亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        小麥銹病和白粉病成株抗性基因定位克隆及其應(yīng)用

        2024-02-10 00:00:00張藝琛晁懷羽李順達(dá)王亮楊夢恩蘭彩霞
        寧夏農(nóng)林科技 2024年11期
        關(guān)鍵詞:葉銹病條銹病白粉病

        摘 要:小麥條銹病、葉銹病和白粉病是我國小麥三大重要病害,嚴(yán)重影響小麥生產(chǎn)。培育持久抗性小麥品種是防治這些病害最為經(jīng)濟(jì)環(huán)保的措施之一。目前,已經(jīng)命名的三大病害抗性基因總計238個,其中190個為全生育期抗性基因,48個為成株抗性基因。利用分子標(biāo)記和回交轉(zhuǎn)育合理聚合兩類抗性基因,將成為培育持久抗性小麥新品種的發(fā)展趨勢。綜述了這三種小麥病害成株抗性基因的定位克隆及其在小麥品種的應(yīng)用情況,為我國小麥銹病和白粉病持久抗性品種培育提供了基因、標(biāo)記和種質(zhì)資源等重要信息。

        關(guān)鍵詞:小麥; 條銹病; 葉銹病; 白粉病; 成株抗性; 分子育種

        中圖分類號:S512.1; S432.2+1"" 文獻(xiàn)標(biāo)識碼:A""""" 文章編號:1002-204X(2024)11-0005-15

        doi:10.3969/j.issn.1002-204x.2024.11.003

        Mapping, Cloning and Breeding Application of Adult-Plant Resistance Genes to Rusts and Powdery Mildew in Wheat

        Zhang Yichen, Chao Huaiyu, Li Shunda, Wang Liang, Yang Meng'en, Lan Caixia*

        (Hubei Hongshan Laboratory/ National Key Laboratory of Crop Genetic Improvement/ College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070)

        Abstract Stripe rust, leaf rust and powdery mildew are three major wheat diseases in China, severely affecting wheat production. Breeding durably resistant wheat varieties is one of the most economical and environmentally friendly ways to control these diseases. To date, a total of 238 resistance genes to these three diseases have been formally catalogued, including 190 all-stage resistance (ASR) genes and 48 adult-plant resistance (APR) genes. It will be a trend to combine ASR and APR in wheat breeding to develop durably resistant wheat varieties. The mapping and cloning of APR genes to the three wheat diseases and applications in wheat breeding are summarized, providing important information of resistance genes, molecular markers and germplasms for developing wheat varieties with durable resistance to rusts and powdery mildew in China.

        Key words Wheat; Stripe rust; Leaf rust; Powdery mildew; Adult-plant resistance; Molecular breeding

        作者簡介:張藝琛(1995—),男,河南靈寶人,博士后,研究方向?yàn)樾←溈共』蜻z傳解析。*為通信作者。

        致謝:晁懷羽對本文具有和第一作者同等貢獻(xiàn)。

        收稿日期:2024-10-10

        小麥(Triticum aestivum L.)是重要的糧食作物,最早起源于西亞的“新月沃地”,通過印度傳入我國。小麥籽??梢灾谱鞒刹煌愋褪称罚瑸槿藗兩钐峁┠芰啃枨?,而其秸稈可以加工成飼料用于畜牧業(yè)發(fā)展[1]。影響小麥產(chǎn)量有多種因素,其中由條形柄銹菌小麥?;停≒uccinia striiformis f. sp. tritici)、小麥隱匿柄銹菌(Puccinia triticina)和禾本科布氏白粉菌小麥專化型(Blumeria graminis f. sp. tritici)分別引起的小麥條銹病、葉銹病和白粉病給小麥安全生產(chǎn)造成嚴(yán)重威脅。據(jù)統(tǒng)計,全球范圍內(nèi)由于病害引起小麥產(chǎn)量損失高達(dá)19.8%[2]。這三大病害為氣傳性真菌病害,其特點(diǎn)為流行頻率高、爆發(fā)性強(qiáng),在我國多個麥區(qū)廣泛流行,且可以侵染小麥葉片、莖稈、穗部、葉鞘和穎殼等組織;大量侵染后會造成葉片光合作用下降、籽粒灌漿速度緩慢、籽粒皺縮等,對小麥生長發(fā)育和產(chǎn)量造成嚴(yán)重影響[3-5]。

        在我國,小麥條銹病主要發(fā)生在夏季潮濕地區(qū)及夜間冷涼的高海拔地區(qū),曾是我國小麥第一大病害。20世紀(jì)50年代至今,由于國內(nèi)小麥條銹菌生理小種不斷變異,先后導(dǎo)致大批優(yōu)質(zhì)抗病小麥品種喪失抗性,造成4次小麥條銹病大流行和6次中等規(guī)模以上流行,嚴(yán)重時導(dǎo)致減產(chǎn)30%以上,甚至絕收,給小麥生產(chǎn)造成巨大損失。在我國四川和甘肅以及云南、陜西和湖北的部分地區(qū)小麥條銹病仍是小麥生產(chǎn)上第一大病害。目前小麥條銹菌優(yōu)勢生理小種除了CYR32、CYR33之外,近年來出現(xiàn)了新的優(yōu)勢小種V26(又稱CYR34),致使我國現(xiàn)有大部分小麥品種喪失抗性[6]。我國小麥葉銹病發(fā)生區(qū)域主要集中在長江流域麥區(qū)、黃淮海麥區(qū)和西南麥區(qū)。近年來,在山東、河南和新疆等地區(qū)嚴(yán)重發(fā)生,2015年在黃淮海麥區(qū)發(fā)生大面積流行[7]。小麥葉銹病通常造成產(chǎn)量損失5%~15%,嚴(yán)重時損失可達(dá)40%[8]。隨著全球氣候不斷變化,小麥白粉病也成為我國小麥生產(chǎn)的主要病害。目前,我國各麥區(qū)均受到白粉病影響,其中山東沿海地區(qū)、四川、貴州、云南等地區(qū)發(fā)病較為嚴(yán)重[9]。據(jù)統(tǒng)計,2022年約667萬hm2小麥?zhǔn)馨追鄄∮绊?,并造成小麥減產(chǎn)高達(dá)33%[2]。

        小麥銹病和白粉病抗性分為兩類,即全生育期抗性(All-stage resistance)和成株抗性(Adult-plant resistance,又稱為慢病性或水平抗性)。前者遵循基因?qū)蚣僬f,在病原菌侵入時會產(chǎn)生活性氧爆發(fā),造成過敏性壞死反應(yīng),對同一生理小種全生育期表現(xiàn)為高抗或免疫,且隨著新的生理小種出現(xiàn)會喪失抗性,從而表現(xiàn)出抗性不持久的特點(diǎn)[10]。后者常在苗期表現(xiàn)為感病,而成株期則對多個病原菌生理小種表現(xiàn)抗病,無小種?;曰?qū);匀酰憩F(xiàn)為病菌潛育期長、產(chǎn)孢量少、發(fā)病速度慢、病害嚴(yán)重程度輕等特點(diǎn)[5]。由于這類基因不受病原菌生理小種變異的影響,常表現(xiàn)出持久抗性,在小麥抗病育種中有非常重要的應(yīng)用價值。研究發(fā)現(xiàn),聚合4~5個成株抗性基因的小麥品種可達(dá)到近免疫抗性水平[11]。迄今,國際上由Yr和Lr系統(tǒng)正式命名的小麥抗條銹病和葉銹病基因分別為80余個[12-13],以Pm系統(tǒng)正式命名的小麥抗白粉病基因 有60余個[14]。這些基因大多為全生育期抗性基因,只有48個為非小種?;剐缘某芍昕剐曰?。因此,有效聚合全生育期和成株抗性基因,培育持久且全生育期抗性小麥新品種,將成為我國小麥抗病育種的重要策略。

        基于小麥成株抗性在小麥生產(chǎn)和育種中的重要作用,本文綜述了小麥條銹病、葉銹病和白粉病成株抗性基因定位、克隆及其在育種中的應(yīng)用,以及利用雙親遺傳群體和自然群體發(fā)掘這三大病害成株抗性位點(diǎn)的技術(shù)方法。為小麥育種家提供豐富的抗性資源信息,以加快小麥廣譜持久抗性品種選育進(jìn)程。

        1 小麥成株抗性基因定位

        小麥條銹病成株抗性研究最早始于20世紀(jì)60年代,ZADOKS J C等[15]發(fā)現(xiàn)一些品種攜帶主效基因抗性喪失后,仍然表現(xiàn)出“部分”抗性。隨后在葉銹病抗性研究中發(fā)現(xiàn)中國春在苗期表現(xiàn)為感病,但是在成株期卻保持中等水平的抗性,于是一種新的持久抗性途徑被人們發(fā)現(xiàn),并被命名為成株抗性[16]。成株抗性一般由幾個微效基因控制,遺傳背景復(fù)雜,所以研究進(jìn)展較為緩慢。國際玉米小麥改良中心(CIMMYT)通過創(chuàng)制出一系列小麥成株抗性品種,并利用分子標(biāo)記對成株抗性位點(diǎn)進(jìn)行定位,率先發(fā)掘到一系列成株期抗性基因/QTL[17-23]。在國內(nèi),中國農(nóng)業(yè)科學(xué)院作物科學(xué)研究所夏先春研究員等利用國內(nèi)外具有優(yōu)良抗性的品種,分別在1AS、1BL、2BS、2BL、2DS、4BL、4DL、5AL、5BL、6BS、7DS等位置定位到多個條銹病和白粉病成株抗性位點(diǎn)[24-28]。河北農(nóng)業(yè)大學(xué)張利軍等[29]利用CIMMYT小麥品種Saar,分別在2D、5B和7D染色體定位到葉銹病成株抗性位點(diǎn)。同時,在國內(nèi)不同地區(qū)的農(nóng)業(yè)研究單位都開始利用當(dāng)?shù)匦←溒贩N和主要栽培品種去挖掘銹病和白粉病成株抗性基因/QTL。

        分子標(biāo)記技術(shù)的發(fā)展,是決定小麥銹病和白粉病成株抗性基因發(fā)掘與鑒定發(fā)展的重要因素。分子標(biāo)記主要包括限制性片段長度多態(tài)性(Restriction fragment length polymorphism, RFLP)、隨機(jī)擴(kuò)增多態(tài)性DNA(Randomly amplified polymorphic DNA, RAPD)、擴(kuò)增片段長度多態(tài)性(Amplified fragment length polymorphism, AFLP)、簡單重復(fù)序列(Simple sequence repeats, SSR)和單核苷酸多態(tài)性(Single nucleotide polymorphism, SNP)等。RFLP是第一代分子標(biāo)記技術(shù),該標(biāo)記表現(xiàn)為共顯性,結(jié)果穩(wěn)定可靠[30]。其中利用該技術(shù)定位的成株抗性基因有Yr18/Lr34/Pm38、Yr29/Lr46/Pm39、Yr30和Lr35。RAPD是以人工合成的1個或2個寡聚核苷酸為引物對未知序列的基因組進(jìn)行擴(kuò)增從而獲得基因組的多態(tài)性[31],由于該技術(shù)無需預(yù)知DNA序列信息、操作簡單、成本低廉,因此應(yīng)用較為廣泛,但是該標(biāo)記穩(wěn)定性較差。其中Yr18/

        Lr34/Pm38、Yr29/Lr46/Pm39、Yr30、Yr46/Lr67/Pm46和Lr49便是利用了該技術(shù)進(jìn)行基因的發(fā)掘和鑒定。AFLP是基于RFLP和RAPD發(fā)展起來新的分子標(biāo)記,利用高頻酶切和低頻酶切同時切割基因組DNA從而獲得分子量大小不同的限制性片段[32],其中Yr11、Yr12、Yr18/Lr34/Pm38、Yr29/Lr46/Pm39、Yr34、Yr46/

        Lr67/Pm46、Yr48、Yr49和Yr54等大部分條銹病成株抗性基因,以及Lr37和Lr46便是利用該技術(shù)定位的。SSR標(biāo)記又稱微衛(wèi)星DNA,廣泛且隨機(jī)地分布在基因組不同位置,并且結(jié)果穩(wěn)定可靠,具有很好的重復(fù)性[33]。其中Yr18/Lr34/Pm38、Yr29/Lr46/Pm39、Yr30、Yr36、Yr39、Yr48、Yr79和Yr80的發(fā)掘便利用了該技術(shù)。隨著分子標(biāo)記技術(shù)的發(fā)展,更多的新型標(biāo)記技術(shù)被開發(fā)出來,例如多樣性序列芯片技術(shù)(Diversity arrays technology, DArT)、SNP以及基于測序的基因分型(Genotyping-by-sequencing, GBS)技術(shù)等,都被應(yīng)用于成株抗性基因的挖掘與鑒定。

        目前,正式命名的小麥條銹病成株抗性基因共計28個,分別是Yr11、Yr12、Yr13、Yr14、Yr16、Yr18、Yr29、Yr30、Yr34、Yr36、Yr39、Yr46、Yr48、Yr49、Yr52、Yr54、Yr56、Yr58、Yr60、Yr62、Yr68、Yr71、Yr75、Yr77、Yr78、Yr79、Yr80和Yr86[12,20,34-52]。除了Yr36和Yr56分別來自小麥近緣物種野生二粒小麥(T. dicoccoides)和硬粒小麥(T. durum),其余基因均來自不同國家地區(qū)的普通小麥品種。正式命名的小麥葉銹病成株抗性基因有15個,分別是Lr12、Lr13、Lr22(a和b)、Lr34、Lr35、Lr37、Lr46、Lr48、Lr49、Lr67、Lr68、Lr74、Lr75、Lr77和Lr78[53-63]。其中:Lr13和Lr46來源于硬粒小麥,Lr22a來源于粗山羊草(Ae. tauschii),Lr35來源于擬斯卑爾山羊草(Ae. speltoides),Lr37來源于偏凸山羊草(Ae. ventricosa),Lr44來自斯卑爾脫小麥(T. spelta);其余基因均來自普通小麥。正式命名的小麥白粉病成株抗性基因僅5個,分別是Pm38、Pm39、Pm46、Pm55和Pm62[64-68]。除了Pm55和Pm62來自簇毛麥(D. villosum L.),其他抗病基因均來自普通小麥。隨著成株抗性基因成功克隆或突變體表型驗(yàn)證,證實(shí)Yr18、Lr34和Pm38為同一個基因兼抗多種病害,并命名為Yr18/Lr34/

        Pm38[64];Yr29、Lr46和Pm39為同一基因兼抗多種病害,并命名為Yr29/Lr46/Pm39[65];Yr46、Lr67和Pm46為同一個基因兼抗多種病害,并命名為Yr46/Lr67/Pm46[66]。

        同時,隨著基因芯片技術(shù)的快速發(fā)展,研究人員利用地方品種構(gòu)建重組自交系(Recombinant inbred lines, RIL)群體結(jié)合數(shù)量性狀基因座(Quantitative trait locus, QTL)或集群分離分析(Bulked-segregant analysis, BSA)發(fā)掘大量小麥成株抗性QTL,包括YrH62、QYr.caas-2AL、Lr2K38、QLr.hebau-1AL、Pm4VL和QPmbdt.nwafu-2AS等(表1)。此外,全基因組關(guān)聯(lián)研究(Genome-wide association study, GWAS)也是挖掘小麥成株抗性位點(diǎn)的重要方法。研究人員利用GWAS在小麥不同染色體上發(fā)現(xiàn)多個條銹病、葉銹病和白粉病的成株抗性位點(diǎn)(表1)??傊?,利用QTL定位和GWAS等技術(shù)鑒定到大量的小麥成株抗性位點(diǎn),為小麥育種研究提供了豐富的種質(zhì)和基因資源。

        2 小麥成株抗性基因克隆及抗性機(jī)制解析

        目前已經(jīng)成功克隆的小麥銹病和白粉病成株抗性基因有Yr18/Lr34/Pm34(簡稱Lr34)、Yr46/Lr67/Pm46(簡稱Lr67)、Yr36、Lr13和Lr22(表2)。Lr34作為兼抗型成株抗性基因來自我國小麥地方品種(PI 58545),至今已保持抗性100多年[105,109]。BOSSOLINI E 等[110]利用小麥-水稻比較基因組學(xué)和節(jié)節(jié)麥BAC(Bacterial artificial chromosome)文庫開發(fā)分子標(biāo)記將Lr34定位在7DS染色體分子標(biāo)記Xgwm1220和SWM10之間。隨后 KRATTINGER S G等[105]利用Forno、PI5848和Parula三份攜帶Lr34的材料分別構(gòu)建具有高分辨率基因組圖譜的回交群體將Lr34定位在363 kb的區(qū)間,并通過突變體驗(yàn)證Lr34為一個ABC(ATP-binding cassette)轉(zhuǎn)運(yùn)蛋白。研究人員通過轉(zhuǎn)基因技術(shù)將Lr34res分別導(dǎo)入玉米(Zea mays)、水稻(Oryza sativa)、大麥(Hordeum vulgare)和高粱(Sorghum bicolor)等作物中,發(fā)現(xiàn)Lr34res可提高大麥對葉銹病和白粉病的抗性、水稻對稻瘟病的抗性、玉米對銹病和大斑病的抗性以及高粱對銹病和炭疽病的抗性[111-115]。在大麥中,過表達(dá)Lr34能夠促進(jìn)木質(zhì)素、水楊酸(Salicylic acid, SA)和茉莉酸(Jasmonic acid, JA)含量的增加[116]。在水稻中,該基因可促進(jìn)脫落酸(Abscisic acid,ABA)的運(yùn)輸,提高水稻抗旱性以及調(diào)控ABA向葉尖積累,進(jìn)而造成葉尖壞死(Leaf tip necrosis, LTN)[117-118]。近期,本課題組研究發(fā)現(xiàn)Lr34可以通過轉(zhuǎn)運(yùn)芥子醇介導(dǎo)細(xì)胞壁的增厚,從而為小麥提供更強(qiáng)的滲透抗性去抵御病原菌的侵染[119]。Lr67是第二個被成功克隆的兼抗型成株抗性基因,其來源于巴基斯坦地方品種(PI250413),同樣具有持久的廣譜抗性[120]。HERRERA-FOESSEL S A等[20]利用RL6077構(gòu)建的分離群體將Lr67定位在4DL染色體0.4cM的區(qū)間。隨后通過比較基因組學(xué)、突變體和轉(zhuǎn)基因技術(shù)最后確定Lr67為己糖轉(zhuǎn)運(yùn)蛋白[121]。MOORE J W等[121]發(fā)現(xiàn)Lr67由于無法參與葡萄糖的轉(zhuǎn)運(yùn)從而使病原菌無法在植物體內(nèi)正常吸收養(yǎng)分,導(dǎo)致病原菌的生長受到抑制。為了進(jìn)一步分析Lr67res和Lr67sus己糖轉(zhuǎn)運(yùn)能力的不同,MILNE R J等[122]發(fā)現(xiàn)Lr67res在非洲爪蟾的母細(xì)胞中產(chǎn)生更強(qiáng)的由陰離子主導(dǎo)的電流。同時,MILNE R J等[123]將大麥中Lr67的同源基因HvSTP13的功能位點(diǎn)進(jìn)行編輯,發(fā)現(xiàn)基因編輯的大麥在苗期和成株期都具有對多種病害的抗性。

        Yr36為小麥條銹病成株抗性基因,來自野生二粒小麥品種(RSL65),該基因在成株期(25~35 ℃)對多個條銹菌生理小種表現(xiàn)廣譜抗性[106]。FU D L等[106]利用RS165構(gòu)建的F2分離群體,通過高密度分子標(biāo)記將其定位在0.02 cM的區(qū)間,并通過突變體和轉(zhuǎn)基因驗(yàn)證確定WKS1為Yr36。Yr36基因編碼的WKS1.1蛋白能夠與類囊體抗壞血酸過氧化物酶結(jié)合,加速細(xì)胞的壞死從而抑制真菌的侵染[124]。同時,WKS1通過對KAT-2B磷酸化的同時將脂質(zhì)轉(zhuǎn)變成茉莉酸從而提高小麥對條銹病的抗性[124]。Lr13為小麥葉銹病成株抗性基因;該基因位于2B染色體,通過結(jié)合Lr13突變體材料和中國春參考基因組,利用MutRenSeq (Mutagenesis and R gene enrichment sequencing)技術(shù)確定Lr13的候選基因?yàn)橐粋€典型的富含亮氨酸重復(fù)序列和核苷酸結(jié)合結(jié)構(gòu)域的受體(Nucleotide-binding domain and leucine-rich repeat containing receptor, NLR)蛋白,并與Ne2為同一個基因,可以通過觸發(fā)細(xì)胞程序性死亡在小麥三葉期提供抗性[107,125]。Lr22同樣是小麥葉銹病成株抗性基因;THIND A K等[126]利用TACCA(Targeted chromosome-based cloning via long-rang assembly)技術(shù)從小麥栽培品種CH Campala(攜帶Lr22a)中分離出2D染色體,將Lr22a定位區(qū)間縮小至0.09 cM,隨后利用突變體確定Lr22a候選基因?yàn)橐粋€NLR蛋白。Lr22a編碼序列長2739 bp,是由卷曲螺旋結(jié)構(gòu)域(CC)、中央核苷酸結(jié)合位點(diǎn)(NBS)和亮氨酸拉鏈結(jié)構(gòu)域(LRR)組成的一個典型的NLR蛋白[126]。

        3 小麥成株抗性基因的育種應(yīng)用

        隨著成株抗性新基因和新位點(diǎn)不斷發(fā)掘,部分基因已被成功應(yīng)用于小麥抗病育種。國際玉米小麥改良中心(CIMMYT)最早在小麥育種中利用成株抗性基因,研究發(fā)現(xiàn)聚合4~5個成株抗性基因的小麥材料在田間表現(xiàn)出高抗至免疫,如抗性持久穩(wěn)定的Pavon76和Knox為CIMMYT代表性成株抗性小麥品種[11]。在國內(nèi),成株抗性基因逐漸被育種家認(rèn)可并應(yīng)用,周軍等[127]對我國貴州和四川等地的242份小麥材料進(jìn)行成株期條銹病抗性鑒定,發(fā)現(xiàn)只有13份材料攜帶Lr34,其中包括綿陽20、川麥602、蜀麥830、川育27和川麥158等品種。王榮等[128]對我國115份新疆小麥品種進(jìn)行成株期條銹病基因的鑒定,發(fā)現(xiàn)92份材料攜帶Lr34,包括伊農(nóng)19號、喀冬4號等品種。趙旭陽等[129]對我國93份青藏地區(qū)的小麥地方種質(zhì)進(jìn)行條銹病成株抗性基因的檢測,發(fā)現(xiàn)只有17份材料攜帶Lr34,有40份材料攜帶Yr48。有趣的是有些材料雖然攜帶Lr34和Yr48,但是在成株期仍然表現(xiàn)為感病,例如,曲下小麥同時攜帶Lr34和Yr48,但是成株期條銹病的病害嚴(yán)重度在80%~100%之間,苗期也感病。蔚睿等[130]對黃淮麥區(qū)近年的150份審定品種進(jìn)行基因檢測,其中5份材料攜帶Lr34。尉法剛等[131]對我國西南冬麥區(qū)和黃淮冬麥區(qū)的400份材料進(jìn)行條銹病成株抗性基因檢測,發(fā)現(xiàn)有15份材料攜帶Lr34,包括采醬麥、白玉皮、矮粒多等材料。韓德俊等[132]對1 980份中國地方小麥品種和國外種質(zhì)進(jìn)行條銹病抗性鑒定和基因檢測,共篩選出42份具有成株抗性材料,其中有21份材料攜帶Lr34。閆曉翠等[133]對我國30份主栽品種抗葉銹病基因進(jìn)行了檢測,發(fā)現(xiàn)僅陜225和小偃81攜帶Yr29/Lr46/Pm39(簡稱Lr46);西農(nóng)979、陜229和貴農(nóng)16可能攜帶Lr13。劉韜等[134]對青海省66份小麥審定品種進(jìn)行葉銹病抗性基因鑒定,發(fā)現(xiàn)僅有新哲9號、高原182、高原363、高原932和墨引2號攜帶Lr34。孫建魯?shù)萚135]對100份中國小麥種質(zhì)資源進(jìn)行抗葉銹病基因鑒定,發(fā)現(xiàn)清農(nóng)3號、蘭天2號、中梁04335等19份材料中攜帶Lr34。趙艷博等[136]對80份國內(nèi)外優(yōu)良小麥品種進(jìn)行成株抗性基因鑒定,發(fā)現(xiàn)在這些材料中有5份國外品種攜帶Lr46;有26份品種攜帶Lr13。韓燁等[137]對103份CIMMYT小麥品系進(jìn)行了抗葉銹病基因鑒定,發(fā)現(xiàn)28份材料攜帶Lr34。王佳榮等[138]對40份CIMMYT小麥品系進(jìn)行抗葉銹病基因鑒定,發(fā)現(xiàn)10份材料攜帶Lr34;39份材料攜帶Lr46。劉理森等[139]對我國黃淮海麥區(qū)的241份材料進(jìn)行白粉病成株抗性基因鑒定,發(fā)現(xiàn)59份材料攜帶Lr34。任妍等[140]對168份材料進(jìn)行白粉病鑒定,發(fā)現(xiàn)96份材料在田間表現(xiàn)為成株抗性,但僅有30份材料攜帶Lr34。Lr34作為一個重要的成株抗性基因,在我國農(nóng)家種中占比高達(dá)85.1%,但是在我國的育成品種中占僅有6.1%[141]。較低的占比可能是由于Lr34會造成葉尖壞死、產(chǎn)量下降5%等因素使其在田間并沒有表現(xiàn)出良好的農(nóng)藝性狀和產(chǎn)量[105,141-142]。雖然Lr34在我國生產(chǎn)品種中比例較低,但是在核心種質(zhì)中卻占有13.3%,也側(cè)面說明Lr34的重要性[143]。有趣的是,JIN H L等[144]在對攜帶Lr34的農(nóng)家種進(jìn)行田間調(diào)查時發(fā)現(xiàn)在144份材料中有35份材料田間條銹病的嚴(yán)重程度大于80%,暗示在這些材料中可能存在Lr34的抑制基因影響其抗性。

        抗條銹病基因Yr29、Yr30、YrZH22和Yr36等也被應(yīng)用于小麥育種。例如,我國北部冬麥區(qū)代表性品種蘭天27、蘭航選151、天選50、長武357-9等,黃淮麥區(qū)的百農(nóng)64、濟(jì)南17、科農(nóng)1006、西農(nóng)528和陜農(nóng)33,西南麥區(qū)的SW8588、川麥1691、蜀麥830和蜀麥126都攜帶Yr29基因;北部冬麥區(qū)蘭天15、蘭天34、蘭天132等,黃淮麥區(qū)周麥22,西南麥區(qū)川麥88、西科麥12等均攜帶Yr30基因。北部冬麥區(qū)如蘭天22、蘭天33、蘭天39和蘭天44,黃淮麥區(qū)品種(系)周8425B和周麥22都攜帶YrZH22基因;西南麥區(qū)品種蜀麥1701攜帶Yr36[145]。由此可見,小麥條銹病成株抗性在我國小麥抗病育種中逐漸被重視應(yīng)用,而葉銹病和白粉病成株抗性基因在育種中應(yīng)用仍需加強(qiáng)。

        此外,對我國小麥栽培品種攜帶成株期抗性基因和QTL進(jìn)行統(tǒng)計(表3):北方冬麥區(qū)的小麥品種多數(shù)材料中攜帶成株抗性基因,例如西北農(nóng)林科技大學(xué)培育的“西農(nóng)”系列小麥品種中攜帶Yr30、Yr78、Lr46、QYrsn.nwafu-1BL和QYrqin.nwafu-2AL等多個成株抗性位點(diǎn)。結(jié)合田間表型鑒定發(fā)現(xiàn)攜帶多個成株抗性位點(diǎn)的小麥材料抗病性要高于僅攜帶1個成株抗性位點(diǎn)的材料[146-149]。因此,聚合多個成株抗性基因是培育小麥持久抗性的主要策略,合理利用這些基因、通過連續(xù)回交選育將多個成株抗性基因聚合,從而獲得理想的兼抗型材料。

        4 前景與展望

        氣候環(huán)境等因素的變化導(dǎo)致銹菌和白粉菌生理小種不斷變異,全生育期抗性基因的抗性保持面臨極大挑戰(zhàn)。此外,部分地區(qū)苗期銹病和白粉病呈逐漸加重態(tài)勢,為了應(yīng)對這一挑戰(zhàn),育種專家急需合理聚合全生育期抗性和成株抗性基因,為培育高產(chǎn)、多抗的持久抗性小麥新品種奠定基礎(chǔ)。結(jié)合我國當(dāng)前品種成株抗性基因分布情況,Yr48、Lr34和Lr46備受育種家關(guān)注且應(yīng)用廣泛,為我國小麥抗病育種提供了持久抗性基因資源。

        參考文獻(xiàn):

        [1] PANDEY S P, BENSTEIN R M, WANG Y W, et al. Epigenetic regulation of temperature responses - past successes and future challenges[J]. Journal of Experimental Botany, 2021, 72(21): erab248.

        [2] SAVARY S, WILLOCQUET L, PETHYBRIDGE S J, et al. The global burden of pathogens and pests on major food crops[J]. Nature Ecology amp; Evolution, 2019, 3(3): 430-439.

        [3] 劉金元,劉大鈞. 小麥白粉病抗性基因研究進(jìn)展[J]. 植物病理學(xué)報,2000,30(94):289-295.

        [4] 徐大慶,黃國紅,楊文香. 小麥葉銹菌生理分化及小麥抗葉銹基因分析研究進(jìn)展[J]. 河北農(nóng)業(yè)大學(xué)學(xué)報,2000,23(4):71-76.

        [5] 何中虎,蘭彩霞,陳新民,等. 小麥條銹病和白粉病成株抗性研究進(jìn)展與展望[J]. 中國農(nóng)業(yè)科學(xué),2011,44(11):2193-2215.

        [6] 康振生,趙中華. 2015年全國冬小麥春季病蟲害防治意見[J]. 農(nóng)家參謀(種業(yè)大觀),2015(2):16-17.

        [7] 張夢雅,孟慶芳,張林,等. 不同小麥品種葉銹菌的遺傳多

        樣性分析[J]. 河南農(nóng)業(yè)科學(xué),2018,47(9):77-81.

        [8] KHAN M H, BUKHARI A, DAR Z A, et al. Status and strategies in breeding for rust resistance in wheat[J]. Agricultural Sciences, 2013, 4(6): 292-301.

        [9] 唐秀麗. 氣候變化對我國小麥白粉病流行的影響[D]. 北京:中國農(nóng)業(yè)大學(xué),2017.

        [10] ROBERTS J J, CALDWELL R M. General resistance slow mildewing to Erysiphe graminis f. sp. tritici in Knox wheat[J]. Phytopathology, 1970, 60: 1310.

        [11] SINGH R P, HUERTA-ESPINO J, RAJARAM S, et al. Achieving near-immunity to leaf and stripe rusts in wheat by combining slow rusting resistance genes[J]. Acta Phytopathologica et Entomologica Hungarica, 2000, 35: 133-139.

        [12] ZHU Z W, CAO Q, HAN D J, et al. Molecular characterization and validation of adult-plant stripe rust resistance gene Yr86 in Chinese wheat cultivar Zhongmai 895[J]. Theoretical and Applied Genetics, 2023, 136(6): 142.

        [13] KOLMER J A, BAJGAIN P, ROUSE M N, et al. Mapping and characterization of the recessive leaf rust resistance gene Lr83 on wheat chromosome arm 1DS[J]. Theoretical and Applied Genetics, 2023, 136(5): 115.

        [14] LI Y H, WEI Z Z, SELA H, et al. Dissection of a rapidly evolving wheat resistance gene cluster by long-read genome sequencing accelerated the cloning of Pm69[J]. Plant Communications, 2024, 5(1): 100646.

        [15] ZADOKS J C. Yellow rust on wheat studies in epidemiology and physiologic specialization[J].Tijdschrift Over Plantenziekten, 1961, 67: 69-256.

        [16] SAWHNE R N, NAYAR S K, SHARMA J B, et al. Mechanism of durable resistance: A new approach[J]. Theoretical and Applied Genetics, 1989, 78(2): 229-232.

        [17] SUENAGA K, SINGH R P, HUERTA-ESPINO J, et al. Microsatellite markers for genes Lr34/Yr18 and other quantitative trait loci for leaf rust and stripe rust resistance in bread wheat[J]. Phytopathology, 2003, 93(7): 881-890.

        [18] BOUKHATEM N, BARET P V, MINGEOT D, et al. Quantitative trait loci for resistance against yellow rust in two wheat-derived recombinant inbred line populations[J]. Theoretical and Applied Genetics, 2002, 104(1): 111-118.

        [19] SPIELMEYER W, SINGH R P, MCFADDEN H, et al. Fine scale genetic and physical mapping using interstitial deletion mutants of Lr34/Yr18: A disease resistance locus effective against multiple pathogens in wheat[J]. Theoretical and Applied Genetics, 2008, 116(4): 481-490.

        [20] HERRERA-FOESSEL S A, LAGUDAH E S, HUERTA-ESPINO J, et al. New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked[J]. Theoretical and Applied Genetics, 2011, 122(1): 239-249.

        [21] HIEBERT C W, THOMAS J B, MCCALLUM B D, et al. An introgression on wheat chromosome 4DL in RL6077 (Thatcher*6/PI 250413) confers adult plant resistance to stripe rust and leaf rust(Lr67)[J]. Theoretical and Applied Genetics,2010,121(6):1083-1091.

        [22] WILLIAM H M, SINGH R P, HUERTA-ESPINO J, et al. Characterization of genetic loci conferring adult plant resistance to leaf rust and stripe rust in spring wheat[J]. Genome, 2006, 49(8): 977-990.

        [23] NAVABI A, TEWARI J P, SINGH R P, et al. Inheritance and QTL analysis of durable resistance to stripe and leaf rusts in an Australian cultivar, Triticum aestivum 'Cook'[J]. Genome, 2005, 48(1): 97-107.

        [24] LIANG S S, SUENAGA K, HE Z H, et al. Quantitative trait Loci mapping for adult-plant resistance to powdery mildew in bread wheat[J]. Phytopathology, 2006, 96(7): 784-789.

        [25] 朱華忠,王忠偉,伍玲,等. 小麥品種川麥107對條銹病成株抗性的QTL定位[J]. 中國農(nóng)業(yè)科學(xué),2010,43(4):706-712.

        [26] LAN C X, LIANG S S, WANG Z L, et al. Quantitative trait loci mapping for adult-plant resistance to powdery mildew in Chinese wheat cultivar Bainong 64[J]. Phytopathology, 2009, 99(10): 1121-1126.

        [27] LAN C X, LIANG S S, ZHOU X C, et al. Identification of genomic regions controlling adult-plant stripe rust resistance in Chinese landrace Pingyuan 50 through bulked segregant analysis[J]. Phytopathology, 2010, 100(4): 313-318.

        [28] LU Y M, LAN C X, LIANG S S, et al. QTL mapping for adult-plant resistance to stripe rust in Italian common wheat cultivars Libellula and Strampelli[J]. Theoretical and Applied Genetics, 2009, 119 (8): 1349-1359.

        [29] 張利軍,李在峰,MORTEN L,等. CIMMYT小麥品種Saar的葉銹成株抗性QTL分析[J]. 中國農(nóng)業(yè)科學(xué),2009,42(2):388-397.

        [30] COLLARD B C Y, JAHUFER M Z Z, BROUWER J B, et al. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts[J]. Euphytica, 2005, 142: 169-196.

        [31] ATIENZAR F A, JHA A N. The random amplified polymorphic DNA(RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: A critical review[J]. Mutation Research/Reviews in Mutation Research, 2006, 613: 76-102.

        [32] AGARWAL M, SHRIVASTAVA N, PADH H, et al. Advance in molecular marker techniques and their applications in plant sciences[J]. Plant Cell Reports, 2008, 27(4): 617-631.

        [33] TAUTZ D. Hypervariability of simple sequences as a general source for polymorphic DNA markers[J]. Nucleic Acids Research, 1989, 17(16): 6463-6471.

        [34] MCINTOSH R A. Catalogue of gene symbols for wheat[C]//In proceedings other 7th international wheat genetics symposium, July 14-19, 1988, Cambride, UK. Cambride: Institute of plant science research, 1988, 2: 1225-1323.

        [35] WORLAND A J, PETROVIC S, LAW C N. Genetic analysis of chromosome 2D of wheat[J]. Plant Breeding, 1988, 100(4): 247-259.

        [36] SINGH R P. Genetic association of leaf rust resistance gene Lr34 with adult plant resistance to stripe rust in bread wheat[J]. Phytopathology, 1992, 82(8): 835-838.

        [37] WILLIAM M, SINGH R P, HUERTA-ESPINO J, et al. Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat[J]. Phytopathology, 2003, 93(2): 153-159.

        [38] SINGH R P, NELSON J C, SORRELLS M E. Mapping Yr28 and other genes for resistance to stripe rust in wheat[J]. Crop Science, 2000, 40(4): 1148-1155.

        [39] BARIANA H S, PARRY N, BARCLAY I R, et al. Identification and characterization of stripe rust resistance gene Yr34 in common wheat[J]. Theoretical and Applied Genetics, 2006, 112(6): 1143-1148.

        [40] UAUY C, BREVIS J C, CHEN X, et al. High-temperature adult-plant(HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1[J]. Theoretical and Applied Genetics, 2005, 112(1): 97-105.

        [41] LIN F, CHEN X M. Genetics and molecular mapping of genes for race-specific all-stage resistance and non-race-specific high-temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa[J]. Theoretical and Applied Genetics, 2007, 114(7): 1277-1287.

        [42] LOWE I, JANKULOSKI L, CHAO S, et al. Mapping and validation of QTL which confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat[J]. Theoretical and Applied Genetics, 2011, 123(1): 143-157.

        [43] REN R S, WANG M N, CHEN X M, et al. Characterization and molecular mapping of Yr52 for high-temperature adult-plant resistance to stripe rust in spring wheat germplasm PI 183527[J]. Theoretical and Applied Genetics, 2012, 125(5): 847-857.

        [44] BASNET B," SINGH R P, IBRAHIM A M H, et al. Characterization of Yr54 and other genes associated with adult plant resistance to yellow rust and leaf rust in common wheat Quaiu 3[J]. Molecular Breeding, 2014, 33(2): 385-399.

        [45] CHHETRI M, BARIANIA H, KANDIAH P, et al. Yr58: A new stripe rust resistance gene and its interaction with Yr46 for enhanced resistance[J]. Phytopathology, 2016, 106(12): 1530-1534.

        [46] ZHOU X L, WANG M N, CHEN X M, et al. Identification of Yr59 conferring high-temperature adult-plant resistance to stripe rust in wheat germplasm PI 178759[J]. Theoretical and Applied Genetics, 2014, 127(4): 935-945.

        [47] HERRERA-FOESSEL S A, SINGH R P, LAN C X, et al. Yr60, a gene conferring moderate resistance to stripe rust in wheat[J]. Plant Disease, 2015, 99(4): 508-511.

        [48] LU Y, WANG M N, CHEN X M, et al. Mapping of Yr62 and a small-effect QTL for high-temperature adult-plant resistance to stripe rust in spring wheat PI 192252[J]. Theoretical and Applied Genetics, 2014, 127(6): 1449-1459.

        [49] BARIANA H, FORREST K, QURESHI N, et al. Adult plant stripe rust resistance gene Yr71 maps close to Lr24 in chromosome 3D of common wheat[J]. Molecular Breeding, 2016, 36(7): 98.

        [50] DONG Z Z, HEGARTY J M, ZHANG J L, et al. Validation and characterization of a QTL for adult plant resistance to stripe rust on wheat chromosome arm 6BS (Yr78)[J]. Theoretical and Applied Genetics, 2017, 130(10): 2127-2137.

        [51] FENG J, WANG M, SEE D R, et al. Characterization of novel gene Yr79 and four additional quantitative trait loci for all-stage and high-temperature adult-plant resistance to stripe rust in spring wheat PI 182103[J]. Phytopathology, 2018, 108(6): 737-747.

        [52] NSABIYERA V, BARIANA H S, QURESHI N, et al. Characterisation and mapping of adult plant stripe rust resistance in wheat accession Aus27284[J]. Theoretical and Applied Genetics, 2018, 131(7): 1459-1467.

        [53] MESSMER M M, SEYFARTH M, KELLER G, et al. Genetic analysis of durable leaf rust resistance in winter wheat[J]. Theoretical and Applied Genetics, 2000, 100(3): 419-431.

        [54] DYCK P L, KERBE E R. Inheritance in hexaploid wheat of adult-plant leaf rust resistance derived from Aegilops squarrosa[J]. Canadian Journal of Genetics amp; Cytology, 1970, 12(1): 175-180.

        [55] SUENAGA K, SINGH R P, HUERTA-ESPINO J, et al. Tagging of slow rusting genes for leaf rust, Lr34 and Lr46, using microsatellite markers in wheat[J]. Japan International Research Center for Agricultural Sciences, 2001, 93: 881-890.

        [56] KERBER E R, DYCK P L. Transfer to hexaploid wheat of linked genes for adult-plant leaf rust and seedling stem rust resistance from an amphiploid of Aegilops speltoides×Triticum monococcum[J]. Genome, 1990, 33(4): 530-537.

        [57] BARIANA H S, MCINTOSH R A. Cytogenetic studies in wheat. XV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A[J]. Genome, 1993, 36(3): 476-482.

        [58] SINGH A, PALLAVI J K, GUPTA P, et al. Identification of microsatellite markers linked to leaf rust adult plant resistance (APR) gene Lr48 in wheat[J]. Plant Breeding, 2011, 130(1): 31-34.

        [59] HERRERA-FOESSEL S A, SINGH R P, HUERTA-ESPINO J, et al. Lr68: a new gene conferring slow rusting resistance to leaf rust in wheat[J]. Theoretical and Applied Genetics, 2012, 124(8): 1475-1486.

        [60] KOLMER J A, TURNER M K, ROUSE M N, et al. Adult plant leaf rust resistance in AC Taber Wheat Maps to Chromosomes 2BS and 3BS[J]. Phytopathology, 2021, 111(2): 380-385.

        [61] SINGLA J, LUTHI L, WICKER T, et al. Characterization of Lr75: A partial, broad-spectrum leaf rust resistance gene in wheat[J]. Theoretical and Applied Genetics, 2017, 130(1): 1-12.

        [62] KOLMER J A, SU Z Q, BERNARDO A, et al. Mapping and characterization of the new adult plant leaf rust resistance gene Lr77 derived from Santa Fe winter wheat[J]. Theoretical and Applied Genetics, 2018, 131(7): 1553-1560.

        [63] KOLMER J A, BERNARDO A, BAI G, et al. Adult plant leaf rust resistance derived from toropi wheat is conditioned by Lr78 and three minor QTL

        [J]. Phytopathology, 2018, 108(2): 246-253.

        [64] LAGUDAH E, KRATTINGER S G, HERRERA-

        FOESSEL S, et al. Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens[J]. Theoretical and Applied Genetics, 2009, 119(5): 889-898.

        [65] LILLEMO M, ASALF B, SINGH R P, et al. The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar[J]. Theoretical and Applied Genetics, 2008, 116(8): 1155-1166.

        [66] GAO H D, ZHU F F, JIANG Y J, et al. Genetic analysis and molecular mapping of a new powdery mildew resistant gene Pm46 in common wheat[J]. Theoretical and Applied Genetics, 2012, 125(5): 967-973.

        [67] ZHANG R Q, SUN B X, CHEN J, et al. Pm55, a developmental-stage and tissue-specific powdery mildew resistance gene introgressed from Dasypyrum villosum into common wheat[J]. Theoretical and Applied Genetics, 2016, 129(10): 1975-1984.

        [68] ZHANG R Q, FAN Y L, KONG L, et al. Pm62, an adult-plant powdery mildew resistance gene introgressed from Dasypyrum villosum chromosome arm 2VL into wheat[J]. Theoretical and Applied Genetics, 2018, 131(12): 2613-2620.

        [69] BAI B, LI Z M, WANG H M, et al. Genetic analysis of adult plant resistance to stripe rust in common wheat cultivar“Pascal”[J]. Frontiers in Plant Science, 2022, 13: 918437.

        [70] YE X L, LI J, CHENG Y K, et al. Genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in Sichuan wheat[J]. BMC Plant Biology, 2019, 19(1): 147.

        [71] YIN Y R, YUAN C, ZHANG Y C, et al. Genetic analysis of stripe rust resistance in the common wheat line Kfa/2*Kachu under a Chinese rust environment[J]. Theoretical and Applied Genetics, 2023, 136(9): 185.

        [72] ZHANG P P, LI X, GEBREWAHID T W, et al. QTL mapping of adult-plant resistance to leaf and stripe rust in wheat cross SW 8588/Thatcher using the wheat 55K SNP Array[J]. Plant Disease, 2019, 103(12): 3041-3049.

        [73] ZHANG P P, YAN X C, GEBREWAHID T W, et al. Genome-wide association mapping of leaf rust and stripe rust resistance in wheat accessions using the 90K SNP array[J]. Theoretical and Applied Genetics, 2021, 134(4): 1233-1251.

        [74] LIU J D, HE Z H, WU L, et al. Genome-wide linkage mapping of QTL for adult-plant resistance to stripe rust in a Chinese wheat population Linmai 2 x Zhong 892[J]. PLoS One, 2015, 10(12): e0145462.

        [75] ZHOU X L, LI X, HAN D J, et al. Genome-wide QTL mapping for stripe rust resistance in winter wheat Pindong 34 using a 90K SNP array[J]. Frontiers in Plant Science, 2022, 13: 932762.

        [76] YAO F J, ZHANG X M, YE X L, et al. Characterization of molecular diversity and genome-wide association study of stripe rust resistance at the adult plant stage in Northern Chinese wheat landraces[J]. BMC Genetics, 2019, 20(1): 38.

        [77] REN Y, LI Z F, HE Z H, et al. QTL mapping of adult-plant resistances to stripe rust and leaf rust in Chinese wheat cultivar Bainong 64[J]. Theoretical and Applied Genetics, 2012, 125: 1253-1262.

        [78] REN Y, HE Z H, LI J, et al. QTL mapping of adult-plant resistance to stripe rust in a population derived from common wheat cultivars Naxos and Shanghai 3/Catbird[J]. Theoretical and Applied Genetics, 2012, 125(6): 1211-1221.

        [79] PANG Y L, LIU C X, LIN M, et al. Mapping QTL for Adult-Plant Resistance to Stripe Rust in a Chinese Wheat Landrace[J]. International Journal of Molecular Sciences, 2022, 23(17): 9662.

        [80] WU J H, WANG Q L, XU L S, et al. Combining single nucleotide polymorphism genotyping array with bulked segregant analysis to map a gene controlling adult plant resistance to stripe rust in wheat line 03031-1-5 H62[J]. Phytopathology, 2018, 108(1): 103-113.

        [81] LIU S J, WANG X T, ZHANG Y Y, et al. Enhanced stripe rust resistance obtained by combining Yr30 with a widely dispersed, consistent QTL on chromosome arm 4BL[J]. Theoretical and Applied Genetics, 2022, 135(1): 351-365.

        [82] CHENG Y K, LI J, YAO F J, et al. Dissection of loci conferring resistance to stripe rust in Chinese wheat landraces from the middle and lower reaches of the Yangtze River via genome-wide association study[J]. Plant Science, 2019, 287: 110204.

        [83] WU J H, LIU S J, WANG Q L, et al. Rapid identification of an adult plant stripe rust resistance gene in hexaploid wheat by high-throughput SNP array genotyping of pooled extremes[J]. Theoretical and Applied Genetics, 2018, 131(1): 43-58.

        [84] SAPKOTA S, MERGOUM M, KUMAR A, et al. A novel adult plant leaf rust resistance gene Lr2K38 mapped on wheat chromosome 1AL[J]. The Plant Genome, 2020, 13(3): e20061.

        [85] CHU C G, FRIESEN T L, XU S S, et al. Identification of novel QTLs for seedling and adult plant leaf rust resistance in a wheat doubled haploid population[J]. Theoretical and Applied Genetics, 2009, 119(2): 263-269.

        [86] MACCAFERRI M, MANTOVANI P, TUBEROSA R, et al. A major QTL for durable leaf rust resistance widely exploited in durum wheat breeding programs maps on the distal region of chromosome arm 7BL[J]. Theoretical and Applied Genetics, 2008, 118(8): 1225-1240.

        [87] SINGH D, SIMMONDS J, PARK R F, et al. Inheritance and QTL mapping of leaf rust resistance in the European winter wheat cultivar‘Beaver’[J]. Euphytica, 2009, 169(2): 253-261.

        [88] REN Y, LI Z F, HE Z H, et al. QTL mapping of adult-plant resistances to stripe rust and leaf rust in Chinese wheat cultivar Bainong 64[J]. Theoretical and Applied Genetics, 2012, 125(6): 1253-1262.

        [89] XU X Y, DUAN Z Y, SU J H, et al. QTL mapping of adult-plant resistance to leaf rust based on SSR markers and SNP sequencing of Chinese wheat landrace Xu’ai (Triticum aestivum L.)[J]. Genetic Resources and Crop Evolution, 2021, 68: 1359-1373.

        [90] LI T, BAI G H. Lesion mimic associates with adult plant resistance to leaf rust infection in wheat[J]. Theoretical and Applied Genetics, 2009, 119(1): 13-21.

        [91] ZHANG P P, YIN G H, ZHOU Y, et al. QTL mapping of adult-plant resistance to leaf rust in the wheat cross Zhou 8425B/Chinese Spring using high-density SNP markers[J]. Frontiers in Plant Science, 2017, 8: 793.

        [92] XU X Y, BAI G H, CARVER B F, et al. Mapping of QTLs prolonging the latent period of Puccinia triticina infection in wheat[J]. Theoretical and Applied Genetics, 2005, 110(2): 244-251.

        [93] RIAZ A, ATHIYANNAN N, PERIYANNAN S K, et al. Unlocking new alleles for leaf rust resistance in the Vavilov wheat collection[J]. Theoretical and Applied Genetics, 2018, 131(1): 127-144.

        [94] HUANG Q H, JING R L, WU X Y, et al. QTL mapping for adult-plant resistance to powdery mildew in Chinese elite common wheat Chuanmai104[J]. Scientia Agricultura Sinica, 2008, 41: 2528-2536.

        [95] YANG L J, ZHANG X J, ZHANG X, et al. Identification and evaluation of resistance to powdery mildew and yellow rust in a wheat mapping population[J]. PLoS One, 2017, 12(5): e0177905.

        [96] KANG Y C, BARRY K, CAO F B, et al. Genome-wide association mapping for adult resistance to powdery mildew in common wheat[J]. Molecular Biology Reports, 2020, 47(2): 1241-1256.

        [97] MOHLER V, STADLMEIER M. Dynamic QTL for adult plant resistance to powdery mildew in common wheat (Triticum aestivum L.)[J]. Journal of Applied

        Genetics, 2019, 60(3-4): 291-300.

        [98] REN Y, HOU W X, LAN C X, et al. QTL analysis and nested association mapping for adult plant resistance to powdery mildew in two bread wheat populations[J]. Frontiers in Plant Science, 2017,8:

        1212.

        [99] XU X W, SUN D J, NI Z Q, et al. Molecular identification and validation of four stable QTL for adult-plant resistance to powdery mildew in Chinese wheat cultivar Bainong 64[J]. Theoretical and Applied Genetics, 2023, 136(11): 232.

        [100] JIA A L, REN Y, GAO F M, et al. Mapping and validation of a new QTL for adult-plant resistance to powdery mildew in Chinese elite bread wheat line Zhou8425B[J]. Theoretical and Applied Genetics, 2018, 131(5): 1063-1071.

        [101] DU X J, XU W G, PENG C J. Identification and validation of a novel locus, Qpm-3BL, for adult plant resistance to powdery mildew in wheat using multilocus GWAS[J]. BMC Plant Biology, 2021, 21(1): 357.

        [102] HOU L Y, ZHANG X J, XIN L, et al. Mapping of powdery mildew resistance gene pmCH89 in a putative wheat-thinopyrum intermedium introgression line[J]. International Journal of Molecular Sciences, 2015, 16(8): 17231-17244.

        [103] XU X T, ZHU Z W, JIA A L, et al. Mapping of QTL for partial resistance to powdery mildew in two Chinese common wheat cultivars[J]. Euphytica, 2019, 216: 3.

        [104] WEI Y, ZHANG T, JIN Y Y, et al. Introgression of an adult-plant powdery mildew resistance gene Pm4VL from Dasypyrum villosum chromosome 4V into Bread wheat[J]. Frontiers in Plant Science, 2024, 15: 1401525.

        [105] KRATTINGER S G, LAGUDAH E S, SPIELMEYER W, et al. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat[J]. Science, 2009, 323(5919): 1360-1363.

        [106] FU D L, UAUY C, DISTELFELD A, et al. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust[J]. Science, 2009, 323(5919): 1357-1360.

        [107] YAN X C, LI M M, ZHANG P P, et al. High-temperature wheat leaf rust resistance gene Lr13 exhibits pleiotropic effects on hybrid necrosis[J]. Molecular Plant, 2021, 14(7): 1029-1032.

        [108] SHARMA J S, MCCALLUM B D, HIEBERT C W. Development of single nucleotide polymorphism-based functional molecular markers from the Lr22a gene sequence in wheat (Triticum aestivum)[J]. Plant Breeding, 2022, 141(2): 204-211.

        [109] KRATTINGER S G, JORDAN D R, MACE E S, et al. Recent emergence of the wheat Lr34 multi-pathogen resistance: insights from haplotype analysis in wheat, rice, sorghum and Aegilops tauschii[J].Theoretical and Applied Genetics, 2013, 3: 663-672.

        [110] BOSSOLINI E, KRATTINGER S G, KELLER B. Development of simple sequence repeat markers specific for the Lr34 resistance region of wheat using sequence information from rice and Aegilops tauschii[J]. Theoretical and Applied Genetics, 2006, 113(6): 1049-1062.

        [111] RISK J M, SELTER L L, CHAUHAN H, et al. The wheat Lr34 gene provides resistance against multiple fungal pathogens in barley[J]. Plant Biotechnology Journal, 2013, 11: 847-854.

        [112] KRATTINGER S G, SUCHER J, SELTER L, et al. The wheat durable, multipathogen resistance gene Lr34 confers partial blast resistance in rice[J]. Plant Biotechnology Journal, 2016, 14: 1261-1268.

        [113] SUCHER J, BONI R, YANG P, et al. The durable wheat disease resistance gene Lr34 confers common rust and northern corn leaf blight resistance in maize[J]. Plant Biotechnology Journal, 2016, 15: 489-496.

        [114] BONI R, CHAUHAN H, HENSEL G, et al. Pathogen-inducible Ta-Lr34res expression in heterologous barley confers disease resistance without negative pleiotropic effects[J]. Plant Biotechnology Journal, 2017, 16: 245-253.

        [115] SCHNIPPENKOETTER W, LO C, LIU G Q, et al. The wheat Lr34 multipathogen resistance gene confers resistance to anthracnose and rust in sorghum[J]. Plant Biotechnology Journal, 2017, 15: 1387-1396.

        [116] CHAUHAN H, BONI R, BUCHER R, et al. The wheat resistance gene Lr34 results in the constitutive induction of multiple defense pathways in transgenic barley[J]. The Plant Journal, 2015, 84: 202-215.

        [117] KRATTINGER S G, KANG J, BRUNLICH S, et al. Abscisic acid is a substrate of the ABC transporter encoded by the durable wheat disease resistance gene Lr34[J]. New Phytologist, 2019, 223: 853-866.

        [118] BRAUNLICH S, KOLLER T, GLAUSER G, et al. Expression of the wheat disease resistance gene Lr34 in transgenic barley leads to accumulation of abscisic acid at the leaf tip[J]. Plant Physiology and Biochemistry, 2021, 166: 50-957.

        [119] ZHANG Y C, CHEN G, ZANG Y M, et al. Lr34/Yr18/Sr57/Pm38 confers broad-spectrum resistance to fungal disease via transport of sinapyl alcohol for cell wall lignification in wheat[J/OL]. Plant Communications, 2024: 101077[2024-10-24]. http//doi.org/10.

        1016/j.xplc.2024.101077.

        [120] DYCK P L, SAMBORSKI D J. Adult-plant leaf rust resistance in PI 250413, an introduction of common wheat[J]. Canadian Journal of Plant Science, 1979, 59(2): 329-332.

        [121] MOORE J W, HERRERA-FOESSEL S, LAN C X, et al. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat[J]. Nature Genetics, 2015, 47(12): 1494-1498.

        [122] MILNE R J, DIBLEY K E, BOSE J, et al. Expression of the wheat multipathogen resistance hexose transporter Lr67res is associated with anion fluxes[J]. Plant Physiology, 2023, 192(2): 1254-1267.

        [123] MILNE R J, DIBLEY K E, SCHNIPPENKOETTER W, et al. The Wheat Lr67 gene from the sugar transport protein 13 family confers multipathogen resistance in barley[J]. Plant Physiology, 2019,

        179(4): 1285-1297.

        [124] YAN Y, LI X M, CHEN Y, et al. Phosphorylation of KAT-2B by WKS1/Yr36 redirects the lipid flux to jasmonates to enhance resistance against wheat stripe rust[J]. Journal of Genetics and Genomics, 2023, 50(11): 872-882.

        [125] HEWITT T, ZHANG J P, HUANG L, et al. Wheat leaf rust resistance gene Lr13 is a specific Ne2 allele for hybrid necrosis[J]. Molecular Plant, 2021, 14(7): 1025-1028.

        [126] THIND A K, WICKER T, SIMKOVA H, et al. Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly[J]. Nature Biotechnology, 2017, 35(8): 793-796.

        [127] 周軍,李魁印,張立,等. 242份小麥品種(系)成株期抗條銹病鑒定及分子標(biāo)記檢測[J]. 河南農(nóng)業(yè)科學(xué),2020,49(6):84-97.

        [128] 王榮,程宇坤,白斌,等. 新疆小麥品種(系)條銹病抗性與抗病基因分析[J]. 麥類作物學(xué)報,2024,44(11):1-8.

        [129] 趙旭陽,姚方杰,龍黎,等. 青藏春冬麥區(qū)93份小麥地方種質(zhì)條銹病抗性評價及抗病基因分子鑒定[J]. 作物學(xué)報,2021,47(10):2053-2063.

        [130] 蔚睿,金彥剛,吳舒舒,等. 黃淮麥區(qū)小麥新品種(系)抗條銹水平與抗病基因分析[J]. 麥類作物學(xué)報,2020,40(3):278-284.

        [131] 尉法剛,王光浩,王長有,等. 400份小麥品種(系)條銹病成株期抗性鑒定與評價[J]. 植物遺傳資源學(xué)報,2020,21(4):846-854.

        [132] 韓德俊,張培禹,王琪琳,等. 1980份小麥地方品種和國外種質(zhì)抗條銹性鑒定與評價[J]. 中國農(nóng)業(yè)科學(xué),2012,45(24):5013-5023.

        [133] 閆曉翠,李在峰,楊華麗,等. 30個重要小麥生產(chǎn)品種抗葉銹性基因分析[J]. 中國農(nóng)業(yè)科學(xué),2017,50(2):272-285.

        [134] 劉韜,吳麗軍,甘曉龍,等. 青海審定小麥品種抗葉銹病基因的分子鑒定[J]. 西北農(nóng)業(yè)學(xué)報,2018,27(8):1112-1118.

        [135] 孫建魯,王吐虹,馮晶,等. 100個小麥品種資源抗條銹性鑒定及重要抗條銹病基因的SSR檢測[J]. 植物保護(hù),2017,43(2):64-72.

        [136] 趙艷博. 小麥品種抗葉銹基因鑒定及抗條銹病分子標(biāo)記篩選[D]. 保定:河北農(nóng)業(yè)大學(xué),2018.

        [137] 韓燁,何中虎,夏先春,等. CIMMYT小麥材料的苗期和成株抗葉銹病鑒定[J]. 作物學(xué)報,2011,37(7):1125-1133.

        [138] 王佳榮,董瑞,張夢宇,等. 40份CIMMYT小麥品系苗期及成株抗葉銹病基因鑒定[J]. 華北農(nóng)學(xué)報,2022,37(2):201-210.

        [139] 劉理森,張倩,任妍,等. 241份小麥品種(系)白粉病抗性鑒定與分子標(biāo)記檢測[J]. 分子植物育種,2016,14(3):619-637.

        [140] 任妍,鄧跟望,劉理森,等. 168份小麥不同病害抗性材料白粉病抗性鑒定及其Lr34/Yr18/Pm38位點(diǎn)的分子檢測[J]. 麥類作物學(xué)報,2015,35(6):759-767.

        [141] 楊文雄,楊芳萍,梁丹,等. 中國小麥育成品種和農(nóng)家種中慢銹病基因Lr34/Yr18的分子檢測[J]. 作物學(xué)

        報,2008,34(7):1109-1113.

        [142] SINGH R P, HUERTA-ESPINO J. Effect of leaf rustresistance gene Lr34 on grain yield and agronomic traits of spring wheat[J]. Crop Science, 1997,

        37(2): 390-395.

        [143] 曾慶東,吳建輝,王琪琳,等. 持久抗病基因Yr18在中國小麥抗條銹育種中的應(yīng)用[J]. 麥類作物學(xué)報,2012,32(1):13-17.

        [144] JIN H L, ZHANG H P, ZHAO X Y, et al. Stripe rust resistance gene Yr18 and its suppressor gene in Chinese wheatlandraces[J]. Theoretical and Applied Genetics, 2023, 136(4): 67.

        [145] 劉志勇,張懷志,白斌,等. 中國小麥抗條銹病基因育種利用現(xiàn)狀與策略[J]. 中國農(nóng)業(yè)科學(xué),2024,57(1):34-51.

        [146] 李俁佳,許豪,于士男,等. 小麥骨干親本周8425B抗條銹病優(yōu)異基因在其衍生品種中的遺傳解析[J]. 作物學(xué)報,2024,50(1):16-31.

        [147] 楊迪,李巖佳,蔡奇昌,等. 194份小麥品種(系)抗條銹性和白粉性評價及抗病基因檢測[J]. 植物病理學(xué)報,2024,6:1-13.

        [148] 李壯,黃彥川,張傳量,等. 長江中下游小麥新品系條銹病抗性評估與抗病基因分析[J]. 麥類作物學(xué)報,2024,44(7):835-845.

        [149] 張海鵬,葉雪玲,管方念,等. 220份四川小麥條銹病抗性鑒定與評價[J]. 四川農(nóng)業(yè)大學(xué)學(xué)報,2023,41(6):1020-1031.

        責(zé)任編輯:周慧

        猜你喜歡
        葉銹病條銹病白粉病
        39份外引小麥種質(zhì)的抗葉銹病基因檢測及其抗性鑒定
        小麥條銹病田間為害損失的初步分析
        湖北植保(2022年4期)2022-08-23 10:51:52
        一到春季就流行 蔬菜白粉病該咋防
        陜西安康:農(nóng)技專家開展小麥條銹病普防工作
        賦予谷類作物葉銹病抗性
        楊樹葉銹病發(fā)病癥狀、規(guī)律及防治策略
        小麥條銹病持續(xù)控制的策略
        215份小麥材料抗條銹病基因分子檢測初報
        青海云杉的生長習(xí)性及葉銹病、立枯病的防治
        拉薩設(shè)施月季白粉病的發(fā)生與防治
        西藏科技(2016年8期)2016-09-26 09:00:21
        免费va国产高清不卡大片| 国产精品爽爽久久久久久竹菊| 一本色道无码道dvd在线观看| 四虎影视一区二区精品| 亚洲AV日韩Av无码久久| 国家一级内射高清视频| 暖暖 免费 高清 日本 在线| 少妇高清精品毛片在线视频| 国产成人综合久久久久久| 人妻熟女妇av北条麻记三级| 91精品国产色综合久久| 无码少妇一区二区性色av| 亚洲大尺度在线观看| 国产激情视频在线观看你懂的| av在线免费高清观看| 极品少妇一区二区三区四区| 9191在线亚洲精品| 国产精品高清亚洲精品| 国产最新女主播福利在线观看| 久久精品噜噜噜成人| 久久精品免费无码区| 国产av一区麻豆精品久久| 大尺度无遮挡激烈床震网站| 欧美日韩不卡合集视频| 女同av在线观看网站| 国产精品高湖呻呤久久av| 国产无码十八禁| 视频一区中文字幕在线观看| 色婷婷一区二区三区四区成人网 | 日韩欧群交p片内射中文| 在线va免费看成| 国产精品亚洲综合色区韩国| 男人天堂插插综合搜索| 久久国产加勒比精品无码| 波多野结衣有码| 午夜香蕉av一区二区三区| 久久精品国产亚洲av精东| 色偷偷久久一区二区三区| 久久久久综合一本久道| 内射爆草少妇精品视频| 内射人妻视频国内|