摘 要:我國玉米生產(chǎn)中,由于品種高度同質(zhì)化、多年連作、秸稈還田以及極端氣候頻發(fā)等因素,造成玉米病害流行,且呈逐年加重之勢,嚴(yán)重威脅玉米的產(chǎn)量和品質(zhì)。培育玉米抗病品種是防控病害的根本途徑,而克隆玉米抗病基因并解析其作用機(jī)理則是培育玉米抗病品種的基礎(chǔ)。近十年來,玉米抗病基因的定位克隆和機(jī)制研究進(jìn)展迅速,相較前二十年取得了顯著突破,極大促進(jìn)了玉米抗病遺傳研究和育種應(yīng)用。綜述了玉米抗病基因挖掘及其作用機(jī)制研究的最新進(jìn)展,闡述其在育種應(yīng)用上的潛在價(jià)值,以期加速玉米優(yōu)良抗病新品種的培育。
關(guān)鍵詞:玉米; 抗病基因; 定位克隆; 育種應(yīng)用
中圖分類號(hào):S513; S332.2"""""" 文獻(xiàn)標(biāo)識(shí)碼:A""""" 文章編號(hào):1002-204X(2024)11-0020-13
doi:10.3969/j.issn.1002-204x.2024.11.004
QTL Mapping and Gene Cloning of Maize Resistance and Its Application
in Breeding
He Shengfeng1, Xu Mingliang2,3, Liu Yuanliang2,3*
(1.College of Plant Protection, China Agricultural University, Beijing 100193; 2.National Maize Improvement Center, College of Agriculture, China Agricultural University, Beijing 100193; 3.National Key Laboratory of Plant Stress Resistance, China Agricultural University, Beijing 100193)
Abstract Due to factors such as a high degree of variety homogenization, multi-year continuous cropping, straw returning to the field, and frequent occurrence of extreme weather, diseases have become prevalent in maize production in China, with their incidence increasing year by year. This trend seriously threatens both the yield and quality of maize. Breeding maize disease-resistant varieties is the fundamental solution to controlling the diseases, while cloning maize disease-resistant genes and analysing their mechanism of action forms the foundation for such breeding efforts. Over the past decade, significant progress has been made in QTL mapping and gene cloning related to maize resistance, greatly benefiting research and applications in disease resistance breeding. The recent advances in the mining of maize disease-resistance genes and their mechanisms of action are reviewed, and their potential value in breeding applications is described, with the objective of accelerating the breeding of new maize varieties with excellent disease-resistance performance.
Key words Maize; Disease resistance genes; QTL mapping and gene cloning; Application in breeding
作者簡介:何勝鳳(1997—),女,貴州黔西南州人,博士,研究方向?yàn)橛衩卓共∵z傳育種。*為通信作者。
收稿日期:2024-10-10
玉米作為全球最重要的農(nóng)作物之一,因其產(chǎn)量高、生物量大以及營養(yǎng)豐富等特點(diǎn),被廣泛用于食用、飼用和工業(yè)加工等領(lǐng)域[1]。在我國,玉米種植面積和產(chǎn)量均位居三大作物之首。確保玉米穩(wěn)產(chǎn)對我國的糧食安全和民生福祉具有重要的意義。病蟲害是玉米穩(wěn)產(chǎn)的重要限制因素,嚴(yán)重影響玉米的產(chǎn)量和品質(zhì)。據(jù)報(bào)道,我國每年由病蟲害造成的玉米產(chǎn)量損失約占總產(chǎn)的10%[2]。常見的玉米病害有30多種,涉及葉部、穗部、莖部和根部,其中危害嚴(yán)重的有小斑病、大斑病、灰斑病、絲黑穗病、南方銹病、莖腐病和穗腐病等。近年來,由于推廣品種遺傳基礎(chǔ)狹窄、多年連作、秸稈還田、極端氣候等因素,全國范圍內(nèi)玉米病害呈頻發(fā)態(tài)勢,對玉米生產(chǎn)構(gòu)成了嚴(yán)重威脅。培育抗病良種是控制病害、確保玉米穩(wěn)產(chǎn)的根本途徑。從包含豐富遺傳變異的玉米種質(zhì)中挖掘抗病基因,有助于玉米品種的抗性改良。盡管克隆基因的實(shí)踐已經(jīng)持續(xù)30多年,但迄今為止,已報(bào)道的玉米抗病基因數(shù)量仍然有限。自早期通過轉(zhuǎn)座子標(biāo)簽法克隆玉米抗圓斑病基因Hm1和抗普通銹病基因Rp1-D以來[3-4],通過定位克隆鑒定出的玉米抗病基因僅有21個(gè),且大多集中在近十年(圖1)。隨著玉米高通量基因組測序、組裝及多組學(xué)研究的不斷深入,玉米抗病基因的定位克隆及機(jī)理解析的進(jìn)程將會(huì)進(jìn)一步加速。
1 植物抗病機(jī)理研究進(jìn)展
在與病原微生物長期競爭的過程中,植物進(jìn)化出復(fù)雜的防御系統(tǒng),以應(yīng)對各種病原微生物多樣的入侵策略。在模式植物中的一系列研究揭示,植物存在兩道免疫系統(tǒng)用于識(shí)別并響應(yīng)病原微生物的入侵[5]。第一道免疫系統(tǒng)通過位于細(xì)胞膜上的模式識(shí)別受體(Pattern recognition receptors, PRRs)識(shí)別病原菌保守的病原相關(guān)分子模式(Pathogen-associated molecular patterns, PAMPs)或植物自身產(chǎn)生的損傷相關(guān)分子模式(Damage-associated molecular patterns, DAMPs),進(jìn)而將免疫信號(hào)傳遞至細(xì)胞內(nèi),誘發(fā)模式分子觸發(fā)的免疫反應(yīng)(pattern-triggered immunity, PTI)。PRRs由位于細(xì)胞膜表面的受體樣激酶(Receptor-like kinases, RLKs)或受體樣蛋白(Receptor-like proteins, RLPs)組成。RLKs包含胞外結(jié)構(gòu)域(Extracellular domain, ECD)、單次跨膜結(jié)構(gòu)域和胞內(nèi)激酶結(jié)構(gòu)域,而RLPs缺少胞內(nèi)激酶結(jié)構(gòu)域。RLKs/RLPs的ECDs負(fù)責(zé)特異性識(shí)別PAMPs或DAMPs。PAMPs/DAMPs包括多肽、蛋白質(zhì)、低聚糖(肽聚糖和脂寡糖)、寡聚半乳糖醛酸、角質(zhì)單體及甾醇等[6]。為適應(yīng)多樣的PAMPs/DAMPs,RLKs/RLPs的ECDs也表現(xiàn)出高度的變異。根據(jù)ECDs基序的特點(diǎn),可將其分為七種類型:LRR(leucine-rich repeat)、LysM(lysine motifs)、WAK/WAKL(wall‐associated kinases)、G-lectin、L-lectin、Malectin及Duf26(domain of unknown function 26)[7]。
第二道免疫系統(tǒng)通過胞內(nèi)受體識(shí)別病原物向植物體內(nèi)分泌的效應(yīng)因子(effector),從而引發(fā)效應(yīng)因子觸發(fā)的免疫反應(yīng)(effector-triggered immunity,ETI)[5]。這類胞內(nèi)受體為包含核苷酸結(jié)合結(jié)構(gòu)域和亮氨酸富集重復(fù)區(qū)的受體類蛋白(nucleotide-binding domain and leucine-rich repeat receptors, NLRs)。NLRs蛋白有三個(gè)關(guān)鍵結(jié)構(gòu)域組成:N端可變結(jié)構(gòu)域、核苷酸結(jié)合(nucleotide-binding, NB)結(jié)構(gòu)域和C端亮氨酸富集重復(fù)(Leucine-rich repeat, LRR)結(jié)構(gòu)域。此外,還有一些非典型的結(jié)構(gòu)域可以整合到NLRs中。NLRs的三個(gè)關(guān)鍵結(jié)構(gòu)域各有其獨(dú)特的功能:N端結(jié)構(gòu)域?yàn)镹LR激活后下游反應(yīng)的信號(hào)傳導(dǎo)結(jié)構(gòu)域[8-10];LRR結(jié)構(gòu)域負(fù)責(zé)直接或間接識(shí)別效應(yīng)因子[11-12];而NB結(jié)構(gòu)域具有ATP結(jié)合活性并充當(dāng)激活NLRs的開關(guān)[13]。根據(jù)N端結(jié)構(gòu)域的不同,將NLRs蛋白分為三類,即coiled-coil(CC)NLRs、Toll/Interleukin-1 receptor/Resistance(TIR)protein NLRs和RPW8-like CC domain(RPW8)NLRs[14]。
PTI涉及一系列特征明顯的生理現(xiàn)象,如活性氧(reactive oxygen species, ROS)爆發(fā)、細(xì)胞質(zhì)向質(zhì)外體的營養(yǎng)轉(zhuǎn)移受限、胼胝質(zhì)沉積以及抗菌代謝物和防御激素的生物合成等[15-19]。相比之下,ETI通常在侵染點(diǎn)附近產(chǎn)生超敏反應(yīng)(hypersensitive response, HR),即引起細(xì)胞程序性死亡(programmed cell death, PCD)[20],從而抑制病原菌的生長。最新研究顯示,PTI和ETI的信號(hào)組件存在交叉現(xiàn)象,且二者相互增強(qiáng),共同抵御病原菌的入侵[21-24]。除PTI和ETI系統(tǒng)外,植物中還有一些抗病基因的作用機(jī)制不能歸類到上述系統(tǒng)中,如編碼分子伴侶和囊泡運(yùn)輸?shù)鞍紫嚓P(guān)基因等。
2 已克隆的玉米抗病基因及其功能分類
2.1 免疫信號(hào)感知類基因
2.1.1 PRRs類抗病基因
在玉米中,通過定位克隆鑒定出6個(gè)編碼PRRs的基因:ZmWAK、ZmWAK02、ZmWAKL、ZmWAK-RLK1、ChSK1和ZmLecRK1。其中:ZmWAK和ZmWAK02編碼WAK-RLK,ZmWAKL和ZmWAK-RLK1編碼WAKL-
RLK,ChSK1編碼LRR-RLK,ZmLecRK1編碼G-lectin–RLK。WAKs通常包括胞內(nèi)絲氨酸/蘇氨酸激酶(serine/threonine kinase, STK)結(jié)構(gòu)域,胞外鈣結(jié)合類表皮生長因子(epidermal growth factor, EGF)結(jié)構(gòu)域以及半乳糖醛酸結(jié)合(galacturonan‐binding, GUB)結(jié)構(gòu)域。與WAK相比,WAKL通常缺乏EGF結(jié)構(gòu)域[25]。WAK/WAKL類蛋白是植物中鑒定到的頻率最高的PRRs之一。LRR-RLK作為RLK中的最大家族[7, 26-27],可細(xì)分為20個(gè)亞家族,參與不同的生物進(jìn)程[28]。其中:LRR-RLK-Ⅱ亞家族成員作為PRRs的共受體參與植物的免疫反應(yīng),如BAK1[29-30],SERK1[31]等;LRR-
RLK-Ⅻ亞家族成員則參與識(shí)別病原菌中的保守蛋白或多肽片段。例如,F(xiàn)LS2識(shí)別細(xì)菌鞭毛蛋白的保守肽段flg22[32],EFR識(shí)別細(xì)菌的生長延伸因子Tu(Elongation factor Tu,EF-Tu)N末端包含18個(gè)氨基酸的肽段elf18[33],以及XA21識(shí)別黃單胞菌中的RaxX蛋白[34]。與LRR-RLK-Ⅻ不同,LRR-RLK-Ⅺ亞家屬成員識(shí)別植物內(nèi)源產(chǎn)生的激發(fā)肽(Plant elicitor peptide, Pep)[35-36]。
ZmWAK基因賦予玉米對絲黑穗病的數(shù)量抗性,該基因通過高抗自交系“吉1037”和高感自交系“黃早四”組配的群體定位得到[37-38]。ZmWAK對應(yīng)的QTL-qHSR1能夠解釋至少30%的表型變異。ZmWAK在玉米苗期的中胚軸中高表達(dá),從而阻止致病菌絲軸黑粉菌(Sporisorium reilianum)向玉米地上組織的擴(kuò)展。與抗病自交系“吉1037”相比,感病自交系“黃早四”中ZmWAK基因缺失。通過對522份代表玉米遺傳多樣性的自交系和184份大芻草中ZmWAK存在/缺失的變異進(jìn)行檢測,發(fā)現(xiàn)ZmWAK的缺失僅發(fā)生在現(xiàn)代玉米種質(zhì)中,表明其丟失可能發(fā)生在大芻草馴化成玉米之后。轉(zhuǎn)錄組數(shù)據(jù)顯示,在正常生長情況下,ZmWAK促進(jìn)細(xì)胞生長相關(guān)基因表達(dá);當(dāng)受到絲軸黑粉菌侵染后,ZmWAK促進(jìn)水楊酸誘導(dǎo)的抗病相關(guān)基因、幾丁質(zhì)酶合成相關(guān)基因及活性氧產(chǎn)生相關(guān)基因等的上調(diào)表達(dá),同時(shí)抑制細(xì)胞生長相關(guān)基因的表達(dá),說明ZmWAK可能在平衡生長與防御方面發(fā)揮了作用[39]。最新研究結(jié)果表明,ZmWAK通過磷酸化蛋白激酶ZmSnRK1α2,促使其從細(xì)胞質(zhì)轉(zhuǎn)移至細(xì)胞核。ZmSnRK1α2的下游底物是調(diào)控跨膜轉(zhuǎn)運(yùn)的轉(zhuǎn)錄因子ZmWRKY53。ZmSnRK1α2通過磷酸化ZmWRKY53促進(jìn)其降解,進(jìn)而降低糖類、水通道蛋白等跨膜轉(zhuǎn)運(yùn)基因的表達(dá)量,從而減少向膜外轉(zhuǎn)運(yùn)營養(yǎng)物質(zhì)。這一改變導(dǎo)致質(zhì)外體營養(yǎng)物質(zhì)匱乏,從而限制病原菌生長,表現(xiàn)出抗病性[40]。
ZmWAK02和ZmWAKL均表現(xiàn)出對灰斑病的數(shù)量抗性。ZmWAK02通過高抗自交系“SB12”和高感自交系“SA101”組配的群體定位得到,其對應(yīng)的QTL-qRglsSB能夠解釋58.42%的表型變異。ZmWAK02是一個(gè)稀有的抗病等位基因,僅在少數(shù)玉米自交系中存在[41]。ZmWAKL由高抗自交系“Y32”和高感自交系“Q11”組配的群體定位得到[42-43]。ZmWAKLY能夠形成二聚體,并在質(zhì)膜上與共受體ZmWIK結(jié)合,形成ZmWAKLY/
ZmWIK受體復(fù)合物。當(dāng)玉米受病原菌侵染時(shí),ZmWAKLY被瞬間激活并增強(qiáng)其磷酸化活性,進(jìn)而觸發(fā)從ZmWAKLY到ZmWIK、ZmBLK1,最終到ZmRBOH4的免疫信號(hào)傳導(dǎo)鏈,導(dǎo)致活性氧爆發(fā),表現(xiàn)出抗病性。通過三對不同親本組合定位到的玉米抗大斑病QTL位點(diǎn)——Htn1、Ht2和Ht3,最終都以ZmWAK‐RLK1作為候選基因。Htn1引起玉米大斑病的癥狀與Ht2和Ht3不相同,且Htn1表現(xiàn)為數(shù)量抗性,而Ht2和Ht3表現(xiàn)為質(zhì)量抗性。這是由于ZmWAK‐RLK1的胞外結(jié)構(gòu)域高度變異,產(chǎn)生具有不同功能的等位基因[44-45]。ChSK1對小斑病表現(xiàn)出數(shù)量抗性。在抗病自交系“Mo17”和“NC292”中,一個(gè)轉(zhuǎn)座子插入ChSK1的LRR結(jié)構(gòu)域,導(dǎo)致其功能喪失,從而賦予對小斑病的隱性數(shù)量抗性。進(jìn)化樹分析顯示,ChSK1與FLS2、Xa21及EFR等同屬LRR-RLK-Ⅻ類。ChSK1的LRR結(jié)構(gòu)域可能識(shí)別病原菌中的保守蛋白或多肽,從而觸發(fā)免疫反應(yīng)[46]。此前報(bào)道表明,該亞家族的基因通常為抗病基因,但關(guān)于ChSK1的感病機(jī)制仍有待進(jìn)一步研究。ZmLecRK1通過GWAS定位而來,對腐霉莖腐病、小斑病及紋枯病表現(xiàn)出數(shù)量抗性。ZmLecRK1的A404S位點(diǎn)氨基酸的自然變異決定了其與ZmBAK1的互作強(qiáng)度,進(jìn)而影響玉米對多種病害的抗性[47]。
2.1.2 NLR類抗病基因
迄今為止,通過定位克隆鑒定的玉米NLR基因有4個(gè):Rcg1、RppC、RppK和Ht1。Rcg1賦予玉米對炭疽莖腐病的數(shù)量抗性,通過延緩炭疽莖腐病的發(fā)病時(shí)間來增強(qiáng)抗性[48]。RppC、RppK和Ht1均屬于CC-NLR類型。其中:RppC和RppK對南方銹病具有數(shù)量抗性,其編碼蛋白分別通過識(shí)別南方銹病病原菌多堆柄銹菌(Puccinia polysora)的效應(yīng)因子AvrRppC和AvrRppK而觸發(fā)免疫反應(yīng)。RppC由抗病自交系“CML496”和感病自交系“Lx9801”構(gòu)建的群體定位得到[49-50],在RppCLx9801基因的1131 bp處插入一個(gè)堿基,造成編碼提前終止,產(chǎn)生截短蛋白,從而使其對南方銹病易感。CHEN G等[51]利用抗病自交系“K22”和感病自交系“丹340”構(gòu)建群體,鑒定出了抗病基因RppK。通過對約500份玉米自交系、288份地方種、168份大芻草以及74個(gè)商業(yè)品種進(jìn)行RppK的存在/缺失檢測,發(fā)現(xiàn)僅有17份自交系和5份商業(yè)品種攜帶RppK基因。THATCHER S等[52]在抗性自交系“PH4GP”的2號(hào)染色體上克隆了抗大斑病基因Ht1。擬南芥NLR抗病蛋白ZAR1被激活后形成同源五聚體漏斗狀結(jié)構(gòu)來實(shí)現(xiàn)其抗病功能[13]。Ht1在結(jié)構(gòu)上與ZAR1同源,可能具有相似的抗病機(jī)制[52]。此外,通過轉(zhuǎn)座子標(biāo)簽克隆的Rp1-D可能也屬于NLR基因。Rp1-D對普通銹病具有數(shù)量抗性,其編碼的蛋白為NB-LRR蛋白,但與典型的NLR蛋白相比缺少N端結(jié)構(gòu)域[4]。
2.2 免疫信號(hào)轉(zhuǎn)導(dǎo)及調(diào)控相關(guān)基因
當(dāng)PRRs或NLRs感知到病原菌后,諸如蛋白激酶和轉(zhuǎn)錄因子等一系列信號(hào)組件被激活,并參與免疫信號(hào)轉(zhuǎn)導(dǎo)過程。同時(shí),免疫信號(hào)轉(zhuǎn)導(dǎo)的組件會(huì)受到不同層面的調(diào)控,如表觀修飾和泛素化等,以達(dá)到精準(zhǔn)抗擊病原菌的目的。
2.2.1 轉(zhuǎn)錄因子
轉(zhuǎn)錄因子是基因調(diào)控網(wǎng)絡(luò)中的核心組分[53]。防御相關(guān)的轉(zhuǎn)錄因子可能充當(dāng)細(xì)胞表面受體和下游功能基因之間信號(hào)傳導(dǎo)的節(jié)點(diǎn),分層式動(dòng)態(tài)調(diào)節(jié)下游基因的表達(dá)來應(yīng)對病原菌的侵襲[54]。WANG H Z等[55]在含有大芻草基因組片段的導(dǎo)入系“C117”中成功克隆了對大斑病、南方銹病和灰斑病表現(xiàn)廣譜抗病性的新基因ZmMM1。ZmMM1編碼一個(gè)MYB家族的轉(zhuǎn)錄抑制因子,來源于“C117”的ZmMM1的3’UTR能夠增強(qiáng)其蛋白翻譯水平。ZmMM1通過抑制編碼一個(gè)長鏈非編碼RNA(LncRNA)基因ZmMT3的轉(zhuǎn)錄水平,從而增強(qiáng)玉米的廣譜抗病性。此外,由抗病自交系“齊319”和感病自交系“掖478”組配的群體定位得到的ZmGLK36編碼一個(gè)G2-like轉(zhuǎn)錄因子,參與玉米對粗縮病的數(shù)量抗性[56-57]。ZmGLK36通過直接增強(qiáng)與茉莉酸合成相關(guān)基因的表達(dá),提升了玉米植株的抗病能力。研究還發(fā)現(xiàn),ZmGLK36上游的一個(gè)AP2/EREBP家族的轉(zhuǎn)錄抑制因子ZmDBF2能夠直接結(jié)合其5’UTR上的26-bp序列,抑制ZmGLK36表達(dá),導(dǎo)致植株感病[58]。
2.2.2 受表觀修飾的基因
表觀遺傳調(diào)控直接參與植物免疫記憶的形成,并影響抗病基因的表達(dá)[58-59]。由抗病自交系“1145”及感病自交系“Y331”組配的群體定位得到的ZmCCT對玉米赤霉莖腐病具有數(shù)量抗性[60-61]。相比“1145”,“Y331”的ZmCCT基因上游大約2.4 kb處插入一個(gè)CACTA‐like轉(zhuǎn)座子,造成H3K4me3的選擇性清除,進(jìn)而抑制病原菌誘導(dǎo)的ZmCCT基因表達(dá),最終導(dǎo)致植物感病。轉(zhuǎn)座子介導(dǎo)的表觀遺傳變異能夠響應(yīng)外部環(huán)境刺激,這種快速響應(yīng)機(jī)制對植物適應(yīng)不同生態(tài)環(huán)境以及調(diào)整生長狀態(tài)十分重要[62-63]。
2.2.3 泛素化組分
在真核生物中,泛素-蛋白酶體系統(tǒng)負(fù)責(zé)調(diào)節(jié)蛋白的穩(wěn)定性[64]。泛素化是一個(gè)多步驟的過程,包括首先由E1酶激活泛素,接著泛素與E2酶結(jié)合,最終在E3酶的作用下連接到底物蛋白上進(jìn)行標(biāo)記。被泛素標(biāo)記的蛋白可能會(huì)被26S蛋白酶體降解[65]。ZmFBL41編碼一個(gè)F-box蛋白,對玉米紋枯病具有數(shù)量抗性。ZmFBL41是通過全基因組關(guān)聯(lián)分析(GWAS)定位克隆的首個(gè)玉米抗病基因。ZmFBL41是SCF E3連接酶復(fù)合體的組分之一,其靶標(biāo)為ZmCAD,ZmCAD是木質(zhì)素單體生物合成途徑中的最后一個(gè)酶。ZmFBL41與ZmCAD互作并促進(jìn)其降解,導(dǎo)致植物感病。ZmFBL41中兩個(gè)氨基酸的自然變異使得其失去與ZmCAD結(jié)合的能力,從而增強(qiáng)植株的抗病性[66]。
2.3 植物激素相關(guān)基因
植物激素是一類由植物自身產(chǎn)生的小分子化合物,能夠調(diào)節(jié)植物多種生理過程。據(jù)報(bào)道,幾乎所有植物激素都參與了植物的防御反應(yīng)[67-68]。通過玉米抗病自交系“1145”及感病自交系“Y331”組配的群體,定位克隆了ZmAuxRP1基因。該基因編碼一個(gè)生長素調(diào)節(jié)蛋白,對赤霉莖腐病及鐮孢穗腐病均具有數(shù)量抗性[61,69-70]。在正常生長條件下,ZmAuxRP1維持相對較高的表達(dá)量以促進(jìn)生長素(IAA)的合成;當(dāng)植物受到病原菌侵染時(shí),ZmAuxRP1表達(dá)量下調(diào),從而減少IAA的合成,同時(shí)促進(jìn)苯并惡唑嗪酮的積累,增強(qiáng)對赤霉莖腐病及鐮孢穗腐病的抗性。ZmAuxRP1的動(dòng)態(tài)調(diào)節(jié)維持了植物生長和抗病的相對平衡。
2.4 代謝產(chǎn)物相關(guān)基因
初級(jí)代謝產(chǎn)物是植物生長發(fā)育所必需的,而次生代謝產(chǎn)物,如木質(zhì)素、苯并噁嗪酮類和角質(zhì)層蠟質(zhì)等的合成,往往有助于植物抵御生物及非生物逆境,且具有個(gè)體特異性[71-73]。木質(zhì)素是一類組成細(xì)胞壁的復(fù)雜有機(jī)聚合物,其合成需要經(jīng)過一系列的酶促反應(yīng)[74-75]。目前關(guān)于木質(zhì)素參與植物抗病的依據(jù)主要有三點(diǎn):①木質(zhì)素作為細(xì)胞壁的組分能夠增強(qiáng)細(xì)胞壁的屏障功能,從而幫助植物抵御生物及非生物逆境[76];②木質(zhì)素合成途徑中的某些中間產(chǎn)物可能具有抗菌作用[77];③細(xì)胞壁成分的變化可能會(huì)觸發(fā)植物免疫反應(yīng)[78-79]。YANG Q等[80]在玉米自交系“NC292”的9號(hào)染色體克隆了與小斑病和灰斑病抗性相關(guān)的微效持久性抗病基因ZmCCoAOMT2。該基因編碼咖啡酰輔酶A O -甲基轉(zhuǎn)移酶,參與苯丙素代謝途徑和木質(zhì)素合成。另一個(gè)基因ZmBGLU17通過GWAS定位得到,對腐霉莖腐病具有數(shù)量抗性。ZmBGLU17編碼一個(gè)雙定位的β-糖苷水解酶,液泡中的ZmBGLU17能夠水解丁布糖苷,釋放丁布以增強(qiáng)植物抗病性;而細(xì)胞質(zhì)外體的ZmBGLU17能夠促進(jìn)木質(zhì)素單體從木質(zhì)素糖復(fù)合物中釋放,增加木質(zhì)素的積累,從而增強(qiáng)植物抗病性[81]。
角質(zhì)層蠟質(zhì)在保護(hù)植物免受生物和非生物脅迫(如病原體/害蟲感染、非氣孔水分流失、紫外線和物理損傷等)方面起著關(guān)鍵作用。通過GWAS定位得到的ZmWAX2基因與玉米角質(zhì)層蠟質(zhì)的合成相關(guān),對鐮孢莖腐病及腫腐病具有數(shù)量抗性[82]。
2.5 其他功能的基因
此外,一些尚未歸類到經(jīng)典植物免疫系統(tǒng)的玉米抗病基因也已被鑒定出來,如編碼囊泡運(yùn)輸?shù)鞍?、分子伴侶及解毒酶相關(guān)基因等。
囊泡運(yùn)輸在植物免疫及植物與病原菌的互作中起著重要作用[83-84]。Rab蛋白是一類調(diào)節(jié)蛋白質(zhì)運(yùn)輸?shù)腉TP酶,而Rab GDP解離抑制因子(Rab GDP dissociation inhibitor, RabGDI)在Rab蛋白從目標(biāo)位置回到供體膜的循環(huán)中起重要作用,因此在囊泡運(yùn)輸中具有重要地位[85]。由一個(gè)helitron轉(zhuǎn)座子誘導(dǎo)的變異ZmGDIα-hel可賦予玉米對粗縮病的隱性數(shù)量抗性,該基因通過兩對抗感組合“NT409×NT411”“黃C×X178”衍生的精細(xì)定位群體定位得到[86-87]。病毒致病因子P7-1通過靶向結(jié)合感病因子ZmGDIα形成一個(gè)潛在的運(yùn)輸復(fù)合體,從而促進(jìn)病毒的擴(kuò)散,增加玉米對粗縮病的感病性。而P7-1因結(jié)合抗病蛋白ZmGDIα-hel的能力減弱,最終導(dǎo)致隱性數(shù)量抗性。最新研究發(fā)現(xiàn),P7-1與ZmGDIα的復(fù)合體能夠促進(jìn)赤霉素2-氧化酶ZmGA2ox7.3的寡聚化,增強(qiáng)其酶活性,從而將更多活性形式的赤霉素GA1/GA4轉(zhuǎn)化為無活性的狀態(tài),打亂了玉米內(nèi)源激素的平衡,導(dǎo)致玉米莖稈節(jié)間縮短,表現(xiàn)出典型的矮縮癥狀。而ZmGDIα-hel對ZmGA2ox7.3形成寡聚化的促進(jìn)能力遠(yuǎn)遠(yuǎn)低于ZmGDIα,因此植株能夠表現(xiàn)出抗病性[88]。ZmGDIα在玉米生長發(fā)育中扮演著多重關(guān)鍵角色,一旦被病毒利用,會(huì)對玉米自身產(chǎn)生極大危害。
分子伴侶是細(xì)胞中一類重要的蛋白質(zhì),介導(dǎo)其他蛋白質(zhì)的正確折疊和裝配,但自身不成為最終功能結(jié)構(gòu)的組分。有證據(jù)表明,分子伴侶在植物免疫中起著重要作用[89-90],然而其具體機(jī)理卻知之甚少。兩個(gè)對甘蔗花葉病毒(Sugarcane mosaic virus, SCMV)具有數(shù)量抗性的基因,ZmTrxh和ZmABP1,被鑒定為分子伴侶。這兩個(gè)基因都是通過抗病親本“FAP1360A”和感病親本“F7”組配的群體定位得到[91-92]。ZmTrxh編碼非典型的H-型硫氧還蛋白,分布于細(xì)胞質(zhì)中??共〉鞍譠mTrxh活性位點(diǎn)處的兩個(gè)半胱氨酸被天冬酰胺和絲氨酸替代,導(dǎo)致ZmTrxh喪失氧化還原功能,但仍具有分子伴侶功能。ZmTrxh通過其分子伴侶功能,保護(hù)寄主蛋白免受病毒蛋白的攻擊以及削弱病毒蛋白功能,進(jìn)而抑制SCMV的復(fù)制,提高植株對SCMV的抗病能力[93]。ZmABP1編碼生長素結(jié)合蛋白1(Auxin binding protein 1, ABP1)。研究表明,ZmABP1受SCMV誘導(dǎo)后表達(dá)量的差異與其抗病水平相關(guān)[94]。最新研究還發(fā)現(xiàn)分子伴侶在激活NLR類蛋白介導(dǎo)的免疫中也發(fā)揮作用[95]。這些發(fā)現(xiàn)表明,分子伴侶在植物免疫中可能具有多重功能,尤其是在調(diào)控抗病毒免疫反應(yīng)方面發(fā)揮了重要作用。
微生物在植物體內(nèi)產(chǎn)生的毒素通常是植物病害的關(guān)鍵決定因素[96-97],而植物的解毒作用是植物抗病的策略之一[98]。JOHAL G S等[3]通過轉(zhuǎn)座子標(biāo)簽法分離出第一個(gè)植物抗病基因Hm1,它賦予玉米對圓斑病的抗性。Hm1編碼一種HC毒素還原酶,使真菌產(chǎn)生的HC毒素失活,導(dǎo)致植株抗病。然而,在玉米中通過定位克隆的解毒酶基因目前還未見報(bào)道。
3 玉米抗病分子育種應(yīng)用與展望
傳統(tǒng)的玉米抗病品種培育依賴于育種家的經(jīng)驗(yàn),通過表型來篩選抗病品系。這一過程耗時(shí)、低效,且高度依賴環(huán)境條件。將分子標(biāo)記輔助選育與傳統(tǒng)育種手段結(jié)合,是加快培育玉米優(yōu)良抗病品種的有效策略。分子標(biāo)記輔助選育通過在基因水平上進(jìn)行精確選擇,能夠提高育種效率并縮短育種周期。隨著生物技術(shù)的快速發(fā)展,高通量測序、轉(zhuǎn)基因、基因編輯和生物信息技術(shù)在玉米抗病育種中的應(yīng)用前景廣闊。轉(zhuǎn)基因技術(shù)能夠通過引入外源抗病基因,直接提升植物的抗病性;基因編輯技術(shù),如CRISPR-Cas9,則能精準(zhǔn)插入或修飾內(nèi)源抗病基因,培育出抗病性更強(qiáng)的新品種。此外,基因組選擇(GS)技術(shù)結(jié)合大規(guī)模的基因組數(shù)據(jù)和表型數(shù)據(jù),可以在育種早期階段預(yù)測育種材料的抗病潛力,從而顯著加快育種進(jìn)程。
展望未來,隨著這些新興技術(shù)的進(jìn)一步發(fā)展和廣泛應(yīng)用,玉米抗病育種將變得更加精準(zhǔn)高效。這不僅能夠應(yīng)對現(xiàn)有的病害挑戰(zhàn),還可以迅速應(yīng)對新的病原體或環(huán)境變化所帶來的壓力。這些技術(shù)的融合有望大幅度提高全球玉米生產(chǎn)的穩(wěn)定性和產(chǎn)量,為確保糧食安全作出重要貢獻(xiàn)。
3.1 玉米抗病種質(zhì)資源的收集和評估
玉米自然種質(zhì)資源中蘊(yùn)含著豐富的遺傳變異,篩選出對多種病害兼抗的種質(zhì)資源是培育抗病品種的基礎(chǔ)。段燦星等[99]對1 647份玉米種質(zhì)進(jìn)行了抗腫囊腐霉莖腐病和擬輪枝鐮孢穗腐病鑒定,篩選出的高抗莖腐病和穗腐病的種質(zhì)分別為564份和27份,僅有13份種質(zhì)對兩種病害均表現(xiàn)高抗。WANG X M等[100]對152份玉米種質(zhì)進(jìn)行了抗大斑病、小斑病、灰斑病、葉斑病、普通銹病和南方銹病鑒定,僅有7.9%的測試自交系對于4或5種葉部病害表現(xiàn)抗性,其中大多數(shù)來自美國種質(zhì)。許多抗病種質(zhì)來源于熱帶地區(qū),如高抗灰斑病的自交系“Y32”是從熱帶Suwan1種質(zhì)衍生而來的[42,101],高抗赤霉莖腐病的自交系“1145”從P78599群種質(zhì)衍生而來,該種質(zhì)混合了來自南美的ETO種質(zhì)和來自泰國的Suwan1的血緣[60,69]。在玉米自然種質(zhì)中,一些抗病優(yōu)質(zhì)等位基因的占比非常少。例如抗病等位基因ZmCCT(不攜帶轉(zhuǎn)座子)僅在P78599衍生的自交系中被鑒定到[60-61,102];在檢測的1 000余份材料中,僅有36份自交系攜帶玉米粗縮病抗病等位基因ZmGDIα-hel[88];同樣,在測試的1 000余份材料中,僅有22份材料攜帶RppK[51];ZmWAK02也只存在于少數(shù)玉米自交系材料中[41]。因此,大規(guī)模收集和評估種質(zhì)資源不僅能夠識(shí)別新的抗病基因,還為抗病品種的改良提供了寶貴的遺傳多樣性,有助于在不斷變化的環(huán)境和病害壓力下,培育出更多高效、抗病的玉米品種。
玉米的祖先大芻草也是玉米抗病改良的重要遺傳資源。在玉米的馴化過程中,丟失了很多優(yōu)良的抗病遺傳變異[103]。如大芻草來源的ZmMM1的3’UTR變異位點(diǎn)相比于Mo17來源位點(diǎn),能夠增強(qiáng)ZmMM1的蛋白翻譯水平,從而增強(qiáng)玉米對多種病害的抗性[104];ZmWAK廣泛存在于受檢測的大芻草種質(zhì)中,但在部分現(xiàn)代栽培玉米中已經(jīng)丟失,造成玉米對絲黑穗病的感病性[105]。因此,充分利用大芻草中的遺傳資源,結(jié)合現(xiàn)代育種技術(shù),將為玉米抗病性改良提供新的契機(jī)。這種基于近緣資源的抗病基因挖掘?yàn)橛衩卓共∮N提供了一條全新的重要途徑,拓寬了育種材料的遺傳基礎(chǔ),也為應(yīng)對未來的病害挑戰(zhàn)提供了更多的可能性。
3.2 分子輔助選擇育種
利用分子標(biāo)記輔助選擇(Marker-assisted selection, MAS)技術(shù)對存在自然變異的抗病等位基因進(jìn)行選擇,可以顯著加快玉米抗病品種的培育,具有巨大的應(yīng)用前景。例如利用MAS回交引入抗絲黑穗病的QTL-qHSR1,顯著提高了10個(gè)自交系對絲黑穗病的抗性[106]。作為qHSR1的功能基因,ZmWAK已經(jīng)在抗絲黑穗病育種中得到了廣泛的應(yīng)用,成功改良了中國本土感病種質(zhì)“唐四平頭”,并培育出了一大批玉米絲黑穗病抗性自交系和品種[106]。ZmCCT為赤霉莖腐病抗性QTL-qRfg1的功能基因[60]。ZmCCT是一個(gè)多效性基因,除了與抗病相關(guān)外,還與光周期敏感性有關(guān)[62]。通過MAS技術(shù)將9個(gè)ZmCCT的抗病單倍型引入7個(gè)優(yōu)良自交系中,其中H5單倍型增強(qiáng)對莖腐病抗性的同時(shí)還降低了光周期敏感性[102]。H5單倍型已被廣泛應(yīng)用于我國的抗莖腐病育種中,未來有望極大緩解玉米赤霉莖腐病的危害[107]。此外,ZmWAK02是灰斑病抗性QTL-qRglsSB的功能基因,通過MAS將其分別導(dǎo)入雜交種“先玉335”和“鄭單958”中。在不接菌條件下,改良雜交種與對照相比沒有明顯差別;而在接種病原菌條件下,改良后的先玉335ZmWAK02和鄭單958ZmWAK02分別比對照增產(chǎn)3.9%和8%。同樣,RppK是南方銹病的抗病基因,利用MAS將RppK導(dǎo)入商業(yè)雜交種“京科968”。在沒有病原菌侵染的情況下,改良后的“京科968”產(chǎn)量不受影響,而在病原菌侵染時(shí),改良雜交種相比對照產(chǎn)量提高10%以上[51]。
通過單個(gè)抗病基因改良通常難以取得最佳效果,而通過聚合多個(gè)抗病優(yōu)勢等位基因能極大提高植株抗性。例如,將抗甘蔗花葉病毒病的兩個(gè)主效QTLs(Scmv1和Scmv2)通過MAS導(dǎo)入到感病自交系“F7”后,改良的近等基因系幾乎對甘蔗花葉病毒病完全免疫[108]。另外,將兩個(gè)玉米粗縮病抗性基因ZmGDIα-hel和ZmGLK36通過MAS聚合到兩個(gè)親本及其雜交種中。相對于導(dǎo)入單一基因,聚合兩個(gè)基因表現(xiàn)出更強(qiáng)的玉米粗縮病抗性[109]。
綜上所述,MAS技術(shù)在玉米抗病育種中展現(xiàn)了巨大的潛力,特別是在多基因抗病性聚合和品種改良中,能夠顯著提高抗病品種的培育效率和效果,為玉米生產(chǎn)提供強(qiáng)有力的保障。
3.3 轉(zhuǎn)基因及基因編輯育種
轉(zhuǎn)基因技術(shù)在玉米抗病品種培育中展現(xiàn)出巨大的潛力。這一技術(shù)突出的一個(gè)優(yōu)勢是可以打破物種間的生殖隔離,引入其他物種的抗病基因來改良現(xiàn)有品種。例如,將小麥中的持久抗病基因Lr34引入到玉米后,顯著增強(qiáng)了玉米對普通銹病和大斑病的抗性[110]。結(jié)合已克隆的玉米抗病基因,利用過表達(dá)或敲除感病基因,能夠提高玉米的抗性。然而,某些基因具有一因多效性,增加其表達(dá)量可能會(huì)對其他性狀產(chǎn)生負(fù)面影響。如過表達(dá)ZmCCT提高對莖腐病的抗性,但同時(shí)推遲了玉米的開花期[60,62]。為了避免這種副作用,可以利用病原菌誘導(dǎo)型啟動(dòng)子,只在病原菌感染時(shí)激活抗病基因表達(dá)。這一策略在水稻中已經(jīng)成功應(yīng)用,并具有潛在的玉米應(yīng)用前景[111-112]。
CRISPR/Cas9系統(tǒng)以其操作簡單、靈活性強(qiáng)、效率高的特點(diǎn),徹底改變了基因編輯技術(shù),成為基因功能分析和作物改良的強(qiáng)大工具[113-115]。CRISPR/Cas9系統(tǒng)的應(yīng)用主要集中在基因敲除、基因敲入、順式作用元件編輯及特定堿基編輯等領(lǐng)域。例如,敲除感病基因或編輯感病基因的關(guān)鍵位點(diǎn)能有效提高玉米抗病性。ZmFBL41是一個(gè)紋枯病的感病基因,轉(zhuǎn)座子插入系zmfbl41提高了玉米對紋枯病的抗性[66],這表明通過CRISPR/Cas9技術(shù)直接敲除ZmFBL41同樣可以增強(qiáng)紋枯病抗性。ZmGDIα是玉米粗縮病的感病基因,現(xiàn)已證明玉米粗縮病毒的效應(yīng)因子P7-1靶向結(jié)合ZmGDIα的第10外顯子及C末端67個(gè)氨基酸的肽段[116]。如果能夠精準(zhǔn)確定這些互作關(guān)鍵氨基酸位點(diǎn),就能通過堿基編輯創(chuàng)造新的抗病等位基因。ZmCCT對玉米莖腐病具有抗性,但同時(shí)也導(dǎo)致玉米開花期延遲[60,62]。如果對其啟動(dòng)子上光周期敏感元件進(jìn)行刪除,可能會(huì)創(chuàng)造出同時(shí)具有莖腐病抗性和光周期不敏感的新等位基因?;蚯萌爰夹g(shù)已經(jīng)在玉米耐旱中得到應(yīng)用[117],基因敲高技術(shù)在水稻抗除草劑研究中取得進(jìn)展[118],但這兩項(xiàng)技術(shù)在玉米抗病性領(lǐng)域的應(yīng)用尚未見報(bào)道,未來可能成為新的研究方向。
總之,隨著CRISPR/Cas9等基因編輯技術(shù)的不斷進(jìn)步和應(yīng)用,玉米抗病育種將進(jìn)入一個(gè)更加精準(zhǔn)和高效的新時(shí)代。這些技術(shù)不僅能夠增強(qiáng)玉米的抗病性,還為解決玉米生產(chǎn)中遇到的其他遺傳改良問題提供了有效途徑。
3.4 基因組選擇育種
基因組選擇(Genomic selection, GS)是一種通過結(jié)合訓(xùn)練群體中的基因型(標(biāo)記)和表型數(shù)據(jù)來估計(jì)測試群體中基因型已知但表型未知個(gè)體育種價(jià)值的方法。GS已成功地應(yīng)用于動(dòng)物和植物育種計(jì)劃,因?yàn)樗蟠筇岣吡诉z傳增益率[119]。GS的預(yù)測精準(zhǔn)度受到多個(gè)因素的影響,包括性狀的遺傳力、預(yù)測模型的選擇、群體大小及結(jié)構(gòu)、分子標(biāo)記密度和基因與環(huán)境的互作程度等。GS使用所有標(biāo)記來預(yù)測測試群體中個(gè)體的育種價(jià)值,因此與僅使用顯著標(biāo)記的方法相比,具有更強(qiáng)的預(yù)測能力[120]。
目前,玉米的GS主要應(yīng)用于籽粒產(chǎn)量、耐旱、鋅和油含量的育種中[121-124]。然而,GS在某些特定病害如大斑病抗性的預(yù)測中也表現(xiàn)出很高的精度[125]。隨著對影響GS預(yù)測精準(zhǔn)度的因素(如分子標(biāo)記密度和預(yù)測模型)進(jìn)行優(yōu)化,GS在玉米抗病育種中仍具有廣闊的應(yīng)用前景。
GS的應(yīng)用不僅有助于提高玉米抗病品種的培育效率,還能通過更準(zhǔn)確地預(yù)測目標(biāo)性狀的遺傳潛力,縮短育種周期。此外,GS能夠處理復(fù)雜性狀的遺傳控制,尤其是在多個(gè)基因和環(huán)境互作顯著影響抗病性的情況下。因此,GS將成為未來玉米抗病育種中一個(gè)重要的工具,有望大幅提升抗病性相關(guān)性狀的遺傳增益。
3.5 展望
玉米抗病基因的定位克隆是一個(gè)耗時(shí)費(fèi)力的過程,尤其是效應(yīng)小的抗病基因,更是增加克隆的難度[126]。迄今為止,僅有21個(gè)抗病基因被成功克隆。從長遠(yuǎn)看,克隆更多抗病基因并理解其抗病機(jī)理非常重要。因?yàn)橹挥锌寺〉娇共』?,才能盡可能地減少抗性改良中的遺傳累贅,還可以進(jìn)一步鑒定同一通路的上下游抗病基因,并為基因定向改造提供基礎(chǔ)。加快克隆抗病基因克隆的進(jìn)程需要結(jié)合多種手段,包括大量遺傳材料的收集、多種生物技術(shù)的使用、大數(shù)據(jù)分析和生物信息學(xué)工具的使用等。多組學(xué)分析、EMS誘變庫、Mu突變體庫、玉米基因組公共數(shù)據(jù)庫、轉(zhuǎn)基因及基因編輯技術(shù)等都能顯著加快基因克隆的過程[39,127-130]。
通過總結(jié)已定位克隆到的21個(gè)玉米抗病基因的功能及抗病機(jī)理,多數(shù)基因可以歸納到經(jīng)典的植物免疫模型中,包括免疫信號(hào)的感知、信號(hào)轉(zhuǎn)導(dǎo)與調(diào)控、代謝物及植物激素的調(diào)控等。然而,還有少數(shù)基因不能歸類于經(jīng)典抗病模型中,如囊泡運(yùn)輸和分子伴侶等。這些非典型抗病基因主要涉及病毒病害,說明病毒攻擊植物的策略可能與其他類型的病原菌顯著不同。例如,玉米粗縮病毒利用囊泡運(yùn)輸系統(tǒng)擴(kuò)散,病毒致病因子P7-1挾持參與囊泡運(yùn)輸?shù)募闹鹘M分ZmGDIα,使植物在完成自身的蛋白運(yùn)輸?shù)耐瑫r(shí)也幫助病毒進(jìn)行擴(kuò)散。在長期的選擇壓中,一部分玉米自交系突變獲得了難以被病毒致病因子P7-1結(jié)合的抗病蛋白ZmGDIα-hel,最終達(dá)到阻止病毒擴(kuò)散的目的[87]。類似地,另一抗病毒基因ZmTrxh本身編碼H-型硫氧還蛋白,具有氧化還原功能,不參與植物的抗病反應(yīng)。而受到選擇壓力后,ZmTrxh丟失自身氧化還原功能而獲得分子伴侶功能,這一改變僅是兩個(gè)半胱氨酸分別被一個(gè)天冬氨酸和一個(gè)絲氨酸替代,就使得ZmTrxh獲得了抗病功能[93]。雖然ZmABP1的功能被鑒定為分子伴侶,但其抗病機(jī)理還有待進(jìn)一步揭示。這些發(fā)現(xiàn)為克隆新的抗病毒病害基因提供了重要啟示。抗病育種目標(biāo)是培育具有廣譜而持久抗性的品種,同時(shí)保持產(chǎn)量和品質(zhì)性狀等其他目標(biāo)性狀不受負(fù)面影響。然而,目前克隆的基因中,ZmCCT存在多效性,提高對莖腐病抗性的同時(shí)延遲了開花時(shí)間。ZmCCoAOMT2、ZmAuxRP1、ZmMM1和ZmLecRK1具有對多種病原菌的廣譜抗性。ZmCCoAOMT2與木質(zhì)素的合成有關(guān)[80],ZmAuxRP1與生長素與苯并噁嗪酮類物質(zhì)合成相關(guān)[69],ZmMM1與ROS的合成相關(guān)[55],ZmLecRK1作為模式識(shí)別受體能夠識(shí)別病原菌或植物自身產(chǎn)生的保守組分[47]。這些基因主要位于免疫信號(hào)傳遞的下游,促進(jìn)抗菌物質(zhì)或結(jié)構(gòu)的生成。然而,抗菌代謝物的生成需要消耗大量能量,往往會(huì)以犧牲產(chǎn)量為代價(jià)。例如,ZmAuxRP1動(dòng)態(tài)調(diào)控玉米的生長與抗病平衡,減少產(chǎn)量的損失。ZmMM1本身具有類病斑表型,在沒有病原菌侵染的情況下,免疫反應(yīng)也在持續(xù)啟動(dòng),本身就處在持續(xù)耗能狀態(tài)。由此可見,實(shí)現(xiàn)廣譜抗病性是需要以一定的產(chǎn)量損失為代價(jià)。在抗病基因類型上,PRRs識(shí)別病原微生物保守成分,通常對病原微生物的抗性不具有生理小種特異性。而NLRs識(shí)別病原微生物的效應(yīng)因子,識(shí)別范圍相對于PRRs更窄,易產(chǎn)生生理小種特異性。所以NLRs類抗病基因不易提供廣譜抗性。要實(shí)現(xiàn)廣譜而持久的抗病育種目標(biāo),未來還需要結(jié)合最新的生物學(xué)技術(shù),克隆更多新的抗病基因并充分解析其抗病機(jī)理。
玉米病害流行受多種因素的影響,其中玉米品種自身的抗性是最主要的因素。此外,病原菌不同生理小種在各玉米產(chǎn)區(qū)的分布情況、不同地理環(huán)境對病原菌生存的影響以及耕作制度的變化等都會(huì)影響病害流行。因此,在制定育種計(jì)劃時(shí),需要綜合考慮這些因素,才能更好發(fā)揮優(yōu)質(zhì)種質(zhì)資源的潛力。區(qū)域內(nèi)單一品種種植是現(xiàn)代農(nóng)業(yè)生產(chǎn)的常態(tài),它極大提高生產(chǎn)力的同時(shí)也給病原菌帶來巨大的選擇壓力。通過育種家培育在農(nóng)藝性狀上均勻但在抗病性狀上異質(zhì)的品種組合,有望緩解這種選擇壓力,進(jìn)而實(shí)現(xiàn)更加持久和穩(wěn)定的抗病性[131]。
參考文獻(xiàn):
[1] 陳宏斌. 玉米的綜合利用[J]. 糧食流通技術(shù),2005,16(5):27-29,36.
[2] 丁祥鋒. 制種玉米主要病蟲害綠色防控技術(shù)探討[J]. 南方農(nóng)業(yè),2015,9(9):2.
[3] JOHAL G S, BRIGGS S P. Reductase activity encoded by the HM1 disease resistance gene in maize[J]. Science, 1992, 258(5084): 985,987.
[4] COLLINS N, DRAKE J, AYLIFFE M, et al. Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants[J]. The Plant cell, 1999, 11(7):
1365-1676.
[5] JONES J D G, DANGL J L. The plant immune system[J]. Nature, 2006, 444(7117): 323-329.
[6] BOLLER T, FELIX G. A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors[J]. Annual Review of Plant Biology, 2009, 60(1): 379-406.
[7] NGOU B P M, WYLER M, SCHMID M W, et al. Evolutionary trajectory of pattern recognition receptors in plants[J]. Nature Communications, 2024, 15(1): 308.
[8] BI G Z, SU M, LI N, et al. The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling[J]. Cell, 2021, 184(13): 3528-3541.
[9] DUXBURY Z, WU C H, DING P T. A Comparative overview of the intracellular guardians of plants and animals: NLRs in innate immunity and beyond[J].
Annual Review of Plant Biology, 2021, 72(1): 155-184.
[10] JONES J D G, VANCE R E, DANGL J L. Intracellular innate immune surveillance devices in plants and animals[J]. Science, 2016, 354(6316):1-10.
[11] MA S C, LAPIN D, LIU L, et al. Direct pathogen-induced assembly of an NLR immune receptor complex
to form a holoenzyme[J]. Science, 2020, 370(6521).
[12] MARTIN R, QI T C, ZHANG H B, et al. Structure of the activated ROQ1 resistosome directly recognizing the pathogen effector XopQ[J]. Science, 2020, 370(6521).
[13] WANG J Z, HU M J, WANG J, et al. Reconstitution and structure of a plant NLR resistosome conferring immunity[J]. Science, 2019, 364(6435): 1-11.
[14] SARRIS P F, CEVIK V, DAGDAS G, et al. Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens[J]. BMC Biology, 2016, 14(1): 8.
[15] APEL K, HIRT H. Reactive Oxygen Species: Metabolism, oxidative stress, and signal transduction[J]. Annual Review
of Plant Biology, 2004, 55(1): 373-399.
[16] ZIPFEL C, KUNZE G, CHINCHILLA D, et al. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-Mediated transformation[J].
Cell, 2006, 125(4): 749-760.
[17] RANF S, WüNNENBERG P, LEE J, et al. Loss of the vacuolar cation channel, AtTPC1, does not impair Ca2+ signals induced by abiotic and biotic stresses[J]. The Plant Journal, 2007, 53(2): 287-299.
[18] BIGEARD J, COLCOMBET J, HIRT H. Signaling mechanisms in pattern-triggered immunity (PTI)[J]. Molecular Plant, 2015, 8(4): 521-539.
[19] ZHANG J, ZHOU J M. Plant immunity triggered by microbial molecular signatures[J]. Molecular Plant, 2010,
3(5): 783-793.
[20] DOU D J, ZHOU J M. Phytopathogen effectors subverting host immunity: Different foes, similar battleground[J]. Cell Host Microbe, 2012, 12(4): 484-495.
[21] NGOU B P M, AHN H K, DING P T, et al. Mutual potentiation of plant immunity by cell-surface and intracellular receptors[J]. Nature, 2021, 592(7852): 110-115.
[22] PRUITT R N, LOCCI F, WANKE F, et al. The EDS1–PAD4–ADR1 node mediates Arabidopsis pattern-triggered immunity[J]. Nature, 2021, 598(7881): 495-499.
[23] YUAN M H, JIANG Z Y, BI G Z, et al. Pattern-recognition receptors are required for NLR-mediated plant
immunity[J]. Nature, 2021, 592(7852): 105-109.
[24] PENG Y T, VAN WERSCH R, ZHANG Y L. Convergent and divergent signaling in PAMP-triggered immunity and effector-triggered immunity[J]. Mol Plant Microbe Interactions, 2018, 31(4): 403-409.
[25] STEPHENS C, HAMMOND-KOSACK K E, KANYUKA K. WAKsing plant immunity, waning diseases[J]. Journal of Experimental Botany, 2022, 73(1): 22-37.
[26] DIEVART A, GOTTIN C, PéRIN C, et al. Origin and diversity of plant receptor-like kinases[J]. Annual Review of Plant Biology, 2020, 71(1): 131-156.
[27] SHIU S H, BLEECKER A B. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in arabidopsis[J]. Plant Physiology, 2003, 132(2):
530-543.
[28] LEHTI-SHIU M D, ZOU C, HANADA K, et al. Evolutionary history and stress regulation of plant receptor-like Kinase/Pelle genes[J]. Plant Physiology, 2009,
150(1): 12-26.
[29] LI J, WEN J Q, LEASE K A, et al. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling[J]. Cell, 2002, 110(2): 213-222.
[30] SUN Y D, LI L, MACHO A P, et al. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex[J]. Science, 2013, 342(6158): 624-628.
[31] SANTIAGO J, HENZLER C, HOTHORN M. Molecular mechanism for plant steroid receptor activation by somatic embryogenesis co-receptor kinases[J]. Science, 2013, 341(6148): 889-892.
[32] GóMEZ-GóMEZ L, BOLLER T. FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis[J]. Molecular Cell, 2000, 5(6): 1003-1011.
[33] KUNZE G, ZIPFEL C, ROBATZEK S, et al. The N terminus of bacterial elongation factor tu elicits innate immunity in aabidopsis Plants[J]. The Plant Cell,
2004, 16(12): 3496-3507.
[34] PRUITT R N, SCHWESSINGER B, JOE A, et al. The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium[J]. Science Advances, 2015, 1(6): e1500245.
[35] FURUMIZU C, KRABBER D A K, HAMMERSTAD M, et al. The sequenced genomes of nonflowering land plants reveal the innovative evolutionary history of peptide signaling[J]. The Plant Cell, 2021, 33(9): 2915-2934.
[36] JOSE J, GHANTASALA S, ROY CHOUDHURY S. Arabidopsis transmembrane receptor-Like kinases (RLKs): A bridge between extracellular signal and intracellular regulatory machinery[J]. International Journal of Molecular Sciences, 2020, 21(11): 4000.
[37] CHEN Y S, CHAO Q, TAN G Q, et al. Identification and fine-mapping of a major QTL conferring resistance against head smut in maize[J]. Theoretical and Applied Genetics, 2008, 117(8): 1241-1252.
[38] ZUO W L, CHAO Q, ZHANG N, et al. A maize wall-associated kinase confers quantitative resistance to head smut[J]. Nature Genetics, 2015, 47(2): 151-157.
[39] ZHANG N, ZHANG B Q, ZUO W L, et al. Cytological and molecular characterization of ZmWAK-Mediated head-smut resistance in maize[J]. Molecular Plant Microbe Interactions, 2017, 30(6): 455-465.
[40] ZHANG Q Q, XU Q Y, ZHANG N, et al. A maize WAK-SnRK1α2-WRKY module regulates nutrient availability to defend against head smut disease[J]. Molecular Plant, 2024[2024-09-01]. https://doi.org/10.1016/j.molp.2024. 09. 013.
[41] DAI Z K, PI Q Y, LIU Y G, et al. ZmWAK02 encoding an RD-WAK protein confers maize resistance against gray leaf spot[J]. New Phytologist, 2024, 241(4): 1780-1793.
[42] ZHANG Y, XU L, FAN X M, et al. QTL mapping of resistance to gray leaf spot in maize[J]. Theoretical and Applied Genetics, 2012, 125(8): 1797-1808.
[43] ZHONG T, ZHU M, ZHANG Q Q, et al. The ZmWAKL-ZmWIK-ZmBLK1-ZmRBOH4 module provides quantitative resistance to gray leaf spot in maize[J]. Nature Genetics, 2024, 56(2): 315-326.
[44] HURNI S, SCHEUERMANN D, KRATTINGER S G, et al. The maize disease resistance gene Htn1 against northern corn leaf blight encodes a wall-associated receptor-like kinase[J]. Proceedings of the National Academy of Sciences USA, 2015, 112(28): 8780-8785.
[45] YANG P, SCHEUERMANN D, KESSEL B, et al. Alleles of a wall-associated kinase gene account for three of the major northern corn leaf blight resistance loci in maize[J]. The Plant Journal, 2021, 106(2): 526-535.
[46] CHEN C, ZHAO Y, TABOR G, et al. A leucine‐rich repeat receptor kinase gene confers quantitative susceptibility to maize southern leaf blight[J]. New Phytologist, 2023, 238(3): 1182-1197.
[47] LI Z T, CHEN J B, LIU C, et al. Natural variations of maize ZmLecRK1 determine its interaction with ZmBAK1 and resistance patterns to multiple pathogens[J]. Molecular Plant, 2024, 17(10): 1606-1623.
[48] FREY T J, WELDEKIDAN T, COLBERT T, et al. Fitness evaluation of rcg1, a locus that confers resistance to Colletotrichum graminicola (Ces.) G.W. Wils. using near‐isogenic maize hybrids[J]. Crop Science,2011, 51
(4): 1551-1563.
[49] LV M, DENG C, LI X Y, et al. Identification and fine-mapping of RppCML496, a major QTL for resistance to Puccinia polysora in maize[J]. Plant Genome, 2021, 14(1): e20062.
[50] DENG C, LEONARD A, CAHILL J, et al. The RppC-AvrRppC NLR-effector interaction mediates the resistance to southern corn rust in Maize[J]. Molecular Plant, 2022, 15(5): 904-912.
[51] CHEN G S, ZHANG B, DING J Q, et al. Cloning southern corn rust resistant gene RppK and its cognate gene AvrRppK from Puccinia polysora[J]. Nature Communications, 2022, 13(1): 4392.
[52] THATCHER S, LEONARD A, LAUER M, et al. The northern corn leaf blight resistance gene Ht1 encodes an nucleotide-binding, leucine-rich repeat immune receptor[J]. Molecular plant pathology, 2023, 24(7): 758-767.
[53] NARANG V, RAMLI M A, SINGHAL A, et al. Automated identification of core regulatory genes in human gene regulatory networks[J]. Plos Computational Biology,
2015, 11(9): 1-28.
[54] BARCO B, CLAY N K. Hierarchical and dynamic regulation of defense-responsive specialized metabolism by WRKY and MYB transcription factors[J]. Frontiers in Plant Science, 2019, 10: 1775.
[55] WANG H Z, HOU J B, YE P, et al. A teosinte-derived allele of a MYB transcription repressor confers multiple disease resistance in maize[J]. Molecular Plant, 2021, 14(11): 1846-1863.
[56] XU Z N, WANG F F, ZHOU Z Q, et al. Identification and fine-mapping of a Novel QTL, qMrdd2, that confers resistance to maize rough dwarf disease[J]. Plant Disease, 2022, 106(1): 65-72.
[57] XU Z N, ZHOU Z Q, CHENG Z X, et al. A transcription factor ZmGLK36 confers broad resistance to maize rough dwarf disease in cereal crops[J]. Nature plants, 2023, 9(10): 1720-1733.
[58] RAMIREZ-PRADO J S, ABULFARAJ A A, RAYAPURAM N, et al. Plant immunity: From signaling to epigenetic xontrol of defense[J]. Trends in Plant Science, 2018, 23(9): 833-844.
[59] HANNAN PARKER A, WILKINSON S W, TON J. Epigenetics: A catalyst of plant immunity against pathogens[J]. New Phytologist, 2022, 233(1): 66-83.
[60] WANG C, YANG Q, WANG W X, et al. A transposon-directed epigenetic change in ZmCCT underlies quantitative resistance to Gibberella stalk rot in maize[J]. New Phytologist, 2017, 215(4): 1503-1515.
[61] YANG Q, YIN G M, GUO Y L, et al. A major QTL for resistance to Gibberella stalk rot in maize[J]. Theoretical and Applied Genetics, 2010, 121(4): 673-687.
[62] YANG Q, LI Z, LI W Q, et al. CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize[J]. Proceedings of the Natlional Acadomy of Sciences USA, 2013, 110(42): 16969-16974.
[63] ZHI P F, CHANG C. Exploiting epigenetic variations for crop disease resistance improvement[J]. Frontiers in
Plant Science, 2021, 12: 692328.
[64] CALLIS J. The ubiquitination machinery of the ubiquitin system[J]. The Arabidopsis Book, 2014, 12: e0174.
[65] VIERSTRA R D. The ubiquitin-26S proteasome system at the nexus of plant biology[J]. Nature reviews Molecular cell biology," 2009, 10(6): 385-397.
[66] LI N, LIN B, WANG H, et al. Natural variation in ZmFBL41 confers banded leaf and sheath blight resistance in maize[J]. Nature Genetics, 2019, 51(10): 1540-1548.
[67] SHIGENAGA A M, ARGUESO C T. No hormone to rule them all: Interactions of plant hormones during the responses of plants to pathogens[J]. Seminars in Cell amp; Developmental Biology, 2016, 56: 174-189.
[68] BERENS M L, BERRY H M, MINE A, et al. Evolution of hormone signaling networks in plant defense[J].
Annual Review of Phytopathology, 2017, 55: 401-425.
[69] YE J R, ZHONG T, ZHANG D F, et al. The auxin-regulated protein zmAuxRP1 coordinates the balance between root growth and stalk rot disease resistance in maize[J]. Molecular Plant, 2019, 12(3): 360-373.
[70] ZHANG D F, LIU Y J, GUO Y L, et al. Fine-mapping of qRfg2, a QTL for resistance to Gibberella stalk rot in maize[J]. Theoretical and Applied Genetics, 2012, 124(3): 585-596.
[71] BOLTON M D. Primary metabolism and plant defense--fuel for the fire[J]. Molecular Plant Microbe Interactions, 2009, 22(5): 487-497.
[72] PIASECKA A, JEDRZEJCZAK-REY N, BEDNAREK P. Secondary metabolites in plant innate immunity: Conserved function of divergent chemicals[J]. New Phytologist, 2015, 206(3): 948-964.
[73] ERB M, KLIEBENSTEIN D J. Plant secondary metabolites as defenses, regulators, and primary metabolites: the blurred functional trichotomy[J]. Plant Physiology, 2020, 184(1): 39-52.
[74] BOERJAN W, RALPH J, BAUCHER M. Lignin biosynthesis[J]. Annual Review of Plant Biology, 2003, 54(1): 519-546.
[75] GOU M Y, RAN X Z, MARTIN D W, et al. The scaffold proteins of lignin biosynthetic cytochrome P450
enzymes[J]. Nature plants, 2018, 4(5): 299-310.
[76] LEE M H, JEON H S, KIM S H, et al. Lignin-based barrier restricts pathogens to the infection site and confers resistance in plants[J]. EMBO Journal, 2019, 38(23): 1-17.
[77] BARBER M S, MCCONNELL V S, DECAUX B S. Antimicrobial intermediates of the general phenylpropanoid and lignin specific pathways[J]. Phytochemistry, 2000, 54(1): 53-56.
[78] BACETE L, MELIDA H, MIEDES E, et al. Plant cell wall-mediated immunity: Cell wall changes trigger disease resistance responses[J]. The Plant Journal, 2018, 93(4): 614-636.
[79] GALLEGO-GIRALDO L, POSE S, PATTATHIL S, et al. Elicitors and defense gene induction in plants with altered lignin compositions[J]. New Phytologist, 2018, 219(4): 1235-1251.
[80] YANG Q, HE Y J, KABAHUMA M, et al. A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens[J]. Nature Genetics, 2017, 49(9): 1364-1372.
[81] LIU C, HE S F, CHEN J B, et al. A dual‐subcellular localized β‐glucosidase confers pathogen and insect resistance without a yield penalty in maize[J]. Plant Biotechnology Journal, 2024, 22: 1017-1032.
[82] MA P P, LIU E P, ZHANG Z R, et al. Genetic variation in ZmWAX2 confers maize resistance to Fusarium verticillioides[J]. Plant Biotechnology Journal, 2023, 21(9): 1812-1826.
[83] GU Y N, ZAVALIEV R, DONG X N. Membrane trafficking in plant immunity[J]. Molecular Plant, 2017, 10(8): 1026-1034.
[84] YUN H S, KWON C. Vesicle trafficking in plant immunity[J]. Current Opinion in Plant Biology, 2017, 40: 34-42.
[85] B?CHNER D, SEDLACEK Z, KORN B, et al. Expression patterns of two human genes coding for different rab GDP-dissociation inhibitors (GDIs), extremely conserved proteins involved in cellular transport[J]. Human molecular genetics, 1995, 4(4): 701-708.
[86] TAO Y F, LIU Q C, WANG H H, et al. Identification and fine-mapping of a QTL, qMrdd1, that confers recessive resistance to maize rough dwarf disease[J]. BMC plant biology, 2013, 13: 145.
[87] LIU Q C, DENG S N, LIU B S, et al. A helitron-induced RabGDIalpha variant causes quantitative recessive resistance to maize rough dwarf disease[J]. Nature Communications, 2020, 11(1): 495.
[88] DENG S N, JIANG S Q, LIU B S, et al. ZmGDIalpha-hel counters the RBSDV-induced reduction of active gibberellins to alleviate maize rough dwarf virus disease[J]. Nature Communications, 2024, 15(1): 7576.
[89] NOEL L D, CAGNA G, STUTTMANN J, et al. Interaction between SGT1 and cytosolic/nuclear HSC70 chaperones regulates Arabidopsis immune responses[J]. Plant Cell, 2007, 19(12): 4061-4076.
[90] CAPLAN J L, ZHU X H, MAMILLAPALLI P, et al. Induced ER chaperones regulate a receptor-like kinase to mediate antiviral innate immune response in
plants[J]. Cell Host Microbe, 2009, 6(5): 457-469.
[91] TAO Y F, JIANG L, LIU Q Q, et al. Combined linkage and association mapping reveals candidates for Scmv1, a major locus involved in resistance to sugarcane mosaic virus (SCMV) in maize[J]. BMC plant biology, 2013, 13: 162.
[92] XING Y Z, INGVARDSEN C, SALOMON R, et al. Analysis of sugarcane mosaic virus resistance in maize in an isogenic dihybrid crossing scheme and implications for breeding potyvirus-resistant maize hybrids[J]. Genome, 2006, 49(10): 1274-1282.
[93] LIU Q Q, LIU H H, GONG Y Q, et al. An atypical thioredoxin imparts early resistance to sugarcane mosaic virus in maize[J]. Molecular Plant, 2017, 10(3): 483-497.
[94] LENG P F, JI Q, ASP T, et al. Auxin binding protein 1 reinforces resistance to sugarcane mosaic virus in maize[J]. Molecular Plant, 2017, 10(10): 1357-1360.
[95] ZHANG D L, YANG X X, WEN Z Y, et al. Proxitome profiling reveals a conserved SGT1-NSL1 signaling module that activates NLR-mediated immunity[J]. Molecular Plant, 2024, 17(9): 1369-1391.
[96] M?BIUS N, HERTWECK C. Fungal phytotoxins as mediators of virulence[J]. Current Opinion in Plant Biology, 2009, 12(4): 390-398.
[97] XU D, XUE M Y, SHEN Z, et al. Phytotoxic secondary metabolites from fungi[J]. Toxins, 2021, 13(4): 261.
[98] WANG F L, LI X B, LI Y J, et al. Arabidopsis P4 ATPase-mediated cell detoxification confers resistance to Fusarium graminearum and Verticillium dahliae[J]. Nature Communications, 2021, 12(1): 6426.
[99] 段燦星,王曉鳴,武小菲,等. 玉米種質(zhì)和新品種對腐霉莖腐病和鐮孢穗腐病的抗性分析[J]. 植物遺傳資源
學(xué)報(bào),2015,16(5):947-954.
[100] WANG X M, ZHANG Y H, XU X D, et al. Evaluation of maize inbred lines currently used in Chinese breeding programs for resistance to six foliar diseases[J]. TheCrop Journal, 2014, 2(4): 213-222.
[101] XU L, ZHANG Y, SHAO S Q, et al. High-resolution mapping and characterization of qRgls2, a major quantitative trait locus involved in maize resistance to
gray leaf spot[J]. BMC plant biology, 2014, 14(1): 230.
[102] LI Y P, TONG L X, DENG L L, et al. Evaluation of ZmCCT haplotypes for genetic improvement of maize hybrids[J]. Theoretical and Applied Genetics, 2017, 130(12): 2587-2600.
[103] TENAILLON M I, U'REN J, TENAILLON O, et al. Selection versus demography: A multilocus investigation of the domestication process in maize[J]. Molecu lar biology and evolution, 2004, 21(7): 1214-1225.
[104] WANG H Z, HOU J B, YE P, et al. A teosinte-derived allele of a MYB transcription repressor confers multiple disease resistance in maize[J]. Molecular Plant, 2021, 14(11): 1846-1863.
[105] ZUO W L, CHAO Q, ZHANG N, et al. A maize wall-associated kinase confers quantitative resistance to
head smut[J]. Nature Genetics, 2015, 47(2): 151-157.
[106] ZHAO X R, TAN G Q, XING Y X, et al. Marker-assisted introgression of qHSR1 to improve maize resistance to head smut[J]. Molecular Breeding, 2012, 30(2): 1077-1088.
[107] LANUBILE A, MASCHIETTO V, BORRELLI V M, et al. Molecular basis of resistance to fusarium ear rot in maize[J]. Frontiers in Plant Science, 2017, 8: 1774.
[108] XING Y Z, INGVARDSEN C, SALOMON R, et al. Analysis of sugarcane mosaic virus resistance in maize in an isogenic dihybrid crossing scheme and implications for breeding potyvirus-resistant maize hybrids[J]. Genome, 2006, 49(10): 1274-1282.
[109] LI G L, XU Z N, WANG J J, et al. Gene pyramiding of ZmGLK36 and ZmGDIalpha-hel for rough dwarf disease resistance in maize[J]. Molecular Breeding, 2024, 44(4): 25.
[110] SUCHER J, BONI R, YANG P, et al. The durable wheat disease resistance gene Lr34 confers common rust and northern corn leaf blight resistance in maize
[J]. Plant Biotechnology Journal, 2017, 15(4): 489-496.
[111] HELLIWELL E E, WANG Q, YANG Y N. Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaporthe oryzae and Rhizoctonia solani[J]. Plant biotechnology journal, 2013, 11(1): 33-42.
[112] LIU M M, SHI Z Y, ZHANG X H, et al. Inducible overexpression of Ideal Plant Architecture1 improves both yield and disease resistance in rice[J]. Nature plants, 2019, 5(4): 389-400.
[113] HUA K, ZHANG J S, BOTELLA J R, et al. Perspectives on the application of genome-editing technologies in crop breeding[J]. Molecular Plant, 2019,
12(8): 1047-1059.
[114] ZHU H, LI C, GAO C. Applications of CRISPR–Cas in agriculture and plant biotechnology[J]. Nature Reviews Molecular Cell Biology, 2020, 21(11): 661-677.
[115] GAO C X. Genome engineering for crop improvement
and future agriculture[J]. Cell, 2021, 184(6): 1621-1635.
[116] 鄧穗寧. 玉米粗縮病隱性抗性的遺傳基礎(chǔ)及分子機(jī)理
研究[D]. 北京:中國農(nóng)業(yè)大學(xué),2021.
[117] SHI J R, GAO H R, WANG H Y, et al. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions[J]. Plant Biotechnology Journal, 2017, 15(2): 207-216.
[118] LU Y, WANG J Y, CHEN B, et al. A donor-DNA-free CRISPR/Cas-based approach to gene knock-up in rice
[J]. Nature plants, 2021, 7(11): 1445-1452.
[119] MEUWISSEN T H, HAYES B J, GODDARD M E. Prediction of total genetic value using genome-wide dense marker maps[J]. Genetics, 2001, 157(4): 1819-1829.
[120] MASSMAN J M, JUNG H J G, BERNARDO R. Genomewide selection versus marker‐assisted recurrent selection to improve grain yield and stover‐quality traits for cellulosic ethanol in maize[J]. Crop
Science, 2013, 53(1): 58-66.
[121] GUO R, DHLIWAYO T, MAGETO E K, et al. Genomic prediction of kernel zinc concentration in multiple maize populations using genotyping-by-Sequencing and repeat amplification sequencing markers[J]. Frontiers in Plant Science, 2020, 11:534.
[122] BEYENE Y, SEMAGN K, MUGO S, et al. Genetic gains in grain yield through genomic selection in eight bi‐parental maize populations under drought stress[J]. Crop Science, 2015, 55(1): 154-163.
[123] VIVEK B S, KRISHNA G K, VENGADESSAN V, et al. Use of genomic estimated breeding values results in rapid genetic gains for drought tolerance in maize[J].
Plant Genome, 2017, 10(1): 1-8.
[124] HAO Y F, WANG H W, YANG X H, et al. Genomic prediction using existing historical data contributing to selection in biparental populations: A study of kernel oil in maize[J]. Plant Genome, 2019, 12(1): 1-9.
[125] TECHNOW F, BURGER A, MELCHINGER A E. Genomic prediction of northern corn leaf blight resistance in maize with combined or separated training sets for heterotic groups[J]. G3 (Bethesda), 2013, 3(2): 197-203.
[126] YANG Q, ZHANG D F, XU M L. A sequential quantitative trait locus fine-mapping strategy using recombinant-derived progeny[J]. Journal of Integrative Plant Biology, 2012, 54(4): 228-237.
[127] YANG P, PRAZ C, LI B B, et al. Fungal resistance mediated by maize wall-associated kinase ZmWAK-RLK1 correlates with reduced benzoxazinoid content[J]. New Phytologist, 2019, 221(2): 976-987.
[128] YAO L S, LI Y M, MA C Y, et al. Combined genome-wide association study and transcriptome analysis reveal candidate genes for resistance to Fusarium ear rot in maize[J]. Journal of Integrative Plant Biology, 2020, 62(10): 1535-1551.
[129] LU X D, LIU J S, REN W, et al. Gene-indexed mutations in maize[J]. Molecular Plant, 2018, 11(3): 496-504.
[130] LIANG L, ZHOU L, TANG Y, et al. A Sequence-indexed mutator insertional library for maize functional genomics study[J]. Plant Physiology, 2019, 181(4): 1404-1414.
[131] NELSON R, WIESNER-HANKS T, WISSER R, et al. Navigating complexity to breed disease-resistant crops[J]. Nature reviews Genetics, 2018, 19(1): 21-33.
責(zé)任編輯:周慧