that there was a significant difference in the genetic structure between the majority of the local germplasms in Guangxi and the nonlocal germplasms. The Fis mean values of the two populations were over 0, indicating that there would be inbreeding within the population. Further research found that the 71 local germplasms in Guangxi were clustered into three groups, which could be divided into four different populations based on population genetic structure. However, there were no obvious regional differentiation characteristics between the populations. The result of the analysis of molecular variance (AMOVA) indicated that the genetic variation in the pear germplasms mainly occurred within individuals, while the genetic differentiation between the populations and individuals was relatively small. 【Conclusion】 The fifteen SSR primers had the characteristics of clear amplification results, good repeatability and high polymorphism, and would be suitable for pear germplasm identification, genetic linkage map construction, genetic diversity, and molecular marker-assisted breeding. Furthermore, the genetic diversity of the local pear germplasms in Guangxi was relatively rich. There would be a general inbreeding and no obvious regional differentiation within the populations, and the genetic background differed greatly from some cultivars or hybrids of nonlocal pear. Therefore, we proposed to strengthen the conservation and utilization of the local pear germplasm in Guangxi.
Key words: Pear; Guangxi; SSR markers; Genetic diversity; Population structure
梨為薔薇科(Rosaceae)梨屬(Pyrus L.)植物,是我國乃至世界范圍內的重要溫帶果樹之一,距今已有3000余年的栽培歷史[1]。一般認為梨的原種起源于第三紀甚至更古老的中國西部或者西南部的山區(qū),經(jīng)過亞歐大陸傳播到中亞地區(qū),最后到達亞洲西部和歐洲[2]。根據(jù)出身、原產(chǎn)地,梨可分為兩大類:東方梨(Oriental pears)和西方梨(Occidental pears)。目前發(fā)現(xiàn)的梨屬植物至少有30個種,其中原生種(基本種)大約有20個。在中國,梨產(chǎn)區(qū)遍布東西南北中,梨的種質資源極為豐富,可以說,我國是梨屬植物的起源中心,也是遺傳多樣性中心,形成了中國豆梨、柯漢梨或臺灣豆梨、川梨、砂梨和秋子梨等基本種[3],還有各種各樣的品種資源和地方野生資源,它們形狀各異,顏色多樣,早、中、晚熟皆有,風味各具特色[4]。中國南疆廣西壯族自治區(qū)地處亞熱帶和熱帶氣候區(qū),水、光、熱資源充足,生態(tài)環(huán)境復雜多變,孕育了許多具有特色的梨種質資源,比如砂梨中的優(yōu)質品種灌陽雪梨,被評為全國農產(chǎn)品地理標志。據(jù)統(tǒng)計,2022年廣西梨栽培面積2.1萬hm2,產(chǎn)量50.78萬t,是廣西重要的水果產(chǎn)業(yè)之一。然而,廣西梨產(chǎn)業(yè)存在品種競爭力不強等突出問題,加快品種改良和種質資源創(chuàng)新利用是有效的解決方法之一。因此,對廣西地方梨種質資源進行系統(tǒng)鑒定、遺傳多樣性和種群結構分析具有重要意義。
種質鑒定和遺傳多樣性研究是品種改良和種質資源創(chuàng)新的基礎。在植物研究中,傳統(tǒng)的做法是主要依據(jù)形態(tài)學、細胞學、酶學等方法來鑒定種質,但實際中仍存在許多困難,而且可靠性不高。20世紀70年代以來,以個體間核苷酸序列變異為基礎的分子標記技術得到了快速發(fā)展和應用,極大地推動了植物種質鑒定和遺傳多樣性研究,常見的分子標記有:限制性片段長度多態(tài)性標記(RFLP)、隨機擴增多態(tài)性標記(RAPD)、簡單重復序列(SSR)、擴增限制性內切酶片段長度多態(tài)性(AFLP)和單核苷酸多態(tài)性(SNP)。其中,SSR分子標記符合孟德爾共顯性遺傳,具有數(shù)量豐富、操作技術簡便、可靠性強和重復性好等優(yōu)點[5],在評價植物遺傳多樣性、構建遺傳連鎖圖譜、揭示進化歷史和分子輔助育種等方面得到了廣泛應用。21世紀以來,SSR分子標記技術在梨品種鑒定、遺傳多樣性研究和新品種選育等方面已有許多成功先例。日本學者Yamamoto等[6]最早借鑒蘋果上建立的SSR分子標記,應用于梨的多態(tài)性和遺傳多樣性鑒定并最終取得成功。在中國,Bao等[7]利用6對SSR引物對東亞主要原生栽培種的遺傳多樣性和親緣關系進行研究,結果表明,供試材料分為10個類群。其中,所有中國砂梨被劃分到4個類群,具有豐富的遺傳多樣性,中國白梨被劃分到3個類群,日本梨僅存在于1個類群中,中國砂梨和中國白梨沒有形成離散群甚至亞群,此外,一些日本梨栽培種與中國砂梨栽培種的關系十分相近。Xue等[8]從篩選出的332個多態(tài)SSR標記中隨機選取18個多態(tài)SSR標記,對44個梨品種進行遺傳多樣性分析,為鑒定梨品種的族譜基因型、系譜推斷提供了重要參考。
新中國成立以來,中國學者在梨種質資源、品質發(fā)育及遺傳育種研究領域取得了豐碩成果,特別是近年來對梨的起源進化、遺傳多樣性和親緣關系的研究不斷深入,梨的“前世今生”被逐漸揭開神秘面紗。限于多種因素,廣西地方梨種質資源的鑒定、遺傳多樣性和群體結構的研究還比較薄弱,加上各地區(qū)之間的苗木繁育和種質交流進程加快,導致品種混雜、關系不清、同物異名等問題突出,極不利于廣西梨種質資源的保護和創(chuàng)新利用。筆者在本研究中以119份梨種質作為試驗材料,利用15個多態(tài)性良好的SSR標記,分析廣西地方梨種質資源的遺傳多樣性和群體結構,及其與外地種質之間的親緣關系和遺傳差異,旨在為廣西地方梨種質資源的保護和創(chuàng)新利用以及現(xiàn)代梨育種工作提供依據(jù)。
1 材料和方法
1.1 試驗材料
119份供試梨種質采自自治區(qū)級農作物種質資源圃—廣西梨種質資源圃(桂林),其中原產(chǎn)于廣西的種質有71份,外地種質48份。詳細信息見表1。
1.2 基因組DNA提取
每份梨種質材料取嫩葉(鮮質量20~50 mg)液氮冷凍后研磨,采用磁珠法基因組提取試劑盒(武漢納磁生物科技有限公司)提取樣本DNA。獲得的DNA經(jīng)1%瓊脂糖凝膠電泳檢測合格后,用NanoDROPTM? 8000超微量分光光度計檢測純度和濃度。
1.3 SSR-PCR
根據(jù)相關文獻中的58對SSR引物信息[9-12],委托武漢天一華煜基因科技有限公司合成,用8個樣本進行引物篩選驗證,篩選出15對擴增成功、峰型良好的引物(表2)。
PCR反應體系為10 μL,包括:2×Taq Master Mix(Mg2+)5.0 μL,濃度為10 pmol·μL-1 的正反向引物各0.5 μL,20 ng·μL-1 的DNA模板1 μL,ddH2O 3.0 μL。反應程序為:95 ℃ 5 min;95 ℃ 30 s,62~52 ℃ 30 s,72 ℃ 30 s,10個循環(huán),每個循環(huán)下降1 ℃;95 ℃ 30 s,52 ℃ 30 s,72 ℃ 30 s,25個循環(huán);72 ℃ 20 min延伸后4 ℃保存。取PCR產(chǎn)物1.0 μL,分子質量內標和甲酰胺混合液(0.5∶8.5,v/v)9.0 μL;95 ℃變性3 min,在ABI 3730XL測序儀上進行分型檢測,讀取擴增結果。
1.4 數(shù)據(jù)處理與統(tǒng)計
將從ABI 3730XL測序儀上得到的結果在GeneMarker軟件上進行分析,導出Excel基因型數(shù)據(jù)。用GenAlEx version 6.501軟件計算觀測等位基因數(shù)(Na)、有效等位基因數(shù)(Ne)、香農指數(shù)(I)、多態(tài)性信息指數(shù)(PIC)、觀測雜合度(Ho)、期望雜合度(He)和近交系數(shù)(Fis)。用Powermarker軟件計算各群體間的遺傳距離。用UMPGA方法進行聚類分析,繪制聚類圖。利用STRUCTURE 2.3.4進行居群遺傳結構分析,設置K=1~20,Burn-in周期為10000,MCMC設為100 000,每個K值運行20次,并利用在線工具STRUCTURE HARVESTER算出最佳△K值。根據(jù)相應的K值作圖。結構分析的結果圖用CLUMMP和DISTRUCT軟件繪制。根據(jù)群體遺傳結構分析結果,在GenAlEx version 6.501軟件中計算遺傳分化系數(shù)(Fst)和基因流(Nm)。用GenAIex軟件進行主坐標分析。
2 結果與分析
2.1 引物的多態(tài)性
利用熒光毛細管電泳技術,從58對引物中篩選出15對峰型良好、特異性較高的引物。由表3可知,15對引物在119個樣本中共檢測出190個等位基因(Na),最少的5個,最多的19個,平均為12.667個。有效等位基因(Ne)數(shù)為2.772~9.743,平均為5.454。香農指數(shù)(I)為1.277~2.456,平均為1.876。觀測雜合度(Ho)為0.437~0.897,平均為0.682。期望雜合度(He)為0.639~0.897,平均為0.762;多態(tài)性信息指數(shù)(PIC)為0.602~0.889,平均為0.762。這些指標均表明15對SSR引物多態(tài)性較高[13]。
2.2 聚類分析
基于遺傳距離進行聚類,全部材料明顯分為兩大類群(圖1),第Ⅰ類群包含23份種質,其中22份原產(chǎn)于廣西,僅1份為外地種質(橫山梨,中國臺灣);第Ⅱ類群包含96份種質,其中廣西種質49份,外地種質47份。第Ⅱ類群可進一步劃分為兩個亞群,亞群1由38份廣西種質和1份外地種質(云和粗花雪梨,產(chǎn)地:浙江云和)組成,亞群2由11份廣西種質(灌陽2號、龍勝2號、灌陽清香梨、六月梨、富川蜜梨、銅板梨、全州蜜梨、龍勝糖梨、龍勝1號、灌陽黃蜜、南山梨)和46份外地種質組成,說明這11份廣西種質與外地種質的親緣關系較近。以上結果表明廣西種質可大致劃分為3種類型;總體上,廣西種質和外地種質既形成了相對獨立的類群,又存在少量的相互交叉,大部分廣西種質與外地種質的親緣關系較遠。
2.3 群體遺傳結構分析
由表4可知,廣西居群的平均等位基因數(shù)(Na)為11.53,平均有效等位基因數(shù)(Ne)為5.606,平均香農指數(shù)(I)為1.894,均高于外地種質,說明廣西地方種質的遺傳多樣性更為豐富;2個居群的觀測雜合度(Ho)均低于期望雜合度(He),F(xiàn)is>0,說明兩個居群內均發(fā)生近緣交配。
利用Structure構建119份梨種質的群體遺傳結構圖,結果顯示當K=2時,ΔK為最大值,供試材料可分為2個不同群體。由圖2可知,群體1由45份外地梨(占比81.81%)和10份廣西梨(占比18.18%)構成,這10份廣西梨為富川蜜梨、南山梨、灌陽黃蜜、六月梨、桂花梨、龍勝糖梨、銅板梨、龍勝1號、灌陽2號、全州蜜梨;群體2主要由61份廣西梨(占比93.75%)構成,中國臺灣的橫山梨、浙江的云和粗花雪梨以及湖北選育的鄂梨2號也劃歸到群體2中,表明廣西梨和外地梨在遺傳結構上有較大差別,與聚類分析結果對應。
當K=3時,供試材料被劃分為3個群體,原本歸屬群體2的19份廣西梨(灌陽小把子雪梨、灌陽大把子雪梨、米珠山假雪梨、資源1號、黃皮梨、興安梨、清水梨、早禾梨、龍勝大砂梨、灌陽清香梨、牛卵梨、資源3號、荔浦黃皮糖梨、岑溪墨煙梨、岑溪沙梨、永福青皮梨、永福橢圓形早禾梨、永福圓形早禾梨、平樂糖梨)以及外地的鄂梨2號被重新劃分到群體3中。
當K=4時,供試材料被劃分為4個群體,原本歸屬群體3的4份廣西梨(資源1號、資源3號、興安梨、龍勝大砂梨)和原本歸屬群體1的4份外地梨(六月酥、紅早酥、新梨7號、中梨4號)被重新劃分到群體4中,說明廣西的資源1號、資源3號、興安梨、龍勝大砂梨和外地的六月酥、紅早酥、新梨7號、中梨4號有更多相同的遺傳組成。有意思的是,六月酥、紅早酥、新梨7號、中梨4號都具有早酥的遺傳背景,其中六月酥和紅早酥為早酥的芽變品種,新梨7號和中梨4號分別是以早酥為親本之一的二元交雜品種和三元雜交品種。由此推測廣西的資源1號、資源3號、興安梨、龍勝大砂梨與早酥有共同的遺傳來源。早酥是中國農業(yè)科學院果樹研究所利用蘋果梨和身不知梨育成的早熟新品種,其母本蘋果梨,屬于白梨系統(tǒng),是中國優(yōu)良梨品種之一,主產(chǎn)于吉林省延邊朝鮮族自治州,中國各地的蘋果梨都發(fā)源于此,其父本身不知梨,原產(chǎn)日本,親本不詳,被認為是西洋梨與砂梨的自然雜交后代。
為深入了解廣西地方梨種質的遺傳結構,對其進行獨立的群體遺傳結構分析。71份種質在K=4時ΔK取得最大值,可劃分為4個群體(圖3),群體1包含37份材料,其地理來源有桂林、梧州、百色、柳州、賀州、欽州;群體2包含10份材料,其地理來源有桂林、梧州、來賓、河池、南寧;群體3包含10份材料,其地理來源有桂林、梧州;群體4包含14份材料,其地理來源有桂林、梧州、柳州。
2.4 主坐標分析
利用GenAIex軟件對供試材料進行主坐標分析(PCoA),繪制出二維主坐標散點圖(圖4),從圖中可以看出,在主坐標1方向上,整個群體清晰地分為2個組群,廣西材料和外地材料分別聚集成簇,同時也存在少量的相互滲透,說明二者之間親緣關系較遠,但有一定的基因交流。另外,部分材料的坐標位置幾乎重疊,比如鄂梨2號和灌陽清香(廣西灌陽);岑溪煙墨梨(廣西岑溪)、岑溪沙梨(廣西岑溪)、牛卵梨(廣西岑溪)和永福橢圓形早禾梨(廣西永福);灌陽大把子雪梨(廣西灌陽)、灌陽小把子雪梨(廣西灌陽)和黃皮梨(廣西樂業(yè)),與聚類樹結果相吻合,證明它們的親緣關系很近。結合地理位置來看,廣西材料在圖中的分布未表現(xiàn)明顯的地域性特征。
2.5 分子方差分析
AMOVA方差分析(表5)表明,119份梨種質的遺傳變異,8%存在于群體間,10%存在于個體間,82%存在于個體內,個體內差異是指由雜合的等位基因引起的遺傳差異,大小與個體雜合位點數(shù)相關,即個體的遺傳多樣性,說明個體內各基因之間存在高度遺傳分化,個體的遺傳變異是梨變異的主要來源。
3 討 論
梨屬植物間不存在生殖隔離,種間雜交十分普遍,使得梨屬種間有時缺乏明顯可以區(qū)分的形態(tài)學性狀,導致梨屬植物的分類比較混亂[3]。SSR分子標記技術的應用,可以較好地彌補、修正和完善梨?zhèn)鹘y(tǒng)分類中的一些不足。引物的多態(tài)性是評估種質多樣性的重要因素,筆者在本研究中使用的15個SSR標記的PIC全部大于0.50,多態(tài)性較高,可以較好地反映梨種質資源的遺傳多樣性和親緣關系[14]。I和Ho是衡量種質資源遺傳多樣性的重要指標[15]。在本研究中,廣西地方梨種質的I和Ho均高于外地種質,反映出廣西地方梨種質較高的遺傳多樣性。相關研究認為梨起源于中國西南部的山區(qū)[2],北上向東移動,形成了東亞種群,中國白梨、中國砂梨和日本梨可能起源于共同的野生砂梨祖先[16]。廣西可能是梨的起源地之一或早期傳播地區(qū),在長期的環(huán)境適應下逐漸形成了不同遺傳信息的群體?;贜eis的遺傳距離構建的聚類樹中,廣西梨被劃分為3個聚群,而外地梨主要歸于1個聚群,同時二者又有一定的相互交叉,表明存在基因交流。筆者在本研究中關注的廣西梨種質基本為砂梨類型,外地種質主要為經(jīng)人工馴化選擇或雜交獲得的栽培梨,與前者相比,后者具有更多地從早期適應發(fā)生時積累的多種遺傳變異,因此在聚類關系上表現(xiàn)為二者的遺傳距離較遠。值得注意的是,中國臺灣的橫山梨以及浙江云和的云和粗花梨并沒有與其他外地種質聚在一類,而是與大部分廣西梨種質聚在一起,并且在群體結構分析和PCoA分析中也獲得相似的結果,表明橫山梨和云和粗花梨與廣西梨有較近的親緣關系,很可能是從廣西引種到臺灣和浙江的。另據(jù)文獻記載,中國臺灣梨系1890年由我國香港和華南一帶引入種植于臺灣漢溪、橫山一帶,主要為橫山梨[17],在一定程度上印證了本文的結果。廣西的灌陽2號、龍勝2號、灌陽清香梨、六月梨、富川蜜梨、銅板梨、全州蜜梨、龍勝糖梨、龍勝1號、灌陽黃蜜、南山梨與外地種質聚在一起,同時群體結構分析和PCoA分析也呈現(xiàn)相似的分組結果,提示這些材料可能是由外地梨種質雜交獲得的或引種到廣西而被誤認為是廣西地方種。
梨是典型的自交不親和性物種,后代的繁殖依靠異花授粉[18],這種授粉特性增加了居群間的雜交概率,因此具有較高的雜合特性。在本研究中,廣西居群和外地居群的觀測雜合度(Ho)均低于期望雜合度(He),且Fis>0,居群內發(fā)生近緣交配。近緣交配是一種非隨機交配,如果一個群體持續(xù)進行近緣交配,那么該群體中的雜合子會快速丟失[19]。在主坐標分析圖中,廣西梨種質沒有很明顯地被分為多個類群,也反映出廣西梨品種在形成過程中,或許雜交較為普遍,導致許多供試地方梨種質資源遺傳組成比較復雜。本研究中的119份梨的遺傳變異8%存在于群體間,10%存在于個體間,82%存在于個體內,說明梨居群間的遺傳分化程度較低,遺傳變異主要來源于居群內的個體。多個內外因素可影響居群遺傳結構,其中基因流、突變和演替階段等會顯著影響居群遺傳結構[19]。當基因流Nm>1時,說明居群間的基因流較大,居群間遺傳分化程度較低;當Nm<1時,說明居群間的基因流較小,居群間遺傳分化程度較高[20]。在本研究中,居群間的Nm=5.717(Nm>1),基因流主要發(fā)揮均質化作用,較大的基因流有效地阻止了遺傳漂變,降低了梨居群間的遺傳分化程度,頻繁的基因流使得梨種群間的遺傳分化程度低,因此變異主要存在于居群個體內。
梨育種的核心基礎就是收集足夠多具有遺傳多樣性的種質資源。種質資源是品種改良的基礎,尤其是具有廣泛遺傳基礎的品種資源[21]。胡春云[22]認為我國西南地區(qū)擁有最豐富的原始品種資源,是我國砂梨品種的起源中心。筆者在本研究中收集的71份廣西地方梨種質遺傳多樣性豐富,品種間遺傳距離大,涵蓋了廣西主要梨生產(chǎn)區(qū),具有一定代表性,群體遺傳結構分析將其分為4個群體,但不同群體未表現(xiàn)明顯的區(qū)域分化,下一步可采集一些廣西鄰省如云南、貴州等地原產(chǎn)的梨種質資源,以便加深對廣西梨種質的來源及傳播的了解。此外,利用分子標記結合數(shù)量性狀指標可以更全面地反映種質資源間的差異,張瑩等[23]對梨種質資源果實若干數(shù)量性狀評價指標研究的結果表明,果實中可滴定酸含量的變異系數(shù)最大,更能體現(xiàn)梨品種間的差異。因此,后續(xù)可進一步研究廣西梨種質資源的數(shù)量性狀指標,以便對其遺傳多樣性進行綜合評價。隨著日益加快的城市化進程,地方品種會加速流失[24]。而地方品種中可能含有許多有價值的基因,如特殊性狀基因、抗病蟲基因、抗逆基因等,這些基因在以選擇少數(shù)理想性狀為目標的栽培品種中可能已經(jīng)丟失[25]。因此,筆者建議各方要重視地方種質資源保護,在有條件的情況下,實行就地保護或建立種質資源圃進行遷地保護,避免一些特殊種質的永久性流失。
4 結 論
廣西地方梨種質具有較豐富的遺傳多樣性,與供試的外地種質形成2個不同的遺傳群體,親緣關系較遠,但二者存在一定的基因交流,此外,兩個居群內普遍存在近緣交配,變異的主要來源為居群內個體的遺傳變異。群體遺傳結構分析表明廣西地方種質可劃分為4個群體,但不同群體未呈現(xiàn)明顯的區(qū)域分化規(guī)律,后續(xù)可結合不同的個體性狀進行深入探究。值得注意的是,中國臺灣的橫山梨以及浙江的云和粗花梨或許原產(chǎn)于廣西,一部分廣西本地梨也可能是外地梨種質雜交獲得或引種到廣西,有待進一步印證。
參考文獻 References:
[1] LI J M,ZHANG M Y,LI X L,KHAN A,KUMAR S,ALLAN A C,WANG K L,ESPLEY R V,WANG C H,WANG R Z,XUE C,YAO G F,QIN M F,SUN M Y,TEGTMEIER R,LIU H N,WEI W L,MING M L,ZHANG S L,ZHAO K J,SONG B B,NI J P,AN J P,KORBAN S S,WU J. Pear genetics:Recent advances,new prospects,and a roadmap for the future[J]. Horticulture Research,2022,9:uhab040.
[2] RUBTSOV G A. Geographical distribution of the genus Pyrus and trends and factors in its evolution[J]. The American Naturalist,1944,78(777):358-366.
[3] 滕元文. 梨屬植物系統(tǒng)發(fā)育及東方梨品種起源研究進展[J]. 果樹學報,2017,34(3):370-378.
TENG Yuanwen. Advances in the research on phylogeny of the genus Pyrus and the origin of pear cultivars native to East Asia[J]. Journal of Fruit Science,2017,34(3):370-378.
[4] 陳學森,王楠,張宗營,馮守千,陳曉流,毛志泉. 仁果類果樹資源育種研究進展Ⅰ:我國梨種質資源、品質發(fā)育及遺傳育種研究進展[J]. 植物遺傳資源學報,2019,20(4):791-800.
CHEN Xuesen,WANG Nan,ZHANG Zongying,F(xiàn)ENG Shouqian,CHEN Xiaoliu,MAO Zhiquan. Progress on the resource and breeding of kernel fruits Ⅰ:Progress on the germplasm resources,quality development and genetics and breeding of pear in China[J]. Journal of Plant Genetic Resources,2019,20(4):791-800.
[5] GUICHOUX E,LAGACHE L,WAGNER S,CHAUMEIL P,L?GER P,LEPAIS O,LEPOITTEVIN C,MALAUSA T,REVARDEL E,SALIN F,PETIT R J. Current trends in microsatellite genotyping[J]. Molecular Ecology Resources,2011,11(4):591-611.
[6] YAMAMOTO T,KIMURA T,SAWAMURA Y,KOTOBUKI K,BAN Y,HAYASHI T,MATSUTA N. SSRs isolated from apple can identify polymorphism and genetic diversity in pear[J]. Theoretical and Applied Genetics,2001,102(6):865-870.
[7] BAO L,CHEN K S,ZHANG D,CAO Y F,YAMAMOTO T,TENG Y W. Genetic diversity and similarity of pear (Pyrus L.) cultivars native to East Asia revealed by SSR (simple sequence repeat) markers[J]. Genetic Resources and Crop Evolution,2007,54(5):959-971.
[8] XUE H B,ZHANG P J,SHI T,YANG J,WANG L,WANG S K,SU Y L,ZHANG H R,QIAO Y S,LI X G. Genome-wide characterization of simple sequence repeats in Pyrus bretschneideri and their application in an analysis of genetic diversity in pear[J]. BMC Genomics,2018,19(1):473.
[9] 蔣爽,駱軍,王曉慶,施春暉. 基于基因組重測序數(shù)據(jù)高效篩選梨SSR標記多態(tài)性引物[J]. 果樹學報,2019,36(2):129-136.
JIANG Shuang,LUO Jun,WANG Xiaoqing,SHI Chunhui. A study on efficient screening of the primers for selecting polymorphic SSR markers based on the re-sequencing data in Pyrus[J]. Journal of Fruit Science,2019,36(2):129-136.
[10] 王斐,張艷杰,歐春青,李佳純,楊冠宇,馬力,姜淑苓. 梨品種SSR分子鑒定體系的建立及應用[J]. 分子植物育種,2021,19(22):7499-7509.
WANG Fei,ZHANG Yanjie,OU Chunqing,LI Jiachun,YANG Guanyu,MA Li,JIANG Shuling. SSR identification system of pear varieties and its application[J]. Molecular Plant Breeding,2021,19(22):7499-7509.
[11] 冉昆,隋靜,王宏偉,魏樹偉,張勇,董冉,董肖昌,王少敏. 利用SSR熒光標記構建山東地方梨種質資源分子身份證[J]. 果樹學報,2018,35(增刊1):71-78.
RAN Kun,SUI Jing,WANG Hongwei,WEI Shuwei,ZHANG Yong,DONG Ran,DONG Xiaochang,WANG Shaomin. Using the fluorescent labeled SSR markers to establish the molecular ID of pear germplasm resources in Shandong[J]. Journal of Fruit Science,2018,35(Suppl. 1):71-78.
[12] 薛華柏,趙瑞娟,王磊,楊健,王龍,王蘇珂,蘇艷麗,李秀根. 梨品種SSR特征指紋圖譜與分子身份證構建[J]. 中國南方果樹,2018,47(S1):42-49.
XUE Huabai,ZHAO Ruijuan,WANG Lei,YANG Jian,WANG Long,WANG Suke,SU Yanli,LI Xiugen. Construction of SSR fingerprint and molecular identity card of pear varieties[J]. South China Fruits,2018,47(S1):42-49.
[13] BOTSTEIN D,WHITE R L,SKOLNICK M,DAVIS R W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. American Journal of Human Genetics,1980,32(3):314-331.
[14] WANG S Q,LIU Y,MA L Y,LIU H B,TANG Y,WU L P,WANG Z,LI Y Y,WU R L,PANG X M. Isolation and characterization of microsatellite markers and analysis of genetic diversity in Chinese jujube (Ziziphus jujuba Mill.)[J]. PLoS One,2014,9(6):e99842.
[15] WANG H,PAN G,MA Q G,ZHANG J P,PEI D. The genetic diversity and introgression of Juglans regia and Juglans sigillata in Tibet as revealed by SSR markers[J]. Tree Genetics & Genomes,2015,11:804.
[16] TENG Y W,TANABE K,TAMURA F,ITAI A. Genetic relationships of Pyrus species and cultivars native to East Asia revealed by randomly amplified polymorphic DNA markers[J]. Journal of the American Society for Horticultural Science,2002,127(2):262-270.
[17] 林伯年. 世界及中國的梨生產(chǎn)與貿易[J]. 中國南方果樹,2001,30(6):64-67.
LIN Bonian. Pear production and trade in the world and China[J]. South China Fruits,2001,30(6):64-67.
[18] 劉清文,宋躍,李甲明,張明月,齊開杰,張紹鈴,吳俊. 利用核心簡單重復序列(SSR)標記分析西洋梨品種資源遺傳多樣性[J]. 農業(yè)生物技術學報,2015,23(5):579-587.
LIU Qingwen,SONG Yue,LI Jiaming,ZHANG Mingyue,QI Kaijie,ZHANG Shaoling,WU Jun. Analysis of genetic diversity of European pear (Pyrus communis L.) cultivars using core simple sequence repeat (SSR) markers[J]. Journal of Agricultural Biotechnology,2015,23(5):579-587.
[19] 李勝男. 分子標記在梨?zhèn)鞑ヂ窂郊胺N質鑒定中的應用[D]. 南京:南京農業(yè)大學,2019.
LI Shengnan. Application of molecular markers in pear transmission path and germplasm identification[D]. Nanjing:Nanjing Agricultural University,2019.
[20] 陳少瑜,李江,陳偉,馮弦. 云南溝谷雨林建群種絨毛番龍眼居群的遺傳多樣性[J]. 南方農業(yè)學報,2022,53(3):850-858.
CHEN Shaoyu,LI Jiang,CHEN Wei,F(xiàn)ENG Xian. Genetic diversity of Pometia tomentosa,a major constructive species of valley rainforest in Yunnan[J]. Journal of Southern Agriculture,2022,53(3):850-858.
[21] 鄧偉,呂瑩,董陽均,徐雨然,楊華濤,張錦文,張建華,奎麗梅,涂建,相罕章,管俊嬌,董維,谷安宇,安華,楊麗萍,張笑,李小林. 云南水稻種質資源的遺傳多樣性分析[J]. 植物遺傳資源學報,2023,24(3):624-635.
DENG Wei,L? Ying,DONG Yangjun,XU Yuran,YANG Huatao,ZHANG Jinwen,ZHANG Jianhua,KUI Limei,TU Jian,XIANG Hanzhang,GUAN Junjiao,DONG Wei,GU Anyu,AN Hua,YANG Liping,ZHANG Xiao,LI Xiaolin. The genetic diversity analysis of rice germplasm resources in Yunnan Province of China[J]. Journal of Plant Genetic Resources,2023,24(3):624-635.
[22] 胡春云. 基于葉綠體DNA非編碼區(qū)的梨屬系統(tǒng)發(fā)育關系及東亞栽培梨的演化研究[D]. 杭州:浙江大學,2012.
HU Chunyun. Studies on Phylogenetic analysis of Pyrus L. and evolution of east asian pear cultivar goups based on non-coding cpDNA regions[D]. Hangzhou:Zhejiang University,2012.
[23] 張瑩,曹玉芬,田路明,董星光,齊丹,霍宏亮,徐家玉,劉超,王立東. 梨種質資源果實若干數(shù)量性狀評價指標研究[J]. 果樹學報,2023,40(6):1053-1063.
ZHANG Ying,CAO Yufen,TIAN Luming,DONG Xingguang,QI Dan,HUO Hongliang,XU Jiayu,LIU Chao,WANG Lidong. Evaluating standards of some fruit quantitative traits of pear genetic resources[J]. Journal of Fruit Science,2023,40(6):1053-1063.
[24] FENG S G,HE R F,LU J J,JIANG M Y,SHEN X X,JIANG Y,WANG Z A,WANG H Z. Development of SSR markers and assessment of genetic diversity in medicinal Chrysanthemum morifolium cultivars[J]. Frontiers in Genetics,2016,7:113.
[25] ZHOU R,WU Z,CAO X,JIANG F L. Genetic diversity of cultivated and wild tomatoes revealed by morphological traits and SSR markers[J]. Genetics and Molecular Research,2015,14(4):13868-13879.