張新賀,譚浩然,呂文博
基于壓縮感知的低復(fù)雜度廣義空移鍵控信號檢測算法
張新賀*,譚浩然,呂文博
(遼寧科技大學(xué) 電子與信息工程學(xué)院,遼寧 鞍山 114051)(?通信作者電子郵箱527075114@qq.com)
廣義空移鍵控(GSSK)作為空間調(diào)制(SM)的一種簡化形式,被廣泛應(yīng)用于大規(guī)模多輸入多輸出(MIMO)系統(tǒng),以更好地解決傳統(tǒng)MIMO技術(shù)中的信道間干擾(ICI)、天線間同步(IAS)和多射頻(RF)鏈路等問題。針對GSSK系統(tǒng)最大似然(ML)檢測算法計算復(fù)雜度高的問題,結(jié)合壓縮感知(CS)中的子空間追蹤(SP)算法和ML檢測算法,并結(jié)合閾值的設(shè)置,提出一種基于CS理論的低復(fù)雜度GSSK信號檢測算法。首先,用改進的SP算法獲得部分發(fā)送天線組合(TAC);其次,刪除部分天線組合,縮小搜索天線組合的集合;最后,利用ML算法和預(yù)設(shè)的門限估計發(fā)送天線組合。仿真實驗結(jié)果表明,所提算法的計算復(fù)雜度明顯低于ML檢測算法,同時誤比特率(BER)性能逼近ML檢測算法,驗證了所提算法的有效性。
廣義空移鍵控;多輸入多輸出;壓縮感知;子空間追蹤;最大似然檢測
空間調(diào)制(Spatial Modulation, SM)技術(shù)[1-6]是一種全新的多天線傳輸技術(shù),它同時利用空間星座圖和信號星座圖傳遞信息,且在每一傳輸時隙只激活一根發(fā)送天線,解決了傳統(tǒng)多輸入多輸出(Multiple-Input Multiple-Output, MIMO)系統(tǒng)存在的信道間干擾(Inter-Channel Interference, ICI)、天線間同步(Inter-Antenna Synchronization, IAS)和多射頻(Radio Frequency, RF)鏈路等問題。為了進一步充分利用信道的空間資源,文獻[7-9]中提出了只利用空間星座圖傳遞信息的空移鍵控(Space Shift Keying, SSK)技術(shù),有效地降低了接收端的檢測復(fù)雜度。廣義SM(Generalized SM, GSM)技術(shù)[10-11]和廣義SSK(Generalized SSK, GSSK)技術(shù)[12-15]打破了SM和SSK技術(shù)每一傳輸時隙只激活一根發(fā)送天線的限制,提高了傳輸速率。對于GSSK技術(shù),最大似然(Maximum Likelihood, ML)檢測算法是最優(yōu)檢測算法,它需要遍歷所有的發(fā)送天線組合[16],缺點是復(fù)雜度會隨發(fā)送天線組合(Transmit Antenna Combination, TAC)數(shù)呈指數(shù)增長,在大規(guī)模傳輸中的計算復(fù)雜度較高甚至無法實現(xiàn)。
為了進一步提高算法的檢測性能,本文提出了一種基于CS理論的低復(fù)雜度的檢測算法,記作SP-ML算法。首先SP算法通過迭代確定最有可能的一些天線序號,并僅保留一半天線;其次從所有天線組合中選擇包含這一半天線的組合;最后在這些組合中進行ML檢測并結(jié)合閾值的設(shè)置,恢復(fù)原始信號。
本文的主要工作如下:1)使用改進的SP算法選擇最可能的發(fā)送天線序號;2)通過縮小發(fā)送天線序號集合,降低算法的計算復(fù)雜度;3)通過預(yù)設(shè)門限值和ML檢測,在誤比特率(Bit Error Rate, BER)性能和計算復(fù)雜度間進行折中。
由于GSSK系統(tǒng)中發(fā)送信號矢量具有稀疏特性,因此可以用CS理論解決接收端信號的重構(gòu)問題。
CS理論的示意圖如圖1所示。
圖1 CS理論的示意圖
由于實際中存在一定的誤差,因此可將該優(yōu)化問題轉(zhuǎn)換成一種近似形式進行求解:
本章介紹幾種主要的GSSK系統(tǒng)的信號檢測算法。
由于ML算法需要遍歷所有可能的天線組合,該算法的計算復(fù)雜度隨著天線組合數(shù)的增多而增大,特別是在大天線場景下,算法的計算復(fù)雜度就非常高。實際上,在接收端僅需檢測發(fā)送天線的序號,因此ML算法可簡化為:
將式(9)實數(shù)化處理,得到:
算法1為NCS算法恢復(fù)發(fā)送信號矢量的偽代碼。
算法1 NCS算法。
3) end for
10) end for
與NCS算法相比,SP算法[12]在每次迭代時保留的原子數(shù)多于1個。更重要地,SP算法引入了原子刪除策略,可以在每次迭代時刪除一部分原子。相較于NCS算法,SP算法不僅可以降低計算復(fù)雜度,同時還可以改善誤比特率性能。SP算法的偽代碼如算法2所示。
算法2 SP算法。
3) end for
14) end for
相較于NCS算法,SP算法的檢測性能有一定的提升,但是在計算復(fù)雜度和BER性能方面仍需要進行改進。本文提出一種基于CS理論的低復(fù)雜度檢測算法,即SP算法和ML算法結(jié)合的SP-ML算法。
更新的殘差可以通過式(14)獲得:
SP-ML算法可以使誤比特率性能和復(fù)雜度之間達到一個良好的折中。SP-ML算法的偽代碼如算法3所示。
算法3 SP-ML算法。
3) end for
16) end for
22) else
24) end if
27) else
29) end if
為了驗證SP-ML算法的誤比特率性能和計算復(fù)雜度,進行了一系列仿真實驗。比較ML算法、NCS算法、SP算法和SP-ML算法的誤比特率性能和計算復(fù)雜度。在理想信道狀態(tài)信息的假設(shè)下,對誤比特率性能和計算復(fù)雜度進行了仿真。
圖2 SP-ML與ML、NCS算法的BER性能比較
4.2.1ML算法
4.2.2NCS算法
4.2.3SP算法
4.2.4SP-ML算法
綜上所述,SP-ML算法的復(fù)雜度可以表示為:
圖3 SP-ML與ML、NCS算法的計算復(fù)雜度性能比較
GSSK系統(tǒng)能夠有效解決大規(guī)模MIMO中信道間干擾、天線間同步和多射頻鏈路等問題,對大規(guī)模MIMO的實際應(yīng)用和理論研究具有十分重要的意義。本文結(jié)合SP算法和ML算法,提出了一種基于CS理論的低復(fù)雜度的檢測算法。該算法的誤比特率性能明顯優(yōu)于SP算法和NCS算法。仿真結(jié)果表明,該算法能夠在誤比特率性能和復(fù)雜度之間取得較好的折中,可以實現(xiàn)與ML算法幾乎相同的誤比特率性能,而復(fù)雜度遠低于ML算法。本文是基于CS理論的信號檢測算法,并與幾種常見的GSSK信號的CS算法進行了比較。作者將繼續(xù)探索基于CS理論的GSSK信號檢測算法,并與自適應(yīng)檢測等算法進行比較,并積極探索在復(fù)雜信道條件下的信號檢測算法。
[1] MESLEH R Y, HAAS H, SINANOVIC S, et al. Spatial modulation [J]. IEEE Transactions on Vehicular Technology, 2008, 57(4): 2228-2241.
[2] JEGANATHAN J, GHRAYEB A, SZCZECINSKI L. Spatial modulation: optimal detection and performance analysis [J]. IEEE Communications Letters, 2008, 12(8): 545-547.
[3] RENZO M D, HAAS H, GRANT P M. Spatial modulation for multiple-antenna wireless systems: a survey [J]. IEEE Communications Magazine, 2012, 49(12): 182-191.
[4] CHEN H, XIAO Y, FANG S, et al. Low-complexity transmit antenna selection for offset spatial modulation [J]. Science China: Information Sciences, 2022, 65(9): 249-262.
[5] YANG Y, BAI Z, PANG K, et al. Design and analysis of spatial modulation based orthogonal time frequency space system [J]. China Communications, 2021, 18(8): 209-223.
[6] LI Q, YU X, XIE M, et al. Performance analysis of uplink massive spatial modulation MIMO systems in transmit-correlated Rayleigh channels [J]. China Communications, 2021, 18(2): 27-39.
[7] JEGANATHAN J, GHRAYEB A, SZCZECINSKI L, et al. Space shift keying modulation for MIMO channels [J]. IEEE Transactions on Wireless Communications, 2009, 8(7): 3692-3703.
[8] RENZO M D, HAAS H. Improving the performance of Space Shift Keying (SSK) modulation via opportunistic power allocation [J]. IEEE Communications Letters, 2010, 14(6): 500-502.
[9] RENZO M D,HAAS H. A general framework for performance analysis of Space Shift Keying (SSK) modulation for MISO correlated Nakagami-fading channels [J]. IEEE Transactions on Communications, 2010, 58(9): 2590-2603.
[10] RENZO M D, HAAS H, GHRAYEB A, et al. Spatial modulation for generalized MIMO: challenges, opportunities, and implementation [J]. Proceedings of the IEEE, 2014, 102(1): 56-103.
[11] YANG P, RENZO M D, XIAO Y, et al. Design guideline for spatial modulation [J]. IEEE Communications Surveys and Tutorials, 2014, 17(1): 6-26.
[12] NTONTIN K, RENZO M D, PEREZ-NEIRA A, et al. Adaptive generalized space shift keying [J]. EURASIP Journal of Wireless Communications and Networking, 2013, 2013(1): 1-15.
[13] NTONTIN K, RENZO M D, PEREZ-NEIRA A, et al. Adaptive Generalized Space Shift Keying (GSSK) modulation for MISO channels: a new method for high diversity and coding gains [C]// Proceedings of the 2012 IEEE Vehicular Technology Conference (VTC Fall). Piscataway : IEEE, 2012: 3-6.
[14] LIU W, GU Z, JIN M L. Penalty function based detector for generalized space shift keying massive MIMO systems [J]. IEEE Communications Letters, 2016, 20(4): 664-667.
[15] ZHANG L, ZHU S, ZHANG L, et al. Low-complexity sparse detector for generalized space shift keying [J]. Electronics Letters, 2019, 55(5): 268-270.
[16] JEGANATHAN J, GHRAYEB A, SZCZECINSKI L. Generalized space shift keying modulation for MIMO channels [C]// Proceedings of the 2008 IEEE 19th International Symposium on Personal, Indoor, and Mobile Radio Communications. Piscataway: IEEE, 2008: 15-18.
[17] CHANG R Y, CHUNG W-H, LIN S-J. Detection of space shift keying signal in large MIMO systems [C]// Proceedings of the 2012 8th International Wireless Communications and Mobile Computing Conference. Piscataway: IEEE, 2012: 27-31.
[18] TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666.
[19] YU C-M, HSIEH S-H, LIANG H-W, et al. Compressed sensing detector design for space shift keying in MIMO systems [J]. IEEE Communications Letters, 2012, 16(10): 1556-1559.
[20] WANG J, KWON S, SHIM B. Generalized orthogonal matching pursuit [J]. IEEE Transactions on Signal Processing, 2012, 60(12): 6202-6216.
[21] NEEDELL D, VERSHYNIN R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit [J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 310-316.
[22] NEEDELL D, TROPP J A. CoSaMP: iterative signal recovery form incomplete and inaccurate samples [J]. Applied and Computational Harmonic Analysis, 2008, 26(3): 301-321.
[23] DAI W, MILENKOVIC Q. Subspace pursuit for compressive sensing signal reconstruction [J]. IEEE Transactions on Information Theory, 2009, 55(5): 2230-2249.
[24] ZHANG X, TAN H, LV W. A low-complexity detection algorithm for generalized space shift keying systems [J]. IAENG International Journal of Computer Science, 2022, 49(2): 364-368.
[25] DOHONO D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
[26] CANDES E J, WALKIN M B. An introduction to compressive sampling [J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.
[27] CANDES E J, ROMBERG J, TAO T. Robust uncertainty principle: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
[28] 劉飛峰,劉鴻杰,繆穎杰,等.基于無網(wǎng)格壓縮感知的通信一體化系統(tǒng)目標參數(shù)估計方法研究[J]. 信號處理, 2022, 38(11): 2076-2086.(LIU F F, LIU H J, MIAO Y J, et al. Research on target parameter estimation method of radar communication integrated system based on grid-less compression sensing [J]. Journal of Signal Processing, 2022, 38(11): 2076-2086.)
[29] XIAO L, YANG P, XIAO Y, et al. Efficient compressive sensing detectors for generalized spatial modulation systems [J]. IEEE Transactions on Vehicular Technology, 2017, 66(2): 1284-1298.
Low-complexity generalized space shift keying signal detection algorithm based on compressed sensing
ZHANG Xinhe*, TAN Haoran, LYU Wenbo
(,,114051,)
As a simplified version of Spatial Modulation (SM), Generalized Space Shift Keying (GSSK) has been widely used in massive Multiple-Input Multiple-Output (MIMO) systems. It can better solve the problems such as Inter-Channel Interference (ICI), Inter-Antenna Synchronization (IAS), and multiple Radio Frequency (RF) links in traditional MIMO technology. To solve the problem of high computational complexity of the Maximum Likelihood (ML) detection algorithm for GSSK systems, a low-complexity GSSK signal detection algorithm based on Compressed Sensing (CS) theory was proposed by combining Subspace Tracking (SP) and ML detection algorithms in CS, and presetting the threshold. First, the improved SP algorithm was used to obtain partial Transmit Antenna Combinations (TACs). Secondly, the set of search antennas was shrunk by deleting partial antenna combinations. Finally, the ML algorithm and the preset threshold were used to estimate the TACs. The results of simulation experiments show that the computational complexity of the proposed algorithm is significantly lower than that of ML detection algorithm, and the Bit Error Rate (BER) performance is almost the same as that of ML detection algorithm, which verify the effectiveness of the proposed algorithm.
Generalized Space Shift Keying (GSSK); Multiple-Input Multiple-Output (MIMO); Compressed Sensing (CS); Subspace Pursuit (SP); Maximum Likelihood (ML) detection
This work is partially supported by Higher Education Research Project of Liaoning Provincial Department (LJKZ0292).
ZHANG Xinhe, born in 1980, Ph. D., associate professor. His research interests include signal detection, compressed sensing.
TAN Haoran, born in 1997, M. S. candidate. Her research interests include wireless communication, compressed sensing.
LYU Wenbo, born in 1997, M. S. candidate. His research interests include signal detection, compressed sensing.
TN914
A
1001-9081(2023)12-3890-06
10.11772/j.issn.1001-9081.2022121808
2022?12?18;
2023?03?28;
2023?03?29。
遼寧省教育廳高等學(xué)??蒲许椖浚↙JKZ0292)。
張新賀(1980—),男,河北承德人,副教授,博士,主要研究方向:無線通信、壓縮感知;譚浩然(1997—),女,遼寧遼陽人,碩士研究生,主要研究方向:信號檢測、壓縮感知;呂文博(1997—),男,湖北荊門人,碩士研究生,主要研究方向:信號檢測、壓縮感知。