摘要:" 原生質(zhì)體瞬時轉(zhuǎn)化系統(tǒng)簡便高效,已被廣泛用于植物基因功能分析。然而,目前甘薯中尚未建立原生質(zhì)體瞬時轉(zhuǎn)化系統(tǒng)。本研究以徐紫薯8號水培根系為試驗(yàn)材料,通過聚乙二醇(PEG)介導(dǎo),建立了一個操作簡便且高效的原生質(zhì)體分離和瞬時轉(zhuǎn)化系統(tǒng)。結(jié)果表明,水培根系制備的原生質(zhì)體產(chǎn)量高達(dá)每1 g 1.106×107個,質(zhì)粒轉(zhuǎn)化效率高達(dá)69.46%。并利用該系統(tǒng),首次成功將甘薯蔗糖轉(zhuǎn)運(yùn)蛋白(IbSUT4)定位到甘薯細(xì)胞膜上。本研究結(jié)果為甘薯功能基因研究和分子育種提供了重要技術(shù)支撐。
關(guān)鍵詞:" 甘薯;原生質(zhì)體;瞬時轉(zhuǎn)化;亞細(xì)胞定位
中圖分類號:" S531""" 文獻(xiàn)標(biāo)識碼:" A""" 文章編號:" 1000-4440(2024)12-2201-06
收稿日期:2024-02-25
基金項(xiàng)目:國家甘薯產(chǎn)業(yè)技術(shù)體系項(xiàng)目(CARS-10-甘薯)
作者簡介:王丹丹(1994-),女,山東煙臺人,博士研究生,主要研究方向?yàn)楦适磉z傳育種。(E-mail)wdd201712@126.com
通訊作者:李" 強(qiáng),(E-mail)instrong@163.com
王丹丹,李成陽,李" 強(qiáng). 甘薯高效原生質(zhì)體瞬時轉(zhuǎn)化系統(tǒng)的建立及應(yīng)用[J]. 江蘇農(nóng)業(yè)學(xué)報,2024,40(12):2201-2206.
doi:10.3969/j.issn.1000-4440.2024.12.002
Establishment and application of an efficient protoplast transient transformation system in sweet potato
WANG Dandan," LI Chengyang," LI Qiang
(Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou 221131, China)
Abstract:" The protoplast transient transformation system is simple and efficient, and has been widely used in plant gene function analysis. However, the protoplast transformation system has not yet been established in sweet potato. In this study, the hydroponic roots of Xuzishu 8 were used as materials to establish a simple and efficient protoplast isolation and transient transformation system mediated by polyethylene glycol (PEG). The results showed that the yield of protoplasts prepared from hydroponic roots was as high as 1.106×107 per gram, and the plasmid transformation efficiency was as high as 69.46%. Using this system, the sweet potato sucrose transporter (IbSUT4) was successfully localized on sweet potato cell membrane for the first time. The results of this study provide important technical support for sweet potato functional gene research and molecular breeding.
Key words:" sweetpotato;protoplast;transient transformation;subcellular localization
甘薯是重要的糧食作物之一,其適應(yīng)性強(qiáng)、高產(chǎn)和營養(yǎng)豐富,已成為未來保障糧食供應(yīng)的重要作物。深入挖掘并解析甘薯產(chǎn)量、品質(zhì)和抗性相關(guān)基因,對于培育高產(chǎn)、優(yōu)質(zhì)和高抗的甘薯品種具有重要意義。隨著基因組測序技術(shù)的快速發(fā)展,已成功測序并組裝出多個高質(zhì)量的甘薯基因組序列,如Ipomoea batatas Beauregard(http://sweetpotato.uga.edu)和徐薯18的基因組序列。這些基因組數(shù)據(jù)極大促進(jìn)了甘薯進(jìn)化機(jī)制的探索及重要性狀遺傳位點(diǎn)的鑒定。然而,由于甘薯具有六倍體和高度雜合的特點(diǎn),其基因組復(fù)雜且龐大,為功能基因的研究帶來了巨大挑戰(zhàn)。甘薯突變體資源有限且遺傳轉(zhuǎn)化周期較長,也進(jìn)一步阻礙了研究人員對其基因功能的深入研究。因此,亟需簡便且高效的工具來加速甘薯基因的挖掘與功能分析。
原生質(zhì)體瞬時轉(zhuǎn)化是一種基因功能研究方法,相比于穩(wěn)定的遺傳轉(zhuǎn)化系統(tǒng),原生質(zhì)體瞬時轉(zhuǎn)化系統(tǒng)可以更加高效、簡便地進(jìn)行基因功能分析,可用于亞細(xì)胞定位分析、體內(nèi)分子相互作用和信號轉(zhuǎn)導(dǎo)研究等。利用該系統(tǒng),可以實(shí)現(xiàn)多種植物蛋白質(zhì)在內(nèi)源系統(tǒng)中的亞細(xì)胞定位分析 。然而,由于部分植物細(xì)胞壁較厚或富含多糖、多酚,原生質(zhì)體的制備較為困難,只能利用異源表達(dá)系統(tǒng)進(jìn)行亞細(xì)胞定位分析。并且,由于不同物種之間進(jìn)化距離差異較大,蛋白質(zhì)的錯誤靶向可能會導(dǎo)致目標(biāo)蛋白質(zhì)在異源系統(tǒng)中喪失活性。因此,針對具體物種建立適用的原生質(zhì)體瞬時轉(zhuǎn)化體系至關(guān)重要。
1979年,吳耀武等報道了甘薯愈傷組織原生質(zhì)體的分離和培養(yǎng);隨后,學(xué)者又從甘薯莖、葉柄和葉肉細(xì)胞中陸續(xù)分離出原生質(zhì)體。然而,由于甘薯富含多糖、多酚,原生質(zhì)體的制備較為復(fù)雜,至今尚未建立完整的同源瞬時轉(zhuǎn)化體系。本研究擬以徐紫薯8號水培根系為試驗(yàn)材料,初步建立甘薯水培根系高效原生質(zhì)體制備及瞬時轉(zhuǎn)化體系,以期為甘薯蛋白質(zhì)亞細(xì)胞定位分析和甘薯基因功能研究和性狀改良提供高效、簡便的工具。
1" 材料與方法
1.1" 材料
試驗(yàn)選用甘薯品種徐紫薯8號。將徐紫薯8號莖段置于溫室中水培3~5 d,待根系長至2~3 cm時,取水培根系按照Liu等的方法培養(yǎng)徐紫薯8號的愈傷組織,待愈傷組織直徑達(dá)到3~5 mm時用于制備原生質(zhì)體。
1.2" 試劑
纖維素酶(型號Cellulase R-10)和離析酶(型號Macerozyme R-10)來自日本Yakult Honsha 公司。其他用于原生質(zhì)體制備及轉(zhuǎn)化的試劑均購自Sigma公司。
1.3" 原生質(zhì)體分離
原生質(zhì)體分離參照Nishimaki等和Yoo等的方法并稍作修改。具體操作步驟如下:使用鋒利的刀片將根和愈傷組織(1.0±0.1) g切成2 mm的碎塊,將切好的碎塊立即轉(zhuǎn)移至裝有7.5 mL新鮮酶解液的培養(yǎng)皿中,酶解前,將含有愈傷組織的酶解液在真空泵中抽真空處理30 min,含有根系的酶解液無需進(jìn)行抽真空處理,將含有酶解液的根和愈傷組織置于28 ℃培養(yǎng)箱中避光酶解4.5 h,其間每隔1 h輕晃培養(yǎng)皿,用適量的W5溶液沖洗孔徑40 μm細(xì)胞過濾器和50 mL錐形離心管,酶解結(jié)束后,利用孔徑40 μm細(xì)胞過濾器對酶解混合物進(jìn)行過濾,并用等體積的W5溶液沖洗培養(yǎng)皿和過濾器,隨后將濾液以100 g離心 3 min,同時通過緩慢加速和緩慢減速保護(hù)原生質(zhì)體的完整性。離心結(jié)束后,小心去除上清液,加入5 mL W5溶液重懸原生質(zhì)體,并將懸浮液在室溫下以100 g離心2 min,離心后小心去除上清液,加入1 mL W5溶液重懸原生質(zhì)體,取100 μL懸浮液在顯微鏡下計(jì)算原生質(zhì)體產(chǎn)量并評估其活性,將剩余的懸浮液置于冰上30 min,30 min后小心去除上清液,利用單分枝?;视停∕Mg)溶液將原生質(zhì)體含量調(diào)節(jié)至每1 mL 1×105~2×105個。所用溶液的配方如表1所示。
1.4" 聚乙二醇介導(dǎo)質(zhì)粒瞬時轉(zhuǎn)化
聚乙二醇(PEG)介導(dǎo)的瞬時轉(zhuǎn)化系統(tǒng)所用35S:GFP和35S:IbSUT4-GFP載體均為本實(shí)驗(yàn)室所有。SCAMP1-mCherry和D53-mCherry載體由南京農(nóng)業(yè)大學(xué)萬建民教授實(shí)驗(yàn)室贈與。其中,IbSUT4為甘薯蔗糖轉(zhuǎn)運(yùn)蛋白基因,GFP為綠色熒光蛋白基因,mCherry為紅色熒光蛋白基因,35S為GFP啟動子。
原生質(zhì)體瞬時轉(zhuǎn)化體系建立方法參考Yoo等的方法并略微修改。具體操作如下:將10 μL質(zhì)粒(10~20 μg)與100 μL原生質(zhì)體置于預(yù)涂有0.1% BSA的2 mL離心管中,輕輕混合,隨后加入110 μL新鮮制備的40% PEG溶液并充分混合。室溫靜置8 min后,緩慢加入440 μL W5溶液以終止反應(yīng),將混合溶液在室溫下100 g離心1 min,棄上清液,用W5溶液重懸原生質(zhì)體后,再次離心,去除上清液,加入1 mL WI溶液重懸原生質(zhì)體,將轉(zhuǎn)化后的原生質(zhì)體懸浮液放置于12孔細(xì)胞培養(yǎng)板中,25~28 ℃黑暗條件下孵育16 h。所用溶液的配方如表1所示。
1.5" 顯微鏡觀察和數(shù)據(jù)統(tǒng)計(jì)
使用血球計(jì)數(shù)板計(jì)算原生質(zhì)體的產(chǎn)量。使用熒光素二乙酸酯(FDA)將原生質(zhì)體染色,并在顯微鏡下檢查原生質(zhì)體活性。在轉(zhuǎn)化過程中,將攜帶綠色熒光蛋白(GFP)基因的質(zhì)粒導(dǎo)入原生質(zhì)體,如果轉(zhuǎn)化成功,原生質(zhì)體會表達(dá)GFP蛋白并發(fā)出綠色熒光,因此可以通過統(tǒng)計(jì)表達(dá)綠色熒光蛋白(GFP)原生質(zhì)體的數(shù)量計(jì)算轉(zhuǎn)化效率。使用Lecia顯微鏡(型號DM40008,德國Leica公司產(chǎn)品)分析蛋白質(zhì)亞細(xì)胞定位,綠色熒光蛋白(GFP)和紅色熒光蛋白(mCherry)的激發(fā)和發(fā)射波長分別為470/510 nm和538/584 nm。使用Image J軟件測量原生質(zhì)體的直徑。使用DPS軟件進(jìn)行統(tǒng)計(jì)分析,采用單因素方差分析(ANOVA)和最小顯著性差分法(LSD)比較處理間差異。每個試驗(yàn)重復(fù)3次。試驗(yàn)流程如圖1所示。
2" 結(jié)果與分析
2.1" 甘薯不同組織制備得到的原生質(zhì)體
以愈傷組織和水培根系為材料制備原生質(zhì)體,比較獲得的原生質(zhì)體的數(shù)量和質(zhì)量,從而選擇合適的試驗(yàn)材料(圖2A)。結(jié)果表明,水培根系制備的原生質(zhì)體數(shù)量顯著高于愈傷組織(P<0.05)(圖2B)。經(jīng)FDA染色后,2種組織制備的原生質(zhì)體均有綠色熒光信號,表明分離得到的原生質(zhì)體完整且有活力(圖2C)。進(jìn)一步分析發(fā)現(xiàn),根系原生質(zhì)體的直徑顯著大于愈傷組織原生質(zhì)體(P<0.05)(圖2D),更利于觀察。
2.2" 甘薯根系原生質(zhì)體的蛋白質(zhì)亞細(xì)胞定位
孵育時間從4 min增加到16 min,原生質(zhì)體質(zhì)粒轉(zhuǎn)化效率從54.33%提高到72.53%,其中孵育8 min與孵育12 min的原生質(zhì)體質(zhì)粒轉(zhuǎn)化效率無顯著差異(圖3A)。孵育12 min時的完整原生質(zhì)體的數(shù)量顯著低于孵育8 min時的完整原生質(zhì)體的數(shù)量(P<0.05),因此最佳孵育時間確定為8 min(圖3B)。隨后,利用該系統(tǒng)進(jìn)一步對蛋白質(zhì)進(jìn)行亞細(xì)胞定位,以驗(yàn)證該體系的準(zhǔn)確性。結(jié)果表明,分泌載體膜蛋白1(SCAMP1) 和核蛋白(D53)均可被準(zhǔn)確定位(圖3C~圖3E),表明該系統(tǒng)適用于蛋白質(zhì)亞細(xì)胞定位分析。將35S:IbSUT4-GFP質(zhì)粒轉(zhuǎn)入甘薯水培根系原生質(zhì)體中,在熒光顯微鏡下觀察IbSUT4亞細(xì)胞定位。結(jié)果表明,原生質(zhì)體膜上存在GFP蛋白,且GFP蛋白與SCAMP1共定位,表明IbSUT4定位在細(xì)胞膜上(圖3F)。
3" 討論
無細(xì)胞壁的原生質(zhì)體是研究基因功能、蛋白質(zhì)亞細(xì)胞定位、信號轉(zhuǎn)導(dǎo)、細(xì)胞融合和培育新品種的理想試驗(yàn)材料。在擬南芥和水稻等植物中,已經(jīng)建立了高效的原生質(zhì)體分離、瞬時轉(zhuǎn)化系統(tǒng),在甘薯中,仍亟需一種簡便且高效的原生質(zhì)體分離、瞬時轉(zhuǎn)化系統(tǒng)。
多種因素會影響甘薯原生質(zhì)體的釋放,包括試驗(yàn)材料的生長狀態(tài)、多糖含量、多酚含量以及器官的選擇等。因此,選擇合適的試驗(yàn)材料是成功分離甘薯原生質(zhì)體的關(guān)鍵。Sihachakr等將甘薯莖和葉柄酶解過夜,得到原生質(zhì)體。本研究發(fā)現(xiàn),以水培根系和愈傷組織為試驗(yàn)材料,僅需酶解4.5 h即可獲得原生質(zhì)體,大大縮短了制備時間。Dhir等使用1%纖維素酶、2%離析酶和0.3%果膠解酶配置酶解液,酶解葉柄后,原生質(zhì)體產(chǎn)量為每1 g 3.0~5.0×106個。本研究中,僅使用1.5%纖維素酶和0.4%離析酶,原生質(zhì)體產(chǎn)量達(dá)到每1 g 1.106×107個,顯著降低了酶的用量。此外,本研究發(fā)現(xiàn),與愈傷組織相比,利用水培根系制備原生質(zhì)體產(chǎn)量更高,且所需時間更短。愈傷組織培養(yǎng)耗時且需無菌環(huán)境,不適合大規(guī)模分離原生質(zhì)體,而水培根系培養(yǎng)周期短、產(chǎn)量高,是更優(yōu)質(zhì)的試驗(yàn)材料。
前人多采用煙草原生質(zhì)體進(jìn)行甘薯蛋白質(zhì)亞細(xì)胞定位分析。然而,與同源原生質(zhì)體相比,異源原生質(zhì)體會導(dǎo)致蛋白質(zhì)定位的偏差。本研究中,利用GFP質(zhì)粒評估質(zhì)粒轉(zhuǎn)化效率,最高達(dá)69.46%,明顯高于其他作物,表明基于甘薯水培根系原生質(zhì)體的瞬時轉(zhuǎn)化系統(tǒng)能夠高效地將外源DNA引入甘薯細(xì)胞。核蛋白和膜蛋白標(biāo)記物在甘薯原生質(zhì)體中的正確定位進(jìn)一步驗(yàn)證了該體系的準(zhǔn)確性,定位結(jié)果表明,甘薯蔗糖轉(zhuǎn)運(yùn)蛋白IbSUT4定位于細(xì)胞膜。此外,本研究提出的甘薯根系原生質(zhì)體分離及瞬時轉(zhuǎn)化系統(tǒng)還可用于研究蛋白質(zhì)與蛋白質(zhì)、蛋白質(zhì)與DNA的相互作用,驗(yàn)證啟動子功能,以及探索信號轉(zhuǎn)導(dǎo)等分子機(jī)制。
綜上所述,本研究成功建立了甘薯水培根系原生質(zhì)體分離與瞬時轉(zhuǎn)化體系,可高效、準(zhǔn)確地分析甘薯蛋白質(zhì)在同源系統(tǒng)中的亞細(xì)胞定位,這一體系將為甘薯功能基因研究和分子育種提供重要技術(shù)支撐。
參考文獻(xiàn):
SAPAKHOVA Z, RAISSOVA N, DAUROV D, et al. Sweet potato as a key crop for food security under the conditions of global climate change:a review. Plants,2023,12(13):2516.
LIU Q C. Improvement for agronomically important traits by gene engineering in sweetpotato. Breeding Science,2017,67(1):15-26.
YOON U H, CAO Q H, SHIRASAWA K, et al. Haploid-resolved and chromosome-scale genome assembly in hexa-autoploid sweetpotato (Ipomoea batatas (L.) Lam). BioRxiv,2022. DOI:https://doi.org/10.1101/2022.12.25.521700.
YANG J, MOEINZADEH M H, KUHL H, et al. Haplotype-resolved sweet potato genome traces back its hexaploidization history. Nature Plants,2017,3(9):696-703.
ISOBE S, SHIRASAWA K, HIRAKAWA H. Challenges to genome sequence dissection in sweetpotato. Breeding Science,2017,67(1):35-40.
DAVEY M R, ANTHONY P, POWER J B, et al. Plant protoplasts:status and biotechnological perspectives. Biotechnology Advances,2005,23(2):131-171.
YOO S D, CHO Y H, SHEEN J. Arabidopsis mesophyll protoplasts:a versatile cell system for transient gene expression analysis. Nature Protocols,2007,2(7):1565-1572.
BAO W Y, ZHANG W J, HUANG Y C, et al. Protein kinase ATR inhibits E3 ubiquitin ligase CRL4PRL1 to stabilize ribonucleotide reductase in response to replication stress. Cell Reports,2023,42(7):112685.
XIANG Y H, YU J J, LIAO B, et al. An α/β hydrolase family member negatively regulates salt tolerance but promotes flowering through three distinct functions in rice. Molecular Plant,2022,15(12):1908-1930.
WANG D D, LIU H J, WANG H X, et al. A novel sucrose transporter gene IbSUT4 involves in plant growth and response to abiotic stress through the ABF-dependent ABA signaling pathway in sweetpotato. BMC Plant Biology,2020,20:1-15.
ZHANG H, WANG Z, LI X, et al. The IbBBX24–IbTOE3–IbPRX17 module enhances abiotic stress tolerance by scavenging reactive oxygen species in sweet potato. New Phytologist,2022,233(3):1133-1152.
ZHANG B, FAN W M, ZHU Z Z, et al. Functional analysis of MdSUT2. 1,a plasma membrane sucrose transporter from apple. Journal of Integrative Agriculture,2023,22(3):762-775.
ZHANG K, LIU S H, FU Y Z, et al. Establishment of an efficient cotton root protoplast isolation protocol suitable for single-cell RNA sequencing and transient gene expression analysis. Plant Methods,2023,19(1):1-12.
ROTTMANN T M, FRITZ C, LAUTER A, et al. Protoplast-esculin assay as a new method to assay plant sucrose transporters:characterization of AtSUC6 and AtSUC7 sucrose uptake activity in Arabidopsis Col-0 ecotype. Frontiers in Plant Science,2018,9:430.
吳耀武,馬彩萍. 甘薯 (Ipomoea batatas) 原生質(zhì)體的分離、培養(yǎng)與愈傷組織的形成. 植物學(xué)報,1979(21):334-338.
BIDNEY D L, SHEPARD J F. Colony development from sweet potato petiole protoplasts and mesophyll cells. Plant Science Letters,1980,18(4):335-342.
OTANI M, SHIMADA T, NIIZEKI H. Mesophyll protoplast culture of sweet potato (Ipomoea batatas L.). Plant Science,1987,53(2):157-160.
程增書. 甘薯葉柄原生質(zhì)體的分離,培養(yǎng)及愈傷組織的形成. 河北農(nóng)作物研究,1992(4):6.
SIHACHAKR D, DUCREUX G. Regeneration of Plants from Protoplast of Sweet Potato (Ipomoea batatas L. Lam.)//CAI Q G, TSAI C K, QIAN Y Q, et al. Plant Protoplasts and Genetic Engineering IV. Berlin,Heidelberg:Springer Berlin Heidelberg,1993.
BELARMINO M M, ABE T, SASAHARA T. Plant regeneration from stem and petiole protoplasts of sweet potato (Ipomoea batatas) and its wild relative,I. lacunose . Plant Cell Tissue amp; Organ Culture,1994,37:145-150.
李洪杰,梁增霞. 甘薯葉肉和細(xì)胞懸浮原生質(zhì)體植株再生. 國外農(nóng)學(xué)-雜糧作物,1995(44):35-40.
DHIR S K, OGLESBY J, BHAGSARI A S. Plant regeneration via somatic embryogenesis,and transient gene expression in sweet potato protoplasts. Plant Cell Reports,1998,17(9):665-669.
GUO J M, LIU Q C, ZHAI H, et al. Regeneration of plants from Ipomoea cairica L. protoplasts and production of somatic hybrids between I. cairica L. and sweetpotato,I. batatas (L.) Lam.. Plant Cell Tissue amp; Organ Culture,2006,87(3):321-327.
LIU T G, XIE Q T, ZHANG M, et al. Reclaiming agriceuticals from sweetpotato (Ipomoea batatas (L.) Lam.) by-products. Foods,2024,13(8):1180.
LIU Q C, ZHAI H, WANG Y, et al. Efficient plant regeneration from embryogenic suspension cultures of sweetpotato. In Vitro Cellular amp; Developmental Biology Plant,2001,37(5):564-567.
NISHIMAKI T, NOZUE M. Isolation and culture of protoplasts from high anthocyanin-producing callus of sweet potato. Plant cell reports,1985,4(5):248-251.
YU G H, CHENG Q, XIE Z N, et al. An efficient protocol for perennial ryegrass mesophyll protoplast isolation and transformation,and its application on interaction study between LpNOL and LpNYC1. Plant Methods,2017,13:1-8.
WANG Q L, YU G R, CHEN Z Y, et al. Optimization of protoplast isolation,transformation and its application in sugarcane (Saccharum spontaneum L.). The Crop Journal,2021,9(1):133-142.
GROSSER J W, GMITTER F G. Protoplast fusion for production of tetraploids and triploids:applications for scion and rootstock breeding in citrus. Plant Cell,Tissue and Organ Culture,2011,104 (3):343-357.
HE F, CHEN S B, NING Y S, et al. Rice (Oryza sativa) protoplast isolation and its application for transient expression analysis. Current Protocols in Plant Biology,2016,1(2):373-383.
LIN C S, HSU C T, YANG L H, et al. Application of protoplast technology to CRISPR/Cas9 mutagenesis:from single-cell mutation detection to mutant plant regeneration. Plant Biotechnology Journal,2018,16(7):1295-1310.
MENG X Q, LIU S Y, ZHANG C B, et al. The unique sweet potato NAC transcription factor IbNAC3 modulates combined salt and drought stresses . Plant Physiology,2023,191(1):747-771.
(責(zé)任編輯:成紓寒)