亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        內(nèi)生菌提高植物抗旱性和耐鹽性分子機(jī)制研究進(jìn)展

        2024-02-02 06:06:02宋雪付楚涵李家紅孫雪銅韋銀珠肖匯川李韋瑤秦立剛
        草地學(xué)報(bào) 2024年1期

        宋雪 付楚涵 李家紅 孫雪銅 韋銀珠 肖匯川 李韋瑤 秦立剛

        doi:10.11733/j.issn.1007-0435.2024.01.002

        引用格式:

        宋? 雪, 付楚涵, 李家紅,等.內(nèi)生菌提高植物抗旱性和耐鹽性分子機(jī)制研究進(jìn)展[J].草地學(xué)報(bào),2024,32(1):13-24

        SONG Xue, FU Chu-han, LI Jia-hong,et al.Research Progress on Molecular Mechanism of Endophytes Improving theDrought Resistance and Salt Tolerance of Plant[J].Acta Agrestia Sinica,2024,32(1):13-24

        摘要:植物-內(nèi)生菌共生體在緩解植物的非生物和生物脅迫方面發(fā)揮著重要作用。在干旱和鹽脅迫下,內(nèi)生菌可以通過調(diào)控植物光合作用、激素濃度、滲透調(diào)節(jié)物質(zhì)含量、抗氧化酶活性以及相關(guān)基因表達(dá)等來保證植物正常生長和發(fā)育,從而增強(qiáng)植物抗逆性。近年來,植物促生菌(Plant growth promoting bacteria,PGPB)接種劑也被廣泛研究應(yīng)用。本文綜述了植物內(nèi)生菌的多樣性、共生內(nèi)生菌和PGPB在干旱和鹽脅迫下對植物基因的調(diào)控,為內(nèi)生菌提高植物耐旱性和耐鹽性的分子機(jī)制的深入研究提供參考。

        關(guān)鍵詞:植物內(nèi)生菌;干旱脅迫;鹽堿脅迫;基因調(diào)控;PGPB

        中圖分類號:Q945.78??? 文獻(xiàn)標(biāo)識碼:A????? 文章編號:1007-0435(2024)01-0013-12

        Research Progress on Molecular Mechanism of Endophytes Improving

        the Drought Resistance and Salt Tolerance of Plant

        SONG Xue, FU Chu-han, LI Jia-hong, SUN Xue-tong, WEI Yin-zhu,

        XIAO Hui-chuan, LI Wei-yao, QIN Li-gang*

        (College of Animal Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, China)

        Abstract:Plant-endophyte symbioses play an important role in alleviating abiotic and biotic stresses to plants. Under drought and salt stresses,endophytic bacteria can enhance the resistance of plant to the stresses by regulating plant photosynthesis,concentration of hormones,content of osmoregulatory substances,activity of antioxidant enzyme,and expression of genes to ensure a normal growth and development of plant. In recent years,plant growth-promoting bacteria (PGPB) inoculants have also been widely studied and applied. In this paper,we reviewed the diversity of endophytic bacteria,the regulation of plant genes by plant symbiotic endophytes and PGPB under drought and salt stresses,and provided a reference for the in-depth study of the molecular mechanism of endophytic bacteria to improve the tolerance of plant to drought and salt stresses.

        Key words:Plant endophytes;Drought stress;Salinity stress;Gene regulation;PGPB

        收稿日期:2023-05-17;修回日期:2023-09-15

        基金項(xiàng)目:國家自然科學(xué)基金(32271770);黑龍江省優(yōu)秀青年基金(YQ2023C013)資助

        作者簡介:

        宋雪(2000-),女,滿族,遼寧本溪人,碩士研究生,主要從事草地植物資源利用研究,E-mail:songxue2023@163.com;*通信作者Author for correspondence,E-mail:qinligang@neau.edu.cn

        植物內(nèi)生菌是指在植物生命周期內(nèi)存在于植物體中的非致病性的微生物[1],最早發(fā)現(xiàn)于1898年[2]。目前已被發(fā)現(xiàn)的內(nèi)生菌有200多個屬,約100多萬個種[3-4]。從圖1中可以看出,內(nèi)生菌不會對宿主產(chǎn)生不利影響,在植物病害控制、次生代謝物合成、植物生長調(diào)節(jié)和抗逆性等方面發(fā)揮著重要作用[5]。內(nèi)生菌與宿主植物存在長期的共生關(guān)系。一方面,內(nèi)生菌通過吸收水分養(yǎng)分[6-9],誘導(dǎo)產(chǎn)生激素、鐵載體[10]和抗菌次生代謝物[11],調(diào)節(jié)脯氨酸含量,提高抗氧化酶活性[12-14]等一系列措施促進(jìn)植物生長,提高植物抗逆性和抗病性;另一方面,植物通過木質(zhì)化影響內(nèi)生細(xì)菌和真菌的發(fā)育過程和多樣性并改變內(nèi)生菌的代謝功能[15],加速內(nèi)生菌在宿主植物體內(nèi)定植[16]。此外,內(nèi)生菌及其代謝物也可作為生物活性化合物的來源,用于新型抗生素的發(fā)明、抗癌藥物和替代藥物的研究[17]。

        干旱和鹽堿是影響植物生長發(fā)育的重要環(huán)境因素,影響植物滲透調(diào)節(jié)水平和信號轉(zhuǎn)導(dǎo),造成植物氧化損傷和膜質(zhì)過氧化,進(jìn)而產(chǎn)生毒害作用[18-20]。用育種和基因工程等技術(shù)培育耐旱耐鹽植物是應(yīng)對干旱和鹽堿問題的主要手段之一,但缺點(diǎn)是耗時費(fèi)力,且容易受到多種因素限制。利用內(nèi)生菌提高植物耐旱性和耐鹽性也是有效解決手段之一,且利于生態(tài)和農(nóng)業(yè)可持續(xù)發(fā)展[21]。植物促生菌(Plant growth promoting bacteria,PGPB)接種也可以在環(huán)境脅迫下通過刺激植物分泌生長調(diào)節(jié)物質(zhì)或誘導(dǎo)激素合成進(jìn)而提高抗逆性[22-23]。因此,合理利用內(nèi)生菌來提高植物的生產(chǎn)力和抗性前景非常廣闊,可作為應(yīng)對氣候變化和糧食生產(chǎn)帶來的挑戰(zhàn)的一種新策略。在此背景下,了解干旱和鹽脅迫下內(nèi)生菌與植物的相互作用的分子機(jī)制至關(guān)重要。本文概述了植物內(nèi)生菌多樣性,干旱和鹽堿脅迫下內(nèi)生菌對植物基因的調(diào)控研究,以期為內(nèi)生菌分子機(jī)制研究提供參考。

        1? 植物內(nèi)生菌多樣性

        1.1? 種類多樣性

        植物內(nèi)生菌種類繁多,主要分屬于細(xì)菌、真菌、古菌和卵菌[24]。表1中列出了文獻(xiàn)中提到的部分內(nèi)生菌。植物內(nèi)生細(xì)菌主要存在于植物根系,通過植物促進(jìn)[25]、生物施肥[26]和生物控制[27]三種相互關(guān)聯(lián)的機(jī)制促進(jìn)植物發(fā)育。芽孢桿菌(Bacillus)、腸桿菌(Enterobacter)、節(jié)桿菌(Arthrobacter)、偶氮桿菌(Azotobacter)、異肽菌(Isolptericola)、鏈霉菌(Streptomyces)和假單胞菌(Pseudomonas)等屬的細(xì)菌可以提高植物對高溫、干旱和鹽堿的抗逆性[28-29]。植物內(nèi)生真菌主要是存在于宿主植物的莖和葉內(nèi),是生物活性代謝物的天然來源[30],主要包括子囊菌、擔(dān)子菌、接合菌、卵菌、有絲分裂孢子真菌及其無孢菌類等多個真菌類群[31]。其中鐮刀菌屬(Fusarium)是最主要的內(nèi)生真菌之一,約有70種。鐮刀菌屬在遺傳學(xué)上存在較大差異,是次生代謝物的豐富來源,能產(chǎn)生100多種具抗菌、抗氧化、抗寄生蟲和免疫調(diào)節(jié)等多種生物活性的有著特殊結(jié)構(gòu)的化合物[32]。植物內(nèi)生古菌主要存在植物根和根際,根和根際可以提供缺氧的微生態(tài)位[33],內(nèi)生古菌與宿主植物的關(guān)系比細(xì)菌更近,代表了生命的第三個領(lǐng)域,是分子生物學(xué)與生物技術(shù)應(yīng)用的寶貴的模型系統(tǒng)和來源[34]。目前,研究已經(jīng)發(fā)現(xiàn)的27個古菌門中,廣古菌門(Euryarchaeota)、德潘超門(Dpann superphylum)、泉古菌門(Crenarchaeota)、奇古菌門(Thaumarchaeota)、深古菌門(Bathyarchaeota)、阿斯加德超門(Asgard superphylum)這6種具有培養(yǎng)代表性[35],已經(jīng)建立遺傳系統(tǒng)的古菌有產(chǎn)甲烷菌[36]、嗜鹽菌、嗜熱歐古菌和嗜熱古菌[37]。植物內(nèi)生卵菌是植物內(nèi)生菌中的一類植物病原菌,寄生在植物體各個部位,會導(dǎo)致作物損產(chǎn)失收[38]。目前已經(jīng)在植物上發(fā)現(xiàn)了近30種卵菌亞種,常見的物種有苧麻疫霉(Phytophthora boehmeriae),煙草疫霉菌(Phytophthora nicotianae)和終極腐霉(Pythium ultimum)[39]。

        1.2? 分布多樣性

        內(nèi)生菌廣泛存在于水陸以及藻類各種植物中,具有群落多樣性。不同植物共生內(nèi)生菌種也各有不同[69]。擔(dān)子菌目(Babacinales)印度梨形孢(Piriformospora indica)可與蕨類植物、苔蘚植物、裸子植物、被子植物等各種植物建立共生關(guān)系[64],泛菌屬(Pantoea)主要共生在水稻(Oryza sativa L.)種子中,提高宿主耐鹽堿能力[70]。蘆葦(Phragmites australis)和虎尾草(Chloris virgata)中內(nèi)生菌的優(yōu)勢菌為變形桿菌(Proteobacteria)、放線菌(Actinobacteria)、厚壁菌(Firmicutes)、擬桿菌(Bacteroidetes)和柔膜菌(Tenericutes)[43]。新西蘭菠菜(Tetragonia tetragonioides (Pall.) Kuntze)葉子和根部存在農(nóng)桿菌(Agrobacterium)、寡養(yǎng)單胞菌(Stenotrophomonas)、芽孢桿菌、短桿菌(Brevibacterium)、假單胞菌、鏈霉菌、假桿菌(Pseudarthrobacter)、拉烏爾菌(Raoultella)、短小桿菌(Curtobacterium)和泛菌[61]。香柱菌屬真菌內(nèi)生菌Epichloё coenophiala常共生在高羊茅(Festuca arundinacea Schreb.)中[71],黑麥草中能分離出Epichloё festucae var. lolii[72]。豆科植物中也會共生許多根瘤菌[50],如豌豆根瘤菌(Rhizobium leguminosarum)[73]、羽扇豆慢生根瘤菌(Bradyrhizobium lupini)、錦雞兒中慢生根瘤菌(Mesorhizobium caraganae)、百脈根中慢生根瘤菌(Mesorhizobium loti)等。鷹嘴豆(Cicer arietinum L.)根中內(nèi)生菌包括變形菌門、厚壁菌門和放線菌門[74]。內(nèi)生真菌Phomopsis Liquidambaris可與花生、水稻和擬南芥建立共生關(guān)系,并促進(jìn)這些植物生長[75-76]。

        同一植物不同組織中內(nèi)生菌群落也具有多樣性[55]。內(nèi)生菌在植物的根、葉、莖、花及種子等組織中均有存在[51],豐度和多樣性由其生態(tài)位決定。植物根部內(nèi)生細(xì)菌多樣性要高于其他器官組織,內(nèi)生真菌多樣性則在葉片,尤其是老葉中最高[77]。內(nèi)生菌分布還與植物的株齡有關(guān)[78],如黃管秦艽(Gentiana officinalis H. Smith)不同年份根系樣品的優(yōu)勢細(xì)菌門為變形桿菌,相對豐度為50.76%~72.32%,一年齡根系樣本的優(yōu)勢屬是原小單孢菌屬(Promicromonospora),三年齡根樣本的優(yōu)勢屬是假單胞菌屬,五年齡根樣本的優(yōu)勢屬是分枝桿菌屬(Mycobacterium)[79]。

        1.3? 傳播途徑多樣性

        內(nèi)生菌的傳播途徑主要是水平傳播和垂直傳播。水平傳播途徑是指從土壤到根的轉(zhuǎn)移。內(nèi)生菌先通過根表皮進(jìn)入根內(nèi)部,然后在根毛和側(cè)根分布[80]。也有些內(nèi)生菌如重氮營養(yǎng)葡糖酸醋桿菌(Gluconacetobacter diazotrophicus)可通過葉序?qū)尤肭种参铮?2]。垂直傳播(即種子介導(dǎo)的遺傳力)是指內(nèi)生菌在種子萌發(fā)的過程中定植到植物內(nèi)部,再到發(fā)育器官中,實(shí)現(xiàn)跨代傳播[53,81]。在加拿大野黑麥(Elymus canadensis)中,內(nèi)生真菌Epichloё canadensis能垂直傳播并發(fā)生穩(wěn)定的遺傳變異[82]。Epichloё coenophiala通過高羊茅的花序原基和卵母細(xì)胞垂直傳播,其高度表達(dá)的相關(guān)應(yīng)激基因還可能具有促進(jìn)垂直傳播的作用,因?yàn)閮?nèi)生菌轉(zhuǎn)錄組的轉(zhuǎn)移開始于宿主早期花發(fā)育[59]??糠N子傳播的內(nèi)生菌同時具有影響種子萌發(fā)和幼苗生長的潛力[56,83]。

        2? 內(nèi)生菌提高植物抗旱性分子機(jī)制

        干旱脅迫會影響植物生長過程和耐旱相關(guān)的基因表達(dá),內(nèi)生菌也通過調(diào)節(jié)根系生長、植物激素、代謝過程和抗旱相關(guān)基因的表達(dá)來增強(qiáng)宿主植物對干旱脅迫的耐受性[8,84]。內(nèi)生菌通過調(diào)節(jié)植物細(xì)胞滲透、代謝水平及光合作用等相關(guān)基因的表達(dá),影響植物生理生化水平,提高植物的耐旱性。而PGPB接種劑則通過影響植物內(nèi)源激素和代謝產(chǎn)物的產(chǎn)生及抗氧化劑的積累相關(guān)的基因表達(dá),進(jìn)而提高植物的抗旱性(圖2)。

        2.1? 植物共生內(nèi)生菌響應(yīng)干旱的基因表達(dá)

        干旱條件下內(nèi)生菌群落會發(fā)生變化,但不受植物宿主的耐旱水平的影響[91]。

        Epichloё屬是一種共生在冷季型禾草中的常見內(nèi)生真菌。Epichloё屬及其寄主植物通過協(xié)調(diào)脅迫反應(yīng)或單獨(dú)激活脅迫反應(yīng)機(jī)制,共同作用實(shí)現(xiàn)植物-內(nèi)生菌互相保護(hù)[92-93]。Epichloё能顯著提高宿主植物的光合速率和生物量,使抗旱基因c51525.graph_c1,c47798.graph_c0和c64087.graph_c0表達(dá)水平上調(diào)[62]。研究發(fā)現(xiàn),種子傳播的內(nèi)生真菌Epichloё coenophiala通過提高與干旱脅迫耐受性相關(guān)的代謝產(chǎn)物含量和編碼脫水蛋白和熱休克蛋白/蛋白伴侶的基因表達(dá)[90],上調(diào)參與氧化應(yīng)激反應(yīng)、氧自由基解毒、碳水化合物代謝、熱休克和細(xì)胞轉(zhuǎn)運(yùn)途徑的基因表達(dá)來響應(yīng)應(yīng)激,進(jìn)而提高冷季型草坪草高羊茅的耐旱性[60]。

        產(chǎn)黃青霉(Penicillium chrysogenum)和短密青霉(Penicillium brevicompactum)是南漆姑(Colobanthus quitensis)根中的優(yōu)勢內(nèi)生真菌,它們可以調(diào)控?cái)U(kuò)展蛋白基因表達(dá),使擴(kuò)展蛋白表面產(chǎn)生一個開放的凹槽,從而降低干旱脅迫下南漆姑的氧化應(yīng)激水平、提高糖和脯氨酸含量、增強(qiáng)CqNCED1,CqABCG25和CqRD22等耐旱基因的表達(dá)[85,94]。

        許多研究發(fā)現(xiàn)內(nèi)生細(xì)菌通過調(diào)節(jié)宿主植物體內(nèi)滲透調(diào)節(jié)物質(zhì)含量和抗氧化能力來幫助植物抵御干旱條件。比如,根際內(nèi)生細(xì)菌Ochrobactrum sp. EB-165,Microbacterium sp. EB-65,Enterobacter sp. EB-14 和Enterobacter cloacae strain EB-48可以提高脯氨酸積累、細(xì)胞滲透調(diào)節(jié)、相對含水量和細(xì)胞膜穩(wěn)定性指數(shù),同時促進(jìn)干旱響應(yīng)基因sbP5CS2和sbP5CS1的上調(diào)[67],進(jìn)而促進(jìn)植物生長[87]。

        2.2? 體外培養(yǎng)內(nèi)生菌響應(yīng)干旱的基因表達(dá)

        PGPB接種劑會影響根系內(nèi)生細(xì)菌群落,提高干旱脅迫下植物產(chǎn)量和光合能力[95]。

        芽孢桿菌屬(Bacillus)是一種常見的植物促生細(xì)菌,分布廣泛且種類繁多,被廣泛用于工業(yè)、農(nóng)業(yè)、醫(yī)學(xué)等領(lǐng)域,可以通過調(diào)節(jié)植物的滲透作用、植物激素水平及代謝以提高植物耐旱性。研究發(fā)現(xiàn),珍珠粟(Pennisetum glaucum L.)內(nèi)最普遍的耐滲透性內(nèi)生菌是Bacillus[96]。Bacillus subtilis Dcl1具有耐旱性,基因組測序表明IAA,H2S、乙酰丙酮、丁二醇、鞭毛和鐵載體產(chǎn)生的基因與Bacillus subtilis Dcl1的磷酸鹽溶解和生物膜形成有關(guān)。此外,甘氨酸甜菜堿、谷氨酸和海藻糖基因的鑒定進(jìn)一步證明Bacillus subtilis Dcl1具有耐旱特性[97]。內(nèi)生枯草芽孢桿菌(Bacillus subtilis)可以提高小麥(Triticum aestivum L.)幼苗中TaCTR1基因的表達(dá)水平[98],促進(jìn)小麥內(nèi)源水楊酸(Salicylic acid,SA)積累,增加SA依賴性防御途徑的標(biāo)記PR-1基因轉(zhuǎn)錄物的相對表達(dá)水平,改善植物生長并增強(qiáng)耐旱性[99]。短小芽孢桿菌(Bacillus pumilus)會影響烏拉爾甘草(Glycyrrhiza uralensis Fisch.)代謝,提高其根中總黃酮、總多糖和甘草酸的含量,增加甘草酸合成關(guān)鍵酶基因HMGR,SQS和β-AS的表達(dá),通過調(diào)節(jié)抗氧化劑的積累來改善干旱脅迫下的烏拉爾甘草生長[100]。也有研究發(fā)現(xiàn)Bacillus屬菌在干旱下會影響植物的抗氧化能力以抵御干旱。解淀粉芽孢桿菌(Bacillus amyloliquefaciens)在干旱、鹽堿和重金屬脅迫下可以提高辣椒中葉綠素、水楊酸、糖、氨基酸和脯氨酸含量,降低脂質(zhì)代謝、脫落酸、蛋白質(zhì)、過氧化氫含量和抗氧化酶活性,還會導(dǎo)致XTH基因表達(dá)增強(qiáng),降低WRKY2,BI-1,PTI1和重鏈結(jié)合蛋白(heavy-chain binding protein,BiP)基因的表達(dá)來維持辣椒生長[88]。芥菜(Brassica juncea L.)接種芽孢桿菌后轉(zhuǎn)錄因子DREB2和DREB1-2的表達(dá)顯著上調(diào),淀粉積累減少、H2O2酶活性增強(qiáng)、脂質(zhì)過氧化降低[49]。

        PGPB種類繁多,除Bacillus外,類芽孢桿菌屬(Paenibacillus)、節(jié)桿菌屬(Arthrobacter)等細(xì)菌也可以用作提高植物耐旱性的接種劑。Paenibacillus sp. strain B2和Arthrobacter spp. strain AA通過上調(diào)小麥防御和細(xì)胞滲透、活性氧、茉莉酸、苯基丙酸和植物抗毒素等基因表達(dá),提高小麥的抗病性和耐旱性[101]。干旱脅迫下接種內(nèi)生菌腐敗希瓦氏菌(Shewanella putrefaciens)和都柏林克洛諾斯桿菌(Cronobacter dublinensis)使珍珠粟內(nèi)IAA,ABA和GA含量顯著升高,植物激素生物合成基因SbNCED,SbGA20oX和SbYUC及編碼干旱響應(yīng)基因SbAP2,SbNAC1和PgDREB2A的表達(dá)水平增強(qiáng),提高了珍珠粟的抗旱性[102]。

        此外,接種青霉菌屬(Penicilium)、擬盾殼霉屬(Paraconiothyrium)等真菌和鏈霉菌屬(Streptomyces)等放線菌也能在干旱條件下促進(jìn)植物生長。干旱脅迫下在豌豆(Pisum sativum L.)種子中接種Penicilium SMCD2206,Paraconiothyrium SMCD2210和Streptomyces sp. SMCD2215可以促進(jìn)種子萌發(fā)、降低植物根部ROS積累水平并下調(diào)葉片中脯氨酸、超氧化物歧化酶(SOD)和錳超氧化物歧化酶(MnSOD)基因表達(dá)[42]。

        3? 內(nèi)生菌提高植物耐鹽性分子機(jī)制

        鹽脅迫會限制植物生長發(fā)育,影響作物生產(chǎn)和產(chǎn)量[65]。光合作用、氣孔導(dǎo)度和激素平衡等植物生理參數(shù)的變化可以作為鹽脅迫對植物影響的衡量指標(biāo)。植物-內(nèi)生菌共生提高了植物的光合速率、光系統(tǒng)II量子效率和RWC,使編碼參與根中Na+/K+穩(wěn)態(tài)的膜轉(zhuǎn)運(yùn)蛋白的基因上調(diào)[103]。PGPB也可以緩解鹽分對植物的危害[43,103]。植物共生內(nèi)生菌能影響植物代謝水平、光合作用、抗氧化酶活性、信號轉(zhuǎn)導(dǎo)等基因表達(dá),提高植物對鹽脅迫的耐受性。接種PGPB可以影響植物生物合成、內(nèi)源激素、光合作用、抗氧化酶活性及滲透等相關(guān)基因表達(dá),從而減輕鹽脅迫對植物的影響(圖3)。

        3.1? 植物共生內(nèi)生菌響應(yīng)鹽分的基因表達(dá)

        內(nèi)生菌能顯著提高水稻幼苗的耐鹽堿性,通過影響生物合成、能量代謝、酶活性、光合作用、ROS清除系統(tǒng)和激素信號傳導(dǎo)等促進(jìn)其生長[58]。內(nèi)生真菌在鹽脅迫階段能有效提高植物對鹽脅迫逆境耐受能力。

        Epichloё內(nèi)生真菌與醉馬草共生體研究是我國禾草內(nèi)生真菌研究領(lǐng)域的一個重要方向。Epichloё gansuensis作為種子內(nèi)生真菌,可以與醉馬草建立共生關(guān)系并賦予其耐鹽性,在基因水平上通過影響根中的基因表達(dá)調(diào)節(jié)氨基酸代謝、碳水化合物代謝、TCA循環(huán)、二次代謝和脂質(zhì)代謝的多種途徑;在轉(zhuǎn)錄水平上影響了醉馬草根中胞吐、糖酵解、果糖代謝和鉀離子轉(zhuǎn)運(yùn)等生物過程,并改變了磷酸肌醇代謝、半乳糖代謝、淀粉和蔗糖代謝等代謝途徑[40,93]。

        Fusarium菌屬是生產(chǎn)上較難防治的一種病害菌屬,可以侵染多種植物,但研究發(fā)現(xiàn)Fusarium菌屬可以促進(jìn)水稻在鹽脅迫下的生長,調(diào)控參與非生物和生物脅迫耐受、參與信號感知的富含亮氨酸的重復(fù)蛋白、受體樣激酶等和轉(zhuǎn)導(dǎo)過程中Ca2+和鈣調(diào)素結(jié)合蛋白、轉(zhuǎn)錄因子、二次代謝和氧化應(yīng)激清除的蛋白質(zhì)有關(guān)基因的編碼?;騉sIFR,OsWRKY1,OsCAM,OsbHLH和OsORD的轉(zhuǎn)錄水平在無內(nèi)生菌處理的幼苗的根中下調(diào),但在鹽脅迫和鐮刀菌的存在下上調(diào)[57]。

        Bacillus具有優(yōu)良的耐鹽特性,可緩解鹽脅迫對植物造成的損傷。Bacillus屬可以調(diào)控植物根中參與細(xì)胞運(yùn)動、Na1轉(zhuǎn)運(yùn)和固氮及磷酸鹽溶解等促生長功能基因的表達(dá)從而提高植物耐鹽性[107]。高地芽孢桿菌(Bacillus altitudinis)WR10具有高耐鹽性,可以上調(diào)H+-ATP酶基因表達(dá),減少鹽脅迫植物中Na+的積累,并提高K+,P和Ca2+的攝取,在轉(zhuǎn)錄水平上提高小麥根中與谷胱甘肽(Glutathione,GSH)生物合成相關(guān)的L-抗壞血酸過氧化物酶(Ascorbate peroxidase,APX)、GSH合成酶活性,上調(diào)苯丙醇生物合成基因CYP73A,4CL和CAD及脯氨酸脫氫酶基因,下調(diào)GSH代謝基因以增加APX活性和GSH水平,降低脯氨酸含量和H2O2水平[68]。

        諾卡氏菌(Nocardosis)和Enterobacter常用于臨床研究,但也有研究表明這兩種細(xì)菌可以提高植物耐鹽性。Arthrobacter和Nocardosis在鹽脅迫下可以上調(diào)編碼葉綠素a還原酶、肽蛋氨酸(R)-S-氧化物還原酶和K+攝取的基因,參與類胡蘿卜素生物合成、苯丙氨酸代謝、苯丙烷類生物合成、甘油脂代謝和氮代謝等途徑從而提高植物耐鹽性[105]。Enterobacter sp. SA187與擬南芥在鹽脅迫下相互作用,改變細(xì)菌的碳與能量代謝,上調(diào)各種營養(yǎng)物質(zhì)和代謝產(chǎn)物轉(zhuǎn)運(yùn)蛋白以及整個硫途徑的基因,抑制鹽誘導(dǎo)的活性氧物質(zhì)積累以及LSU突變體的超敏反應(yīng),減輕鹽脅迫對植物的不良影響[48]。

        3.2? 體外培養(yǎng)內(nèi)生菌響應(yīng)鹽分的基因表達(dá)

        植物根際促生菌(Plant growth-promoting rhizobacteria,PGPR)是一類已被證明能促進(jìn)植物生長和產(chǎn)量的微生物,被廣泛用于多種農(nóng)業(yè)作物以促進(jìn)植物生長并保護(hù)其免受各種脅迫條件的影響[54,108-109]。

        Bacillus通過調(diào)節(jié)離子平衡及滲透調(diào)節(jié)物質(zhì)、植物激素和光合色素含量和代謝水平緩解鹽脅迫對植物的影響。巨大芽孢桿菌(Bacillus megaterium)ZS-3菌株改善了在重度鹽脅迫下擬南芥的生長情況,顯著提高擬南芥的生物量、葉綠素含量和類胡蘿卜素含量,調(diào)節(jié)鹽脅迫下植物體內(nèi)滲透物質(zhì)的含量,上調(diào)NHX1和AVP1基因的表達(dá)來分離囊泡中的Na+,同時通過下調(diào)HKT1基因表達(dá)來限制Na+的攝取,激活水楊酸相關(guān)基因NPR1和PR1及茉莉酸/乙烯信號通路關(guān)鍵基因AOS,LOX2,PDF1.2和ERF1,從而誘導(dǎo)植物的耐鹽性[66]。研究發(fā)現(xiàn),沙福芽胞桿菌(Bacillus safensis)BTL5、海內(nèi)氏芽孢桿菌(Bacillus haynesii)GTR8、副地衣芽胞桿菌(Bacillus paralicheniformis)GTR11和Bacillus altitudinis GTS16可以降低番茄細(xì)胞程序性死亡、增加葉綠素含量、減少活性氧(ROS)積累,調(diào)節(jié)LKT1,NHX1,SOS1,LePIP2,SlERF16和SlWRKY39等非生物脅迫響應(yīng)基因的表達(dá)進(jìn)而調(diào)節(jié)Na+/K+平衡和水穩(wěn)態(tài),減輕鹽脅迫對番茄的影響[45]。此外,耐寒短桿菌(Brevibacterium frigoritolerans)W19和Bacillus safensis BTL5上調(diào)SOD1,CATa,NHX1和PAL1這四個耐鹽基因的表達(dá),改善了植物在鹽脅迫下的生長和發(fā)育[86]。鹽脅迫下,蠟狀芽孢桿菌(Bacillus cereus)顯著增加了烏拉爾甘草幼苗的根長和側(cè)根數(shù)、上調(diào)苯丙醇的生物合成和MVA途徑相關(guān)的HMGR,β-AS,CHS,LUS,UGAT,CYP72A154,CYP88D6和SE基因的表達(dá)水平,增加了甘草酸和甘草次酸的含量[63]。

        關(guān)于接種其他內(nèi)生細(xì)菌提高植物耐鹽性的研究也有很多,例如,從鹽生植物地中海濱藜(Atriplex halimus L.)和灰綠針草(Lygeum spartum L.)分離出的內(nèi)生細(xì)菌接種到番茄中會影響與滲透感應(yīng)、滲透調(diào)節(jié)和滲透保護(hù)的互補(bǔ)機(jī)制相關(guān)的基因和多種酶抗氧化過程潛在相關(guān)的各種基因的表達(dá),減少鹽誘導(dǎo)的ROS過度產(chǎn)生,降低鹽脅迫對番茄植株的影響[46]。原發(fā)節(jié)桿菌(Arthrobacter protophormiae,SA3)和納氏雙球菌(Dietzia natronolinaea,STR1)可以提高小麥IAA含量、降低ABA/ACC、調(diào)節(jié)乙烯信號通路的調(diào)節(jié)成分CTR1和DREB2轉(zhuǎn)錄因子的表達(dá),改善小麥作物耐鹽性[98]。在鹽脅迫下,接種微白黃鏈霉菌(Streptomyces albidoflavus)OsiLf-可以降低水稻植株內(nèi)源ABA含量,增加GSH和脯氨酸和可溶性糖含量,提高光合作用效率和SOD,POD和CAT酶活性,上調(diào)光合作用相關(guān)基因(OsALAD,OsPSY3,OsatpE)、離子轉(zhuǎn)運(yùn)相關(guān)基因(sSOS1,OsNHX1,OsHKT5)、黃素單加氧酶基因(OsYUCCA1)和生長素外排載體(OsPIN1)基因表達(dá)水平,增強(qiáng)了水稻耐鹽性,從而提高鹽堿條件下的水稻產(chǎn)量[44,89]。

        接種內(nèi)生真菌也可以緩解鹽分對植物的脅迫作用。在鹽脅迫下接種有益DSE真菌T010后的藍(lán)莓幼苗生長旺盛,根內(nèi)抗氧化酶活性增強(qiáng)[110],轉(zhuǎn)錄激活劑VabZIP12結(jié)合G-Box 1和G-Box 2基序后過表達(dá),增加轉(zhuǎn)基因擬南芥中酶促抗氧化劑活性并上調(diào)相關(guān)基因以增強(qiáng)耐鹽性[41]。接種Penicillium breviccompactum和Penicillium chrysogenum可以提高番茄和生菜在鹽脅迫條件下的營養(yǎng)素和Na+含量、凈光合作用、水分利用效率、產(chǎn)量和存活率,同時上調(diào)液泡NHX1 Na+/H+反轉(zhuǎn)運(yùn)蛋白的表達(dá),提高番茄和生菜的耐鹽性[106]。印度梨形孢(Serendipita indica)調(diào)控轉(zhuǎn)運(yùn)蛋白基因SiENA5的表達(dá),降低了擬南芥植物的Na+含量[111]。

        4? 小結(jié)與展望

        在干旱和鹽脅迫下,內(nèi)生菌可以調(diào)控植物的轉(zhuǎn)錄水平、激素及生物合成、抗氧化系統(tǒng)、細(xì)胞代謝、信號轉(zhuǎn)導(dǎo)、滲透和光合作用等多種相關(guān)基因的表達(dá),使植物積累IAA,ABA,SA等植物激素及脯氨酸等代謝物,抗氧化酶活性提高,植物光合速率加快,生物量增多,從而促進(jìn)植物生長,提高植物抗逆性。近年來,植物內(nèi)生菌研究受到國內(nèi)外學(xué)者的廣泛關(guān)注。盡管對內(nèi)生菌提高植物的耐旱性和耐鹽性的研究已有很多,但具體的分子機(jī)制尚有待進(jìn)一步研究。因此,未來可在以下方面進(jìn)行進(jìn)入研究:

        1)植物內(nèi)生菌種類繁多,目前還有許多菌種未被發(fā)現(xiàn),闡明內(nèi)生菌的多樣性有助于了解這些生物活性細(xì)菌在寄主植物微生態(tài)系統(tǒng)中的功能和潛在作用[112]。從尚未被研究的植物中分離和鑒定內(nèi)生微生物,可以發(fā)現(xiàn)新的物種。

        2)同時研究植物共生內(nèi)生菌和內(nèi)生菌接種劑對植物的抗逆性的影響,信息互補(bǔ),可以更全面的了解內(nèi)生菌的多樣性及生物技術(shù)潛力。

        3)研究已經(jīng)證實(shí)內(nèi)生菌能夠促進(jìn)植物生長、提高植物對非生物脅迫的耐受性和對生物脅迫的抵抗力,為識別最適合特定環(huán)境條件的微生物,還需要深入研究植物-內(nèi)生菌這種共生模式及其相互作用的分子和生化基礎(chǔ),開發(fā)新的生物接種劑從而應(yīng)用到農(nóng)業(yè)生產(chǎn)中。

        4)植物內(nèi)生菌對植物的影響在人工實(shí)驗(yàn)室、溫室和田間試驗(yàn)中有所不同,因此,有必要開展田間試驗(yàn),真正了解微生物在農(nóng)業(yè)系統(tǒng)中的作用。

        5)用組學(xué)技術(shù)研究內(nèi)生菌之間的協(xié)同或拮抗作用和內(nèi)生菌與植物協(xié)同或拮抗作用也有利于內(nèi)生菌生物接種劑的開發(fā),實(shí)現(xiàn)農(nóng)業(yè)可持續(xù)發(fā)展。

        參考文獻(xiàn)

        [1]PETRINI O. Fungal endophytes of tree leaves[C]//ANDREWS J H,HIRANO S S. Microbial Ecology of Leaves.New York:Springer-Verlag New York Inc.,1991:179-197

        [2]BARMAN D,BHATTACHARJEE K. Endophytic bacteria associated with medicinal plants:The treasure trove of antimicrobial compounds[C]//EGAMBERDIEVA D,TIEZZI A. Medically Important Plant Biomes:Source of Secondary Metabolites. Singapore:Springer Singapore,2019:153-187

        [3]CHEN G,ZHANG X Y,ZHAO T. Endophytes of terrestrial plants:A potential source of bioactive secondary metabolites[J]. Journal of Food and Nutrition Research,2020,8(7):362-377

        [4]STROBEL G A. Endophytes as sources of bioactive products[J]. Microbes and Infection,2003,5(6):535-544

        [5]OUKALA N,AISSAT K,PASTOR V. Bacterial endophytes:The hidden actor in plant immune responses against biotic stress[J]. Plants-Basel,2021,10(5):1012

        [6]HEWITT K G,POPAY A J,HOFMANN R W,et al. Epichloё a lifeline for temperate grasses under combined drought and insect pressure[J]. Grass Research,2021,1(1):1-12

        [7]LANGRIDGE P,REYNOLDS M. Breeding for drought and heat tolerance in wheat[J]. Theoretical and Applied Genetics,2021,134:1753-1769

        [8]DE VRIES F T,GRIFFITHS R I,KNIGHT C G,et al. Harnessing rhizosphere microbiomes for drought-resilient crop production[J]. Science,2020,368(6488):270-274

        [9]OLDROYD G E D,DOWNIE J A. Coordinating nodule morphogenesis with rhizobial infection in legumes[J]. Annual Review of Plant Biology,2008,59:519-546

        [10]PAPIK J,F(xiàn)OLKMANOVA M,POLIVKOVA-MAJOROVA M M,et al. The invisible life inside plants:Deciphering the riddles of endophytic bacterial diversity[J]. Biotechnology Advances,2020,44:107614

        [11]DINI-ADREOTE F. Endophytes:The second layer of plant defense[J]. Trends in Plant Science,2020,25(4):319-322

        [12]MOGHADDAM M S H,SAFAIE N,SOLTANI J,et al. Desert-adapted fungal endophytes induce salinity and drought stress resistance in model crops[J]. Plant Physiology and Biochemistry,2021,160:225-238

        [13]MORSY M,CLECKLER B,ARMUELLES-MILICAN H. Fungal endophytes promote tomato growth and enhance drought and salt tolerance[J]. Plants-Basel,2020,9(7):877

        [14]金忠民,李春月,劉本松,等. 菌株JB12影響鉛鎘脅迫下菊苣黃酮合成的轉(zhuǎn)錄組分析[J]. 草地學(xué)報(bào),2023,31(6):1648-1655

        [15]KANG P,F(xiàn)ANG X,HU J,et al. Branch lignification of the desert plant Nitraria tangutorum altered the structure and function of endophytic microorganisms[J]. Agronomy,2022,13(1):90

        [16]BATSTONE R T,OBRIEN A M,HARRISON T L,et al. Experimental evolution makes microbes more cooperative with their local host genotype[J]. Science,2020,370(6515):476-478

        [17]MANIAS D,VERMA A,SONI D K. Microbial Endophytes[M]. United Kingdom:Woodhead Publishing,2020:1-14

        [18]ZHU J K. Abiotic stress signaling and responses in plants[J]. Cell,2016,167(2):313-324

        [19]ZHU J K. Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology,2002,53(1):247-273

        [20]AMOAH J N,KO C S,YOON J S,et al. Effect of drought acclimation on oxidative stress and transcript expression in wheat (Triticum aestivum L.)[J]. Journal of Plant Interactions,2019,14(1):492-505

        [21]OLESKA E,MALEK W,WOJCIK M,et al. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions:A methodical review[J]. Science of the Total Environment,2020,743:140682

        [22]GLICK B R. Plant growth-promoting bacteria:mechanisms and applications[J]. Scientifica,2012,2012(5):963401

        [23]CABOT C,SIBOLE J V,BARCELO J,et al. Lessons from crop plants struggling with salinity[J]. Plant Science,2014,226:2-13

        [24]ARAUJO W L,MACCHEROI JR W,AGUILAR-VILDOSO C I,et al. Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks[J]. Canadian Journal of Microbiology,2001,47(3):229-236

        [25]VISHWAKARMA K,KUMAR N,SHANDILYA C,et al. Unravelling the role of endophytes in micronutrient uptake and enhanced crop productivity[J]. Symbiotic Soil Microorganisms:Biology and Applications,2021,60:63-85

        [26]BARRERA M C,JAKOBS-SCHOENWANDT D,GOMEZ M I,et al. Formulating bacterial endophyte:Pre-conditioning of cells and the encapsulation in amidated pectin beads[J]. Biotechnology Reports,2020,26:e00463

        [27]RANA K L,KOUR D,KAUR T,et al. Endophytic microbes:biodiversity,plant growth-promoting mechanisms and potential applications for agricultural sustainability[J]. Antonie Van Leeuwenhoek,2020,113:1075-1107

        [28]RANA K L,KOUR D,KAUR T,et al. Endophytic microbes from diverse wheat genotypes and their potential biotechnological applications in plant growth promotion and nutrient uptake[J]. Proceedings of the National Academy of Sciences,India Section B:Biological Sciences,2020,90:969-979

        [29]KHALIL A M A,HASSAN S E D,ALSHARIF S M,et al. Isolation and characterization of fungal endophytes isolated from medicinal plant Ephedra pachyclada as plant growth-promoting[J]. Biomolecules,2021,11(2):140

        [30]ZHANG J,ZHU Y,SI J,et al. Metabolites of medicine food homology-derived endophytic fungi and their activities[J]. Current Research in Food Science,2022,5:1882-1896

        [31]ZHENG R Y,JIANG H. Rhizomucor endophyticus sp. nov.,an endophytic zygomycetes from higher plants[J]. Mycotaxon,1995,56:455-466

        [32]AHMED A M,MAHMOUD B K,MILLAN-AGUINAGA N,et al. The endophytic Fusarium strains:a treasure trove of natural products[J]. RSC Advances,2023,13(2):1339-1369

        [33]MOISSL-EICHINGER C,PAUSAN M,TAFFNER J,et al. Archaea are interactive components of complex microbiomes[J]. Trends in Microbiology,2018,26(1):70-85

        [34]DE LISE F,IACONO R,MORACCI M,et al. Archaea as a model system for molecular biology and biotechnology[J]. Biomolecules,2023,13(1):114

        [35]BAKER B J,DE ANDA V,SEITZ K W,et al. Diversity,ecology and evolution of Archaea [J]. Nature Microbiology, 2020,5(7):887-900

        [36]EME L,SPAG A,LOMBARD J,et al. Archaea and the origin of eukaryotes[J]. Nature Reviews Microbiology,2017,15(12):711-723

        [37]STRAUB C T,COUNTS J A,NGUYEN D M N,et al. Biotechnology of extremely thermophilic archaea[J]. FEMS Microbiology Reviews,2018,42(5):543-578

        [38]CHEN F,QI Y,JIANG B,et al. Metalaxyl-resistant mutant strains of Phytophthora boehmeriae are as aggressive and fit as their metalaxyl-sensitive wild-type parents[J]. Tropical Plant Pathology,2023:48,128-138

        [39]WANG T,GAO C,CHENG Y,et al. Molecular diagnostics and detection of oomycetes on fiber crops[J]. Plants-Basel,2020,9(6):769

        [40]WANG C,HUANG R,WANG J,et al. Comprehensive analysis of transcriptome and metabolome elucidates the molecular regulatory mechanism of salt resistance in roots of Achnatherum inebrians mediated by Epichloё gansuensis[J]. Journal of Fungi,2022,8(10):1092

        [41]QU D,WU F,ZHAO X,et al. A bZIP transcription factor VabZIP12 from blueberry induced by dark septate endocyte improving the salt tolerance of transgenic Arabidopsis[J]. Plant Science,2022,315:111135

        [42]KUMARI V,VUJANOVIC V. Transgenerational benefits of endophytes on resilience and antioxidant genes expressions in pea (Pisum sativum L.) under osmotic stress[J]. Acta Physiologiae Plantarum,2020,42:1-11

        [43]KASHYAP B K,ARA R,SINGH A,et al. Halotolerant PGPR bacteria:Amelioration for salinity stress[J]. Microbial Interventions in Agriculture and Environment,2019,28:509-530

        [44]NIU S,GAO Y,ZI H,et al. The osmolyte-producing endophyte Streptomyces albidoflavus OsiLf-2 induces drought and salt tolerance in rice via a multi-level mechanism[J]. The Crop Journal,2022,10(2):375-386

        [45]SAHU P K,SINGH S,SINGH U B,et al. Inter-genera colonization of Ocimum tenuiflorum endophytes in tomato and their complementary effects on Na+/K+ balance,oxidative stress regulation,and root architecture under elevated soil salinity[J]. Frontiers in Microbiology,2021,12:744733

        [46]DIF G,BELAOUNI H A,YEKKOUR A,et al. Performance of halotolerant bacteria associated with Sahara-inhabiting halophytes Atriplex halimus L. and Lygeum spartum L. ameliorate tomato plant growth and tolerance to saline stress:from selective isolation to genomic analysis of potential determinants[J]. World Journal of Microbiology and Biotechnology,2022,38(1):16

        [47]WU T,LI X,XU J,et al. Diversity and functional characteristics of endophytic bacteria from two grass species growing on an oil-contaminated site in the Yellow River Delta,China[J]. Science of The Total Environment,2021,767:144340

        [48]ANDRES-BARRAO C,ALZUBAIDY H,JALAL R,et al. Coordinated bacterial and plant sulfur metabolism in Enterobacter sp. SA187-induced plant salt stress tolerance[J]. Proceedings of the National Academy of Sciences,2021,118(46):e2107417118

        [49]BADEPPA S,PAUL S,THAKUR J K,et al. Antioxidant,physiological and biochemical responses of drought susceptible and drought tolerant mustard (Brassica juncea L) genotypes to rhizobacterial inoculation under water deficit stress[J]. Plant Physiology and Biochemistry,2019,143:19-28

        [50]AHMAD M,NASEER I,HUSSAIN A,et al. Appraising endophyte-plant symbiosis for improved growth,nodulation,nitrogen fixation and abiotic stress tolerance:An experimental investigation with chickpea (Cicer arietinum L.)[J]. Agronomy,2019,9(10):621

        [51]TAULE C,VAZ-JAURI P,BATTISTONI F. Insights into the early stages of plant-endophytic bacteria interaction[J]. World Journal of Microbiology and Biotechnology,2021,37:1-9

        [52]COMPAT S,CLEMET C,SESSITSCH A. Plant growth-promoting bacteria in the rhizo-and endosphere of plants:their role,colonization,mechanisms involved and prospects for utilization[J]. Soil Biology and Biochemistry,2010,42(5):669-678

        [53]FRANK A C,SALDIERNA G J P,SHAY J E. Transmission of bacterial endophytes[J]. Microorganisms,2017,5(4):70

        [54]NADEEM S M,AHMAD M,ZAHIR Z A,et al. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments[J]. Biotechnology advances,2014,32(2):429-448

        [55]CHIELLINI C,DE LEO M,LONGO V,et al. Characterization of the endophytic bacterial community of Bituminaria bituminosa plant grown in vitro and its interaction with the plant extract[J]. Frontiers in Plant Science,2022,13:1076573

        [56]TYC O,PUTRA R,GOLS R,et al. The ecological role of bacterial seed endophytes associated with wild cabbage in the United Kingdom[J]. Microbiology Open,2020,9(1):e00954

        [57]SAMPAGI-RAMAIAH M H,DEY P,JAMAGI S,et al. An endophyte from salt-adapted Pokkali rice confers salt-tolerance to a salt-sensitive rice variety and targets a unique pattern of genes in its new host[J]. Scientific Reports,2020,10(1):1-14

        [58]REN X,SHAN Y,LI X,et al. Application of RNA sequencing to understand the benefits of endophytes in the salt-alkaline resistance of rice seedlings[J]. Environmental and Experimental Botany,2022,196:104820

        [59]NAGABHYRU P,DINKINS R D,SCHARDL C L. Transcriptomics of Epichloё-grass symbioses in host vegetative and reproductive stages[J]. Molecular Plant-Microbe Interactions,2019,32(2):194-207

        [60]LEUCHTMANN A,BACON C W,SCHARDL C L,et al. Nomenclatural realignment of Neotyphodium species with genus Epichloё[J]. Mycologia,2014,106(2):202-215

        [61]EGAMBERDIEVA D,ALIMOV J,SHURIGIN V,et al. Diversity and plant growth-promoting ability of endophytic,halotolerant bacteria associated with Tetragonia tetragonioides (Pall.) Kuntze[J]. Plants-Basel,2021,11(1):49

        [62]ZHONG R,BASTIAS D A,ZHANG X,et al. Vertically transmitted Epichloё systemic endophyte enhances drought tolerance of Achnatherum inebrians host plants through promoting photosynthesis and biomass accumulation[J]. Journal of Fungi,2022,8(5):512

        [63]ZHANG Y,LANG D,ZHANG W,et al. Bacillus cereus enhanced medicinal ingredient biosynthesis in Glycyrrhiza uralensis Fisch. under different conditions based on the transcriptome and polymerase chain reaction analysis[J]. Frontiers in Plant Science,2022,13:858000

        [64]KHALID M,RAHMAN S,HUANG D. Molecular mechanism underlying Piriformospora indica-mediated plant improvement/protection for sustainable agriculture[J]. Acta Biochimica et Biophysica Sinica,2019,51(3):229-242

        [65]YOUSEFIRAD S,SOLTANLOO H,RAMEZANPOUR S S,et al. The RNA-seq transcriptomic analysis reveals genes mediating salt tolerance through rapid triggering of ion transporters in a mutant barley[J]. Plos One,2020,15(3):e0229513

        [66]SHI L N,LU L X,YE J R,et al. The endophytic strain ZS-3 enhances salt tolerance in Arabidopsis thaliana by regulating photosynthesis,osmotic stress,and ion homeostasis and inducing systemic tolerance[J]. Frontiers in Plant Science,2022,13:820837

        [67]GOVINDASAMY V,GEORGE P,KUMAR M,et al. Multi-trait PGP rhizobacterial endophytes alleviate drought stress in a senescent genotype of sorghum [Sorghum bicolor (L.) Moench][J]. 3 Biotech,2020,10(1):1-14

        [68]YUE Z,CHEN Y,WANG Y,et al. Halotolerant Bacillus altitudinis WR10 improves salt tolerance in wheat via a multi-level mechanism[J]. Frontiers in Plant Science,2022,13:2502

        [69]LI F,HE X,SUN Y,et al. Distinct endophytes are used by diverse plants for adaptation to karst regions[J]. Scientific Reports,2019,9(1):1-9

        [70]WANG Z,ZHU Y,LI N,et al. High-throughput sequencing-based analysis of the composition and diversity of endophytic bacterial community in seeds of saline-alkali tolerant rice[J]. Microbiological Research,2021,250:126794

        [71]DALE J C M,NEWMAN J A. A First Draft of the Core Fungal Microbiome of Schedonorus arundinaceus with and without Its Fungal Mutualist Epichloё coenophiala[J]. Journal of Fungi,2022,8(10):1026

        [72]GEDDES-MCALISTER J,SUKUMARAN A,PATCHETT A,et al. Examining the impacts of CO2 concentration and genetic compatibility on perennial ryegrass—Epichloё festucae var lolii interactions[J]. Journal of Fungi,2020,6(4):360

        [73]熊海琳,毛培春,田小霞,等. 接種根瘤菌對林下紅三葉草產(chǎn)量與品質(zhì)及土壤特性影響[J]. 草地學(xué)報(bào),2023,31(11):3561-3568

        [74]BRIGIDO C,SINGH S,MENENDEZ E,et al. Diversity and functionality of culturable endophytic bacterial communities in chickpea plants[J]. Plants-Basel,2019,8(2):42

        [75]YANG B,WANG X M,MA H Y,et al. Fungal endophyte Phomopsis liquidambari affects nitrogen transformation processes and related microorganisms in the rice rhizosphere[J]. Frontiers in microbiology,2015,6:982

        [76]ZHANG W,SUN K,SHI R H,et al. Auxin signalling of Arachis hypogaea activated by colonization of mutualistic fungus Phomopsis liquidambari enhances nodulation and N2-fixation[J]. Plant Cell and Environment,2018,41(9):2093-2108

        [77]LIN H,LIU C,PENG Z,et al. Distribution pattern of endophytic bacteria and fungi in tea plants[J]. Plant Microbiome:Diversity,F(xiàn)unctions,and Applications,2022,13:872034

        [78]CHEN D W,WANG Y H,SHI W J,et al. Analysis of endophyte diversity of Rheum palmatum among different tissues and ages[J]. Archives of Microbiology,2023,205(1):14

        [79]HOU Q Z,CHEN D W,WANG Y,et al. Analysis of endophyte diversity of Gentiana officinalis among different tissue types and ages and their association with four medicinal secondary metabolites[J]. PeerJ,2022,10:e13949

        [80]COMPANT S,REITER B,SESSITSCH A,et al. Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN[J]. Applied and Environmental Microbiology,2005,71(4):1685-1693

        [81]NELSON E B. The seed microbiome:origins,interactions,and impacts[J]. Plant and Soil,2018,422:7-34

        [82]SULLIVAN T J,ROBERTS H,BULTMAN T L. Genetic Covariation Between the Vertically Transmitted Endophyte Epichloё canadensis and Its Host Canada Wildrye[J]. Microbial Ecology,2023,86(3):1686-1695

        [83]SHADE A,JACQUES M A,BARRET M. Ecological patterns of seed microbiome diversity,transmission,and assembly[J]. Current Opinion in Microbiology,2017,37:15-22

        [84]LI X,HE C,HE X,et al. Dark septate endophytes improve the growth of host and non-host plants under drought stress through altered root development[J]. Plant and Soil,2019,439:259-272

        [85]HEREME R,MORALES-NAVARRO S,BALLESTEROS G,et al. Fungal endophytes exert positive effects on Colobanthus quitensis under water stress but neutral under a projected climate change scenario in Antarctica[J]. Frontiers in Microbiology,2020,11:264

        [86]GUPTA A,TIWARI R,SHUKLA R,et al. Salinity alleviator bacteria in rice (Oryza sativa L.),their colonization efficacy,and synergism with melatonin[J]. Frontiers in Plant Science,2022,13:1060287

        [87]GOVINDASAMY V,RAINA S K,GEORGE P,et al. Functional and phylogenetic diversity of cultivable rhizobacterial endophytes of sorghum[Sorghum bicolor (L.) Moench][J]. Antonie van Leeuwenhoek,2017,110:925-943

        [88]KAZEROONI E A,MAHARACHCHIKUMURA S S N,ADHIKARI A,et al. Rhizospheric Bacillus amyloliquefaciens protects Capsicum annuum cv. Geumsugangsan from multiple abiotic stresses via multifarious plant growth-promoting attributes[J]. Frontiers in Plant Science,2021,12:669693

        [89]KHAN M A,ASAF S,KHAN A L,et al. Plant growth-promoting endophytic bacteria augment growth and salinity tolerance in rice plants[J]. Plant Biology,2020,22(5):850-862

        [90]DINKINS R D,NAGAHYRU P,YOUNG C A,et al. Transcriptome analysis and differential expression in tall fescue harboring different endophyte strains in response to water deficit[J]. The Plant Genome,2019,12(2):180071

        [91]PANKE-BUISSE K,CHENG L,GAN H,et al. Root fungal endophytes and microbial extracellular enzyme activities show patterned responses in tall fescues under drought conditions[J]. Agronomy,2020,10(8):1076

        [92]NAGABHYRU P,DINKINS R D,SCHARDL C L. Transcriptome analysis of Epichloё strains in tall fescue in response to drought stress[J]. Mycologia,2022,114(4):697-712

        [93]WANG J,HOU W,CHRISTENSEN M J,et al. Role of Epichloё endophytes in improving host grass resistance ability and soil properties[J]. Journal of Agricultural and Food Chemistry,2020,68(26):6944-6955

        [94]MORALES-QUINTANA L,BARRERA A,HEREME R,et al. Molecular and structural characterization of expansins modulated by fungal endophytes in the Antarctic Colobanthus quitensis (Kunth) Bartl. exposed to drought stress[J]. Plant Physiology and Biochemistry,2021,168:465-476

        [95]YAGHOUBI K M,CRECCHIO C,VERBRUGGEN E. Shifts in the rhizosphere and endosphere colonizing bacterial communities under drought and salinity stress as affected by a biofertilizer consortium[J]. Microbial Ecology,2022,84(2):483-495

        [96]MANJUNATHA B S,PAUL S,AGGARWAL C,et al. Diversity and tissue preference of osmotolerant bacterial endophytes associated with pearl millet genotypes having differential drought susceptibilities[J]. Microbial Ecology,2019,77(3):676-688

        [97]JAYAKUMAR A,NAIR I C,RADHAKRISHNAN E K. Environmental adaptations of an extremely plant beneficial Bacillus subtilis Dcl1 identified through the genomic and metabolomic analysis[J]. Microbial Ecology,2021,81:687-702

        [98]BARAWAL D,BHARTI N,PADEY S S,et al. Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression[J]. Physiologia Plantarum,2017,161(4):502-514

        [99]LASTOCHKINA O,IVANOV S,PETROVA S,et al. Role of Endogenous Salicylic Acid as a Hormonal Intermediate in the Bacterial Endophyte Bacillus subtilis-Induced Protection of Wheat Genotypes Contrasting in Drought Susceptibility under Dehydration[J]. Plants-Basel,2022,11(23):3365

        [100]XIE Z,CHU Y,ZHANG W,et al. Bacillus pumilus alleviates drought stress and increases metabolite accumulation in Glycyrrhiza uralensis Fisch[J]. Environmental and Experimental Botany,2019,158:99-106

        [101]SAMAIN E,ERNENWEIN C,AUSSEAC T,et al. Effective and durable systemic wheat-induced resistance by a plant-growth-promoting rhizobacteria consortium of Paenibacillus sp. strain B2 and Arthrobacter spp. strain AA against Zymoseptoria tritici and drought stress[J]. Physiological and Molecular Plant Pathology,2022,119:101830

        [102]MANJUNATHA B S,NIVETHA N,KRISHNA G K,et al. Plant growth-promoting rhizobacteria Shewanella putrefaciens and Cronobacter dublinensis enhance drought tolerance of pearl millet by modulating hormones and stress-responsive genes[J]. Physiologia Plantarum,2022,174(2):e13676

        [103]CHEN J,ZHANG H,ZHANG X,et al. Arbuscular mycorrhizal symbiosis alleviates salt stress in black locust through improved photosynthesis,water status,and K+/Na+ homeostasis[J]. Frontiers in Plant Science,2017,10(8):1739

        [104]BAKHSHANDEH E,GHOLAMHOSSEINI M,YAGHOUBIAN Y,et al. Plant growth promoting microorganisms can improve germination,seedling growth and potassium uptake of soybean under drought and salt stress[J]. Plant Growth Regulation,2020,90:123-136

        [105]DONG Z Y,RAO M P N,WANG H F,et al. Transcriptomic analysis of two endophytes involved in enhancing salt stress ability of Arabidopsis thaliana[J]. Science of the Total Environment,2019,686:107-117

        [106]MOLINA-MONTENEGRO M A,ACUNA R I S,TORRES D C,et al. Antarctic root endophytes improve physiological performance and yield in crops under salt stress by enhanced energy production and Na+ sequestration[J]. Scientific Reports,2020,10(1):1-10

        [107]ZHENG Y,XU Z,LIU H,et al. Patterns in the microbial community of salt-tolerant plants and the functional genes associated with salt stress alleviation[J]. Microbiology Spectrum,2021,9(2):e0076721

        [108]張銀翠,姚拓,趙桂琴,等. 耐鹽促生菌篩選鑒定及對鹽脅迫燕麥生長的影響[J]. 草地學(xué)報(bào),2021,29(12):2645-2652

        [109]BARAWAL D,BHARTI N,MAJI D,et al. 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation[J]. Plant Physiology and Biochemistry,2012,58:227-235

        [110]WU F L,LI Y,TIAN W,et al. A novel dark septate fungal endophyte positively affected blueberry growth and changed the expression of plant genes involved in phytohormone and flavonoid biosynthesis[J]. Tree Physiology,2020,40(8):1080-1094

        [111]LANZA M,HARO R,CONCHILLO L B,et al. The endophyte Serendipita indica reduces the sodium content of Arabidopsis plants exposed to salt stress:Fungal ENA ATPases are expressed and regulated at high pH and during plant co-cultivation in salinity[J]. Environmental Microbiology,2019,21(9):3364-3378

        [112]XU W,WANG F,ZHANG M,et al. Diversity of cultivable endophytic bacteria in mulberry and their potential for antimicrobial and plant growth-promoting activities[J]. Microbiological Research,2019,229:126328

        (責(zé)任編輯? 閔芝智)

        h国产视频| 无遮挡1000部拍拍拍免费| 国产精品一卡二卡三卡| 香蕉视频www.5.在线观看| 韩日无码不卡| 亚洲无人区乱码中文字幕动画| 亚洲日韩小电影在线观看| 日日碰狠狠添天天爽超碰97| 国产午夜精品久久久久99| 日韩亚洲精选一区二区三区| 国产成人无码一区二区三区| 国产激情内射在线影院| 日韩精品网| 97女厕偷拍一区二区三区| 日本一本免费一二区| 午夜男女爽爽爽在线视频| 国产亚洲欧美日韩国产片| 国产av一啪一区二区| 国产精品人人做人人爽| 同性男男黄g片免费网站| 精品久久久无码不卡| 亚洲一区二区三区偷拍女| 999国内精品永久免费观看| 亚洲综合久久久| 日本一区二区高清在线观看| 国产精品久久久福利| 亚洲av无码第一区二区三区| 亚洲国产成人精品激情| 一区二区视频在线国产| 毛片免费视频在线观看| 久久AV中文一区二区三区 | 无码人妻丰满熟妇啪啪网不卡| 88国产精品视频一区二区三区| 婷婷激情五月综合在线观看| 午夜福利视频一区二区二区| 少妇aaa级久久久无码精品片| 午夜毛片午夜女人喷潮视频| 日韩字幕无线乱码免费| 中国妇女做爰视频| 中文字幕无码精品亚洲资源网久久 | 日韩乱码精品中文字幕不卡|