陳艷閣 汪海峰
摘 要 作為三維(3D)細(xì)胞培養(yǎng)技術(shù)之一的3D無支架培養(yǎng)技術(shù),其廣泛應(yīng)用于腫瘤3D細(xì)胞模型的構(gòu)建之中。了解當(dāng)前腫瘤細(xì)胞3D無支架培養(yǎng)技術(shù)的應(yīng)用情況,以及腫瘤3D細(xì)胞模型的構(gòu)建成果對于抗癌藥物的研發(fā)與評價(jià)很重要。本文介紹了構(gòu)建腫瘤3D細(xì)胞模型的超低吸附著板培養(yǎng)法、懸滴培養(yǎng)法、磁懸浮培養(yǎng)法和旋轉(zhuǎn)式細(xì)胞培養(yǎng)系統(tǒng)以及它們的局限性,并簡述了腫瘤3D細(xì)胞模型用于藥效評價(jià)的新進(jìn)展,以期為腫瘤3D細(xì)胞模型的構(gòu)建及抗癌藥的藥效評價(jià)提供參考。
關(guān)鍵詞 3D腫瘤細(xì)胞模型 無支架細(xì)胞培養(yǎng)技術(shù) 藥效評價(jià)
中圖分類號:R965 文獻(xiàn)標(biāo)志碼:A 文章編號:1006-1533(2024)01-0075-05
引用本文 陳艷閣, 汪海峰. 腫瘤細(xì)胞3D無支架培養(yǎng)技術(shù)研究進(jìn)展及其在藥效評價(jià)中應(yīng)用[J]. 上海醫(yī)藥, 2024, 45(1): 75-79.
基金項(xiàng)目:遼寧省教育廳科學(xué)研究經(jīng)費(fèi)項(xiàng)目青年科技人才“育苗”項(xiàng)目(LQ2020021)
Research progress in 3D scaffold-free culture of tumor cell and its application in pharmacodynamic evaluation
CHEN Yange, WANG Haifeng
(College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China)
ABSTRACT As one of the three-dimensional (3D) cell culture technologies, the 3D scaffold-free culture technology is widely used in the construction of tumor 3D cell models. It is important to understand the current application of tumor cell 3D scaffold-free culture techniques and the results of tumor 3D cell model construction for the development and evaluation of antitumor drugs. This article introduces the ultra-low attachment plates culture, hanging drop technique, magnetic levitation culture and rotary cell culture system for constructing a 3D cell model of tumors and their limitations, and outlines some new progress of the application of 3D cell models in the pharmacodynamic evaluation so as to provide reference for the construction of 3D cell models of tumors and the efficacy evaluation of anticancer drugs.
KEY WORDS 3D tumor cell model; scaffold-free cell culture techniques; pharmacodynamic evaluation
在抗腫瘤藥物的研發(fā)中,離不開模型的選擇與建立,相關(guān)的模型有傳統(tǒng)的二維細(xì)胞模型、動物模型以及新興起的三維(3D)細(xì)胞模型。3D細(xì)胞模型因?yàn)槟芨玫啬M體內(nèi)細(xì)胞微環(huán)境、更接近于人體內(nèi)真實(shí)情況、且遵循3R原則而被越來越多研究人員所選擇[1]。構(gòu)建腫瘤的3D細(xì)胞模型可以更加有利于研究腫瘤的發(fā)生發(fā)展、腫瘤藥物的研發(fā)與評價(jià)。但是腫瘤3D細(xì)胞培養(yǎng)技術(shù)還處于初級探索階段,對于細(xì)胞適合的培養(yǎng)方法、培養(yǎng)條件、細(xì)胞球維持時(shí)間上、細(xì)胞球保存方法[2]、細(xì)胞球觀察[3]還有待研究。腫瘤3D細(xì)胞模型的構(gòu)建可以分為有支架細(xì)胞培養(yǎng)技術(shù)和無支架細(xì)胞培養(yǎng)技術(shù),基于無支架細(xì)胞培養(yǎng)技術(shù)的腫瘤3D細(xì)胞模型研究成本低、操作簡單可以批量生產(chǎn)。本文綜述了腫瘤3D細(xì)胞模型無支架細(xì)胞培養(yǎng)技術(shù)的4種類型,即超低吸附法培養(yǎng)、懸滴培養(yǎng)法、磁懸浮培養(yǎng)法及旋轉(zhuǎn)式細(xì)胞培養(yǎng)系統(tǒng),探討基于無支架細(xì)胞培養(yǎng)技術(shù)的腫瘤3D細(xì)胞模型的構(gòu)建條件,以及這類腫瘤3D細(xì)胞模型在抗腫瘤藥物的藥效評價(jià)方面應(yīng)用。
1 無支架細(xì)胞培養(yǎng)技術(shù)
簡單來說,無支架細(xì)胞培養(yǎng)技術(shù)就是讓腫瘤細(xì)胞自發(fā)聚集在一起,形成類似于球形的細(xì)胞團(tuán)[4]。無支架細(xì)胞培養(yǎng)技術(shù)可以分為利用超低吸附減少細(xì)胞附著的超低附著板培養(yǎng)法、利用重力和液面表面張力的懸滴培養(yǎng)法、利用磁場使得磁化后的細(xì)胞自發(fā)成球的磁懸浮培養(yǎng)法、利用旋轉(zhuǎn)產(chǎn)生失重的旋轉(zhuǎn)式細(xì)胞培養(yǎng)系統(tǒng)等。
1.1 超低吸附著板培養(yǎng)法
384孔板比96孔板更有利于乳腺癌細(xì)胞成球,并且基質(zhì)凝膠與生長因子配比對于細(xì)胞成球效果有影響[5]。不同細(xì)胞系形成的細(xì)胞球形態(tài)不同,Malh?o等[6]利用超低吸附孔板培養(yǎng)MCF7、MDA-MB-231和SKBR3腫瘤細(xì)胞和MCF12A非腫瘤細(xì)胞,發(fā)現(xiàn) MCF7和MDAMB-231的細(xì)胞球較為致密,而SKBR3和MCF12A形成的細(xì)胞球較為松散,對細(xì)胞球內(nèi)的細(xì)胞進(jìn)行觀察,發(fā)現(xiàn)MCF7在第3天已經(jīng)出現(xiàn)腺泡結(jié)構(gòu)的特征。
張靜等[7]研究發(fā)現(xiàn)細(xì)胞球大小與接種濃度成線性關(guān)系,并且噻唑藍(lán)法比酸性磷酸酶法更適合3D活力測定。馮珊珊等[8]將人肝癌細(xì)胞和人肝星形細(xì)胞接種到超低吸附孔板中共培養(yǎng),并對細(xì)胞球石蠟切片方法進(jìn)行優(yōu)化,縮短了制片時(shí)長和簡化了操作流程。杜鳴等[9]在96孔板中培養(yǎng)食管鱗癌細(xì)胞球,并且發(fā)現(xiàn)臍帶間充質(zhì)干細(xì)胞上層清夜可以促進(jìn)細(xì)胞球的生長和形態(tài)的維持。
1.2 懸滴培養(yǎng)法
進(jìn)行懸滴培養(yǎng)法時(shí)培養(yǎng)基容易蒸發(fā),Jeong等[10]評估了培養(yǎng)基蒸發(fā)率,并利用人類結(jié)直腸癌細(xì)胞(HCT116)首次培養(yǎng)出直徑超過1.5 mm的大型腫瘤3D細(xì)胞模型。光動力療法是治療癌癥的方法之一[11]。有研究者利用懸滴法構(gòu)建多個(gè)黑色素瘤,發(fā)現(xiàn)黑色素瘤能夠在人工真皮中侵襲并且增殖,經(jīng)光動力療法后腫瘤細(xì)胞增殖能被有效抑制,為光動力療法的有效性提供了實(shí)驗(yàn)依據(jù)[12]。Badea等[13]利用懸滴培養(yǎng)法培養(yǎng)乳腺癌細(xì)胞MDA-MB-231,觀察發(fā)現(xiàn)接種量為8 000細(xì)胞/滴時(shí)可獲得致密型細(xì)胞球,接種量為2 500、5 000細(xì)胞/滴時(shí)可獲得疏松型細(xì)胞球,而且NRF2和Hsp70蛋白可作為MDA-MB-231 3D細(xì)胞模型形成的分子標(biāo)志物,為設(shè)計(jì)抗腫瘤藥物提供新靶點(diǎn)。
將結(jié)腸癌HT-29細(xì)胞懸液滴在聚四氟乙烯粉末上的懸滴培養(yǎng)法,和PDMS鋪在在普通96孔板底部的超低吸附培養(yǎng)法,在激光共聚焦顯微鏡下觀察,發(fā)現(xiàn)兩種方法與2D細(xì)胞模型形態(tài)不同,表明兩種方法均能成功構(gòu)建出結(jié)腸癌HT-29的3D細(xì)胞模型[14]。
超低吸附著板培養(yǎng)法和懸滴培養(yǎng)法應(yīng)用于3D細(xì)胞模型的構(gòu)建比較廣泛[15],但在利用超低吸附著板培養(yǎng)法和懸滴培養(yǎng)法兩種方法培養(yǎng)腎上腺皮質(zhì)癌、垂體神經(jīng)內(nèi)分泌瘤和嗜鉻細(xì)胞瘤3D模型時(shí),發(fā)現(xiàn)兩種培養(yǎng)模式下的腫瘤3D細(xì)胞模型效果不佳,其中垂體神經(jīng)內(nèi)分泌瘤更適合用有支架細(xì)胞培養(yǎng)技術(shù)來培養(yǎng)[16]。
1.3 磁懸浮培養(yǎng)法
磁懸浮培養(yǎng)法就是通過磁力將被磁化的細(xì)胞聚集一起的細(xì)胞培養(yǎng)方法[17],其克服了細(xì)胞球容易解體及維持時(shí)間短的缺點(diǎn)[18]。Onbas等[19]證明在磁懸浮裝置中改變培養(yǎng)時(shí)間、磁性劑濃度對于3D細(xì)胞模型的大小有影響,并用磁懸浮培養(yǎng)法構(gòu)建了人上皮乳腺腺癌MCF7和MDA-MB-231、人骨髓神經(jīng)母細(xì)胞瘤SH-SY5Y、大鼠腎上腺嗜鉻細(xì)胞瘤PC-12和人上皮宮頸腺癌HeLa的3D細(xì)胞模型。Türker等[20]對懸浮裝置進(jìn)行了改進(jìn),促進(jìn)了NIH 3T3小鼠成纖維細(xì)胞與HCC 827非小細(xì)胞肺癌細(xì)胞間的相互作用,從而形成3D細(xì)胞模型。磁懸浮法作為新興起培養(yǎng)技術(shù),不僅須考慮其磁性材料對細(xì)胞毒性大小的影響,還須考慮可操作空間是否滿足操作要求[21]。
1.4 旋轉(zhuǎn)式細(xì)胞培養(yǎng)系統(tǒng)
目前,對于生物反應(yīng)器的改進(jìn)是研究熱點(diǎn)之一[22],其在多功能干細(xì)胞培養(yǎng)中應(yīng)用較多,可以誘導(dǎo)多功能干細(xì)胞分化成心肌細(xì)胞[23-24]及用于CAR-T 細(xì)胞的大規(guī)模培養(yǎng)[25]。
旋轉(zhuǎn)式細(xì)胞培養(yǎng)系統(tǒng)是生物反應(yīng)器的一種,其可以提供失重環(huán)境,有利于生物標(biāo)志物的發(fā)現(xiàn)。在旋轉(zhuǎn)式細(xì)胞培養(yǎng)系統(tǒng)培養(yǎng)72 h后,膠質(zhì)母細(xì)胞瘤細(xì)胞系U87MG 3D細(xì)胞模型形態(tài)學(xué)變化,細(xì)胞球的形態(tài)學(xué)的變化使得細(xì)胞的生長特征也發(fā)生改變。用免疫印跡法檢測發(fā)現(xiàn)U87MG細(xì)胞中蛋白表達(dá)也發(fā)生變化,U87MG細(xì)胞中的PCNA蛋白和Bcl-2蛋白可成為膠質(zhì)母細(xì)胞瘤的生物標(biāo)志物[26]。
旋轉(zhuǎn)式細(xì)胞培養(yǎng)系統(tǒng)雖然可以用來研究失重對于細(xì)胞的影響,但是利用旋轉(zhuǎn)式細(xì)胞培養(yǎng)系統(tǒng)還須考慮設(shè)備的成本和滅菌工作[27]。
2 基于腫瘤3D細(xì)胞模型的藥效評價(jià)
對于腫瘤藥物的藥效評價(jià),現(xiàn)在很多研究證實(shí)3D細(xì)胞模型與2D細(xì)胞模型有著顯著差異[28-29]。所以可以用腫瘤3D細(xì)胞模型來評價(jià)抗腫瘤藥物的藥效,以便獲得更加精確的數(shù)據(jù)。
張弛等[30]在超低吸附圓底96孔板中構(gòu)建出HepaRG細(xì)胞的3D細(xì)胞模型,在不同濃度的曲格列酮藥物作用后,發(fā)現(xiàn)線粒體中活性氧自由基水平隨著曲格列酮藥物濃度的增加而增加,曲格列酮可能通過影響線粒體而發(fā)揮藥效。趙富周等[31]在超低吸附孔板培養(yǎng)了A549及H1650細(xì)胞的3D細(xì)胞模型,用于對異牡荊素的影響和作用機(jī)制進(jìn)行探究,發(fā)現(xiàn)異牡荊素可以有效地降低細(xì)胞球成球率及細(xì)胞活性。
用96孔懸滴板、24低附著孔板和96超低吸附孔板來培養(yǎng)BON1細(xì)胞,并對不同濃度的舒尼替尼進(jìn)行藥效評價(jià),藥物對于懸滴培養(yǎng)法培養(yǎng)的細(xì)胞球周長沒有顯著差別,但在24和96孔板中,細(xì)胞球體周長均減少,然而24孔板培養(yǎng)的細(xì)胞球比96孔板培養(yǎng)的細(xì)胞球在數(shù)據(jù)收集方面操作困難,所以96超低吸附孔板更適合BON1細(xì)胞球的構(gòu)建及舒尼替尼藥效評價(jià)[32]。
對氟尿嘧啶和伊立替康兩種藥物進(jìn)行藥效評價(jià),發(fā)現(xiàn)氟尿嘧啶主要抑制胞球外層細(xì)胞生長,而伊立替康比氟尿嘧啶更有效地滲透到細(xì)胞球內(nèi)部,從而影響整個(gè)細(xì)胞球的生長,最終使致密結(jié)構(gòu)的細(xì)胞球崩解[14]。
有文獻(xiàn)提出可將患者的細(xì)胞體外培養(yǎng)來評價(jià)腫瘤細(xì)胞對于藥物的耐藥性,做到精準(zhǔn)治療,由患者來源的膠質(zhì)母細(xì)胞瘤細(xì)胞來構(gòu)建3D細(xì)胞模型,將細(xì)胞接種到專用于懸浮培養(yǎng)的細(xì)胞培養(yǎng)瓶中培養(yǎng),發(fā)現(xiàn)細(xì)胞球?qū)τ谔婺虬繁憩F(xiàn)出更強(qiáng)的耐藥性[33]。
腫瘤3D細(xì)胞模型還可以對于候選藥物的藥效進(jìn)行評估,Jouberton等[34]建立了一個(gè)操作簡單、重復(fù)性高的前列腺癌3D細(xì)胞模型,并對多西紫杉醇和前藥TH-302進(jìn)行評價(jià),隨著3D細(xì)胞模型體積的增加多西紫杉醇的耐藥性增強(qiáng),而低氧區(qū)域的增加則增強(qiáng)了TH-302的活性。此外,用構(gòu)建的3D細(xì)胞模型來檢測藥物與免疫療法的結(jié)合也為新藥研發(fā)提供了參考,在研究BH3模擬物(BH3 mimetics)與自然殺傷(NK)細(xì)胞免疫療法結(jié)合使用時(shí),發(fā)現(xiàn)BH3模擬物和免疫細(xì)胞聯(lián)合使用比單獨(dú)使用藥物或者添加免疫細(xì)胞更能引起腫瘤細(xì)胞發(fā)生凋亡,聯(lián)合使用也降低了BH3模擬物的細(xì)胞毒性[35]。
3 展望
盡管腫瘤3D細(xì)胞模型的構(gòu)建受到了廣泛的關(guān)注,但是無支架細(xì)胞培養(yǎng)技術(shù)在構(gòu)建腫瘤3D細(xì)胞模型中仍然有缺點(diǎn),包括形成的球形不規(guī)則、細(xì)胞球的大小受到限制、維持時(shí)間短等。隨著精準(zhǔn)醫(yī)療的發(fā)展,對于細(xì)胞模型的可重復(fù)性及監(jiān)測性要求更為嚴(yán)格[36]。細(xì)胞球之間融合方式和融合時(shí)信息交流及不同細(xì)胞系間融合速率快慢的探究,更加有助于了解腫瘤發(fā)生發(fā)展過程。所以,作為新興起的3D細(xì)胞模型仍然需要大量的實(shí)驗(yàn)研究來探索每類腫瘤細(xì)胞最適合的3D細(xì)胞培養(yǎng)方法。并且選擇適合的培養(yǎng)方法來構(gòu)建3D細(xì)胞模型,除了可縮短實(shí)驗(yàn)研究到臨床應(yīng)用所需時(shí)間以外,還使得研究結(jié)果更加精確,更有利于醫(yī)藥行業(yè)的發(fā)展。
參考文獻(xiàn)
[1] Shrestha S, Lekkala VKR, Acharya P, et al. Recent advances in microarray 3D bioprinting for high-throughput spheroid and tissue culture and analysis[J]. Essays Biochem, 2021, 65(3): 481-489.
[2] Arai K, Murata D, Takao S, et al. Cryopreservation method for spheroids and fabrication of scaffold-free tubular constructs[J]. PLoS One, 2020, 15(4): e0243249.
[3] Alonso JR, Silva A, Fernández A, et al. Computational multifocus fluorescence microscopy for three-dimensional visualization of multicellular tumor spheroids[J]. Biomed Opt, 2022, 27(6): 066501.
[4] Gori?an L, Gole B, Poto?nik U. Head and neck cancer stem cell-enriched spheroid model for anticancer compound screening[J]. Cells, 2020, 9(7): 1707.
[5] Lee S, Chang J, Kang SM, et al. High-throughput formation and image-based analysis of basal-in mammary organoids in 384-well plates[J]. Sci Rep, 2022, 12(1): 317.
[6] Malh?o F, Macedo AC, Ramos AA, et al. Morphometrical, morphological, and immunocytochemical characterization of a tool for cytotoxicity research: 3D cultures of breast cell lines grown in ultra-low attachment plates[J]. Toxics, 2022, 10(8): 415.
[7] 張靜, 樊雪, 李淼, 等. HepG2細(xì)胞三維培養(yǎng)模型的建立及活力檢測[J]. 中南藥學(xué), 2020, 18(7): 1111-1114.
[8] 馮珊珊, 金毅, 婁東曉, 等. 3D 培養(yǎng)細(xì)胞球快速石蠟切片方法建立及應(yīng)用[J]. 中國比較醫(yī)學(xué)雜志, 2022, 32(8): 57-61.
[9] 杜鳴, 劉卓健, 鄒鋒, 等. 臍帶間充質(zhì)干細(xì)胞培養(yǎng)上清液對食管鱗癌細(xì)胞球的影響[J]. 胃腸病學(xué)和肝病學(xué)雜志,2022, 31(6): 634-637.
[10] Jeong Y, Tin A, Irudayaraj J. Flipped well-plate hanging-drop technique for growing three-dimensional tumors[J]. Front Bioeng Biotechnol, 2022, 10: 898699.
[11] Gariboldi MB, Marras E, Vaghi I, et al. Phototoxicity of two positive-charged diaryl porphyrins in multicellular tumor spheroids[J]. Photochem Photobiol B, 2021, 225: 112353.
[12] Monico DA, Calori IR, Souza C, et al. Melanoma spheroidcontaining artificial dermis as an alternative approach to in vivo models[J]. Exp Cell Res, 2022, 417(1): 113207.
[13] Badea MA, Balas M, Dinischiotu A. Biological properties and development of hypoxia in a breast cancer 3D model generated by hanging drop technique[J]. Cell Biochem Biophys, 2022, 80(1): 63-73.
[14] Kroupová J, Hanu? J, ?těpánek F. Surprising efficacy twist of two established cytostatics revealed by a-la-carte 3D cell spheroid preparation protocol[J]. Eur J Pharm Biopharm, 2022, 180: 224-237.
[15] Thakur G, Bok EY, Kim SB, et al. Scaffold-free 3D culturing enhance pluripotency, immunomodulatory factors, and differentiation potential of Whartons jelly-mesenchymal stem cells[J]. Eur J Cell Biol, 2022, 101(3): 151245.
[16] Krokker L, Szabó B, Németh K, et al. Three dimensional cell culturing for modeling adrenal and pituitary tumors[J]. Pathol Oncol Res, 2021, 27: 640676.
[17] Marques IA, Fernandes C, Tavares NT, et al. Magnetic-based human tissue 3D cell culture: a systematic review[J]. Int J Mol Sci, 2022, 23(20): 12681.
[18] Anil-Inevi M, Yaman S, Yildiz AA, et al. Biofabrication of in situ self assembled 3D cell cultures in a weightlessness environment generated using magnetic levitation[J]. Sci Rep, 2018, 8(1): 7239.
[19] Onbas R, Arslan Yildiz A. Fabrication of tunable 3D cellular structures in high volume using magnetic levitation guided assembly[J]. ACS Appl Bio Mater, 2021, 4(2): 1794-1802.
[20] Türker E, Demir?ak N, Arslan-Yildiz A. Scaffold-free threedimensional cell culturing using magnetic levitation[J]. Biomater Sci, 2018, 6(7): 1745-1753.
[21] Anil-Inevi M, Delikoyun K, Mese G, et al. Magnetic levitation assisted biofabrication, culture, and manipulation of 3D cellular structures using a ring magnet based setup[J]. Biotechnol Bioeng, 2021, 118(12): 4771-4785.
[22] Rodriguez-Granrose D, Zurawski J, Heaton W, et al. Transition from static culture to stirred tank bioreactor for the allogeneic production of therapeutic discogenic cell spheres[J]. Stem Cell Res Ther, 2021, 12(1): 455.
[23] Hamad S, Derichsweiler D, Papadopoulos S, et al. Generation of human induced pluripotent stem cell-derived cardiomyocytes in 2D monolayer and scalable 3D suspension bioreactor cultures with reduced batch-to-batch variations[J]. Theranostics, 2019, 9(24): 7222-723.
[24] Kahn-Krell A, Pretorius D, Ou J, et al. Bioreactor suspension culture: differentiation and production of cardiomyocyte spheroids from human induced pluripotent stem cells[J]. Front Bioeng Biotechnol, 2021, 9: 674260.
[25] Costariol E, Rotondi MC, Amini A, et al. Demonstrating the manufacture of human CAR-T cells in an automated stirred-tank bioreactor[J]. Biotechnol J, 2020, 15(9): e2000177.
[26] Singh R, Singh RP. Study of rotary cell culture systeminduced microgravity effects on cancer biomarkers[J]. Methods Mol Biol, 2022, 2413: 77-96.
[27] 來元亮. 旋轉(zhuǎn)式細(xì)胞培養(yǎng)系統(tǒng)的原理及應(yīng)用[J]. 生物化工, 2020, 6(3): 157-160.
[28] Atat OE, Farzaneh Z, Pourhamzeh M, et al. 3D modeling in cancer studies[J]. Hum Cell, 2022, 35(1): 23-36.
[29] Alzeeb G, Corcos L, Le Jossic-Corcos C. Spheroids to organoids: solid cancer models for anticancer drug discovery[J]. Bull Cancer, 2022, 109(1): 49-57.
[30] 張弛, 李鳳祥, 彭輝, 等. 三維HepaRG細(xì)胞模型的建立及對曲格列酮肝毒性評價(jià)[J]. 毒理學(xué)雜志, 2020, 34(2): 109-114.
[31] 趙富周, 丁成智, 李曉明. 異牡荊素對非小細(xì)胞性肺癌細(xì)胞自我更新和凋亡的影響[J]. 中國臨床藥理學(xué)雜志, 2022, 38(3): 219-223.
[32] Bresciani G, Hofland LJ, Dogan F, et al. Evaluation of spheroid 3D culture methods to study a pancreatic neuroendocrine neoplasm cell line[J]. Front Endocrinol(Lausanne), 2019, 10: 682.
[33] Gozdz A, Wojta? B, Szpak P, et al. Preservation of the hypoxic transcriptome in glioblastoma patient-derived cell lines maintained at lowered oxygen tension[J]. Cancers(Basel), 2022, 14(19): 4852.
[34] Jouberton E, Voissiere A, Penault-Llorca F, et al. Multicellular tumor spheroids of LNCaP-Luc prostate cancer cells as in vitro screening models for cytotoxic drugs[J]. Am J Cancer Res, 2022, 12(3): 1116-1128.
[35] S?rchen V, Shanmugalingam S, Kehr S, et al. Pediatric multicellular tumor spheroid models illustrate a therapeutic potential by combining BH3 mimetics with natural killer (NK) cell-based immunotherapy[J]. Cell Death Discov, 2022, 8(1): 11.
[36] Rossi M, Blasi P. Multicellular tumor spheroids in nanomedicine research: a perspective[J]. Front Med Technol, 2022, 4: 909943.