商立英, 張超, 徐聲明, 明亞麗, 楊誠
(中國航空工業(yè)集團(tuán)公司第一飛機(jī)設(shè)計研究院, 西安 710089)
螺旋槳動力系統(tǒng)是當(dāng)代亞音速飛機(jī)的主要動力系統(tǒng)之一,在較低亞音速的通用飛機(jī)、軍用及民用運(yùn)輸機(jī)上獲得了廣泛應(yīng)用[1]。在螺旋槳類飛機(jī)中,滑流對氣動特性的影響是影響飛機(jī)飛行性能的重要因素。螺旋槳滑流的形成和發(fā)展過程比較復(fù)雜,且螺旋槳與飛機(jī)之間也存在一定的相互干擾,不同機(jī)型、動力裝置下的滑流影響也有所差異,準(zhǔn)確獲得螺旋槳飛機(jī)在不同飛機(jī)階段滑流影響下的升阻特性是螺旋槳飛機(jī)設(shè)計研究的熱點(diǎn)和難點(diǎn)。
對于螺旋槳飛機(jī)的初步方案設(shè)計階段,滑流對升阻特性的影響通??梢圆捎霉こ谭椒ㄟM(jìn)行估算[2-4]。但是由于滑流形成和發(fā)展的過程比較復(fù)雜,不同機(jī)型、動力裝置下的滑流影響差異也不同,這些方法難以準(zhǔn)確預(yù)測不同拉力狀態(tài)下影響量差異,僅局限于用于對設(shè)計方案的初步評估。
目前,中外學(xué)者對螺旋槳滑流的研究主要以計算流體力學(xué)(computational fluid dynamics,CFD)數(shù)值模擬和風(fēng)洞試驗(yàn)為主。根據(jù)這些研究表明[5-12],螺旋槳滑流能夠顯著提高全機(jī)升力,但是同時也增加了阻力,產(chǎn)生“增升增阻”的效果,甚至?xí)霈F(xiàn)阻力的相對增量大于升力的相對增量的情況,導(dǎo)致全機(jī)升阻比減小;螺旋槳轉(zhuǎn)速提高時,滑流強(qiáng)度越大, 對升、阻力系數(shù)的改變越大;滑流引起的升力系數(shù)增量、阻力系數(shù)增量隨槳盤系數(shù)或拉力系數(shù)增加而增加,與拉力系數(shù)或槳盤系數(shù)成一定數(shù)值關(guān)系,但不同構(gòu)型的飛機(jī)其比例關(guān)系差異很大。
根據(jù)以上研究結(jié)果,螺旋槳飛機(jī)在爬升、巡航、下降等各個飛行階段由于發(fā)動機(jī)的功率狀態(tài)不同,滑流的強(qiáng)度存在很大差異,因此在不同飛行階段滑流對氣動力的影響程度差異也很大,進(jìn)而使飛機(jī)在巡航狀態(tài)、和爬升狀態(tài)下的極曲線存在很大差異,單純使用某種飛行狀態(tài)下的極曲線來計算評估不同飛行狀態(tài)下的飛行性能,會導(dǎo)致計算結(jié)果出現(xiàn)較大偏差,甚至導(dǎo)致錯誤的評估結(jié)論。要獲得準(zhǔn)確性高的飛行性能評估結(jié)果,需要分別確定爬升、巡航、下降等典型飛行狀態(tài)下的極曲線。
飛行試驗(yàn)是獲取和修正飛機(jī)極曲線的重要手段。根據(jù)螺旋槳飛機(jī)不同飛行階段氣動力受滑流影響的特點(diǎn),現(xiàn)通過在一般極曲線的表達(dá)式中引入拉力系數(shù)項,推導(dǎo)出一種同時適用于螺旋槳飛機(jī)巡航狀態(tài)、爬升狀態(tài)和下降狀態(tài)的極曲線模型,簡稱通用極曲線,通過分析某型螺旋槳飛機(jī)的飛行試驗(yàn)數(shù)據(jù)確定出其通用極曲線的具體表達(dá)式,并將使用該模型計算得到的性能數(shù)據(jù)與試飛數(shù)據(jù)進(jìn)行對比,驗(yàn)證其工程實(shí)用性。
螺旋槳飛機(jī)滑流對飛機(jī)氣動力的影響強(qiáng)弱可以拉力系數(shù)Tc來衡量[1],單臺螺旋槳的拉力系數(shù)以機(jī)翼面積作為參考面積,即
(1)
(2)
式中:T為單臺發(fā)動機(jī)拉力;q為動壓;ρ為空氣密度;v為速度;S為機(jī)翼參考面積。
采用上述定義方式后,Tc與飛機(jī)阻力系數(shù)參考面積一致,便于直接比較。圖1為飛機(jī)在爬升、下降階段時發(fā)動機(jī)相應(yīng)工作狀態(tài)下的拉力系數(shù)典型結(jié)果,飛機(jī)在巡航階段的拉力系數(shù)介于爬升狀態(tài)與下降狀態(tài)之間。
Vs為失速速度圖1 不同飛行狀態(tài)的拉力系數(shù)Fig.1 Tc at different flight phases
研究表明:螺旋槳滑流對氣動力的影響隨拉力增加而增大,與拉力系數(shù)存在一定的數(shù)值關(guān)系[1,11-14],螺旋槳飛機(jī)爬升時由于發(fā)動機(jī)處于大功率工作狀態(tài),滑流效應(yīng)對全機(jī)氣動特性影響非常明顯,巡航狀態(tài)發(fā)動機(jī)功率減小,滑流效應(yīng)的影響相對減弱,滑流影響的氣動力系數(shù)增量減小,下降狀態(tài)發(fā)動機(jī)功率最小,此時滑流效應(yīng)對全機(jī)的氣動特性影響已經(jīng)很微弱,氣動力特性較無動力狀態(tài)基本不變。當(dāng)飛機(jī)飛行速度低于阻力發(fā)散速度時(對于螺旋槳運(yùn)輸類飛機(jī)來說這一條件通常是滿足的),對于某一飛機(jī)構(gòu)型,對應(yīng)于不同的拉力系數(shù),有不同的配平極曲線,通過CFD數(shù)值計算或風(fēng)洞實(shí)驗(yàn)通??梢垣@得這樣的一組極曲線,如圖2所示。
在飛機(jī)的實(shí)際飛行中,上述的每條拉力系數(shù)為常值的配平極曲線上,只有一個點(diǎn)能夠?qū)崿F(xiàn)拉力與阻力平衡的等速平飛,把每條極曲線上的這種點(diǎn)找出來,連成一條新的極曲線,該極曲線即為飛機(jī)在這一構(gòu)型下,穩(wěn)定平飛配平極曲線[15],即巡航狀態(tài)的配平極曲線。與穩(wěn)定平飛狀態(tài)所不同的是,飛機(jī)在航線爬升階段發(fā)動機(jī)處于大功率狀態(tài),此時拉力大于飛機(jī)的阻力,滑流對升阻特性的影響較巡航狀態(tài)大,而在航線下降階段,通常發(fā)動機(jī)的功率狀態(tài)很小(如空中慢車),此時拉力小于飛機(jī)的阻力,滑流對升阻特性的影響很小,此時的極曲線形態(tài)更接近于無動力狀態(tài)下的極曲線,由此導(dǎo)致螺旋槳飛機(jī)在爬升、巡航、下降不同飛行狀態(tài)下實(shí)際的配平極曲線是不同的,如圖3所示。
圖3 爬升、巡航、下降狀態(tài)的極曲線形態(tài)Fig.3 Lift and drag polar at climb cruise and descent phases
亞音速時,飛機(jī)在失速前的極曲線模型可以表示為
CD=CD,min+K(CL-CL0)2
(3)
式(3)中:CD為阻力系數(shù);CL為升力系數(shù);CD,min為最小阻力系數(shù);CL0對應(yīng)于CD,min的升力系數(shù);K為誘導(dǎo)阻力因子。
由于螺旋槳飛機(jī)的極曲線直接與拉力系數(shù)Tc相關(guān),為了得到同時適用于不同飛行階段的極曲線,在式(3)中引入拉力系數(shù)項,以表征螺旋槳滑流對阻力系數(shù)的影響,即
CD=CD,min+K(CL-CL0)2+KTcTc
(4)
式(4)中:KTc為常數(shù)。
在飛機(jī)穩(wěn)定平飛時,根據(jù)受力平衡方程,阻力[式(5)]等于拉力[式(6)],可得到式(7)。
D=qSCD
(5)
T=nqSTC
(6)
CD=nTc
(7)
式中:D為阻力;T為拉力;n為發(fā)動機(jī)臺數(shù)。
將式(7)代入式(4)可得到
(8)
式(8)可以表達(dá)為
CD=CD,min_cruise+Kcruise(CL-CL0)2
(9)
式(9)中:
(10)
(11)
由此,式(9)即為螺旋槳飛機(jī)在巡航狀態(tài)時的極曲線表達(dá)式。
根據(jù)以上關(guān)系,將式(10)和式(11)代入式(4),即得到同時適用于巡航狀態(tài)、爬升狀態(tài)、下降狀態(tài)的配平極曲線表達(dá)式(12)。
CD=CD,min_cruise(1-KTc)+Kcruise(1-KTc)(CL-CL0)2+KTcTc
(12)
飛機(jī)在垂直平面內(nèi),飛機(jī)的質(zhì)心運(yùn)動方程表達(dá)為
(13)
(14)
式中:γ為航跡角;α為迎角;φ為發(fā)動機(jī)安裝角;P為推力(對于螺旋槳飛機(jī)該推力以拉力T的形式表示);m為質(zhì)量;D為阻力;L為升力;W為重力;V為速度;t為時間。
根據(jù)式(13)和式(14),升力L和阻力D可表達(dá)為
(15)
(16)
升阻力系數(shù)可表示為
(17)
(18)
式中:CL為升力系數(shù);CD為阻力系數(shù)。
在對應(yīng)的巡航、爬升、下降飛行試驗(yàn)中,測量飛行中扭矩、轉(zhuǎn)速、總壓和總溫等參數(shù),換算為飛行速度和高度。使用SAE-AIR-4065A[16]中的“J”方法,通過測得的扭矩和轉(zhuǎn)速,得到軸功率,根據(jù)發(fā)動機(jī)廠商提供的功率特性和拉力系數(shù)特性得到,在軸功率特性圖中,利用前進(jìn)比和功率系數(shù)插值得到槳葉角,然后在拉力系數(shù)特性圖中插值得到拉力系數(shù),反算得到拉力值。
飛機(jī)巡航中以一定的速度穩(wěn)定平飛時有
(19)
則式(15)和式(16)可簡化為
D=Tcos(α+φ)
(20)
L=W-Tsin(α+φ)
(21)
通過飛機(jī)在巡航狀態(tài)的穩(wěn)定平飛飛行試驗(yàn),測得飛機(jī)在不同的高度、重量、速度組合條件下穩(wěn)定平飛時的發(fā)動機(jī)轉(zhuǎn)速和扭矩,根據(jù)3.2節(jié)中的方法得到拉力數(shù)據(jù),將拉力值與實(shí)時飛行重量W代入式(20)、式(21)、式(17)和式(18),可計算得到每一種高度、重量、速度組合下的升力系數(shù)CL和阻力系數(shù)CD的值代入式(9)即可以得到CD,min_cruise和Kcruise的值,由此確定出飛機(jī)在巡航狀態(tài)下的極曲線表達(dá)式。
飛機(jī)以一定的表速定常爬升、下降時可以認(rèn)為航跡角變化很小,有
(22)
將式(22)代入式(16)可得
L=Wcosγ-Tsin(α+φ)
(23)
式(22)可以表達(dá)為
(24)
式(24)中:
(25)
(26)
式中:ROC為爬升率(若為下降階段則為下降率ROD);h為高度。
將式(25)和式(26)代入式(24)得到
(27)
式(28)可以表達(dá)為
(28)
式(28)中:g為重力加速度。
由此阻力系數(shù)CD和升力系數(shù)CL由式(29)和式(30)計算。
(29)
(30)
通過飛機(jī)以巡航構(gòu)型進(jìn)行定常爬升/下降試驗(yàn),測得飛機(jī)在不同的高度、重量、爬升/下降速度組合條件下定常爬升/下降時各飛行參數(shù)的時間歷程曲線,可以得到不同飛行條件組合下的爬升/下降率和dV/dh,測量相應(yīng)狀態(tài)下的扭矩和轉(zhuǎn)速,使用3.2節(jié)中的方法得到拉力數(shù)據(jù),將爬升/下降率、dV/dh和對應(yīng)的拉力值與實(shí)時飛行重量W代入式(23)、式(28)、式(29)和式(30),可計算得到每一種高度、重量、速度組合下的升力系數(shù)CL和阻力系數(shù)CD的值,將每組CL與CD值和由3.3節(jié)中確定出的CD,min_cruise和Kcruise代入式(12),可確定出式(12)中的KTc,即可得到螺旋槳飛機(jī)在以相同構(gòu)型在巡航、爬升、下降階段的通用極曲線表達(dá)式。
為了確定某螺旋槳飛機(jī)巡航狀態(tài)極曲線表達(dá)式(9)中各參數(shù)的數(shù)據(jù),將該飛機(jī)以巡航構(gòu)型在不同重量、高度、速度的組合條件下進(jìn)行穩(wěn)定平飛飛行試驗(yàn),根據(jù)3.3節(jié)中所述得到巡航狀態(tài)的極曲線試飛值如圖4所示,將試飛值使用最小二乘法進(jìn)行擬合得到極曲線表達(dá)式(31),由式(31)中各參數(shù)的值可以確定式(9)中的巡航狀態(tài)極曲線模型中的相關(guān)參數(shù)值見式(32)~式(34)。
圖4 巡航狀態(tài)極曲線試飛值Fig.4 Flight test value for lift and drag polar for cruise phase
(31)
(32)
Kcruise=A
(33)
(34)
發(fā)動機(jī)以最大功率狀態(tài),飛機(jī)在不同飛行重量、不同高度、速度下做鋸齒爬升,根據(jù)式(23)、式(28)、式(29)和式(30)對爬升狀態(tài)的試飛數(shù)據(jù)進(jìn)行分析處理,得到爬升狀態(tài)的升、阻力系數(shù)數(shù)據(jù),將對應(yīng)的升、阻力系數(shù)數(shù)據(jù)擬合成二次曲線如圖5所示,使用圖5中的極曲線結(jié)合式(31)得到式(12)中的參數(shù)KTc=0.23。將KTc和式(32)~式(34)的值代入式(12)即得到對于該螺旋槳飛機(jī)同時適用于巡航狀態(tài)、爬升狀態(tài)、下降狀態(tài)的極曲線表達(dá)式(35)。
圖5 爬升狀態(tài)極曲線比較Fig.5 Comparison of lift and drag polar for climb phase between calculated data and flight test data
(35)
將穩(wěn)定平飛飛行試驗(yàn)中不同重量、高度、速度組合下的試飛點(diǎn)升力系數(shù)代入式(35)計算得到的阻力系數(shù)與試飛數(shù)據(jù)處理得到的阻力系數(shù)進(jìn)行比較如圖6所示,使用該模型得到的阻力系數(shù)與試飛得到的阻力系數(shù)的誤差在5%以內(nèi)。
圖6 巡航狀態(tài)阻力系數(shù)計算值與試飛值比較Fig.6 Comparison of drag coefficient for calculated data and flight test data
相同爬升條件下,使用該通用極曲線模型即式(35)計算的爬升率與試飛值的比較如圖7所示,爬升率計算值與試飛值的誤差較巡航狀態(tài)偏大,個別點(diǎn)偏離了5%誤差帶。
圖7 爬升率ROC計算值與試飛值比較Fig.7 Comparison of rate of climb (ROC) between calculated data and flight test data
相同下降條件下,使用該通用極曲線模型即式(35)計算的下降率與試飛值的比較如圖8所示,下降率計算值與試飛值的誤差基本在5%左右。
圖8 下降率ROD計算值與試飛值比較Fig.8 Comparison of rate of descent(ROD) between calculated data and flight test data
基于對亞音速飛機(jī)極曲線通用表達(dá)式的理論推導(dǎo)和假設(shè)給出了螺旋槳飛機(jī)爬升、巡航、下降狀態(tài)的極曲線通用數(shù)學(xué)模型,通過一型螺旋槳飛機(jī)的穩(wěn)定平飛和爬升性能飛行試驗(yàn),得到了該極曲線模型中的各項系數(shù),確定出適用于該飛機(jī)的通用極曲線表達(dá)式。
使用該螺旋槳飛機(jī)的通用極曲線對巡航阻力系數(shù)、爬升率和下降率進(jìn)行計算,將計算結(jié)果與試飛值進(jìn)行比較,得到如下結(jié)論。
(1)巡航狀態(tài)的阻力系數(shù)與試飛值的誤差基本在5%以內(nèi)。
(2)下降狀態(tài)下,使用該模型計算的下降率與試飛值的誤差基本在5%左右。
(3)爬升狀態(tài)下,使用該模型計算的爬升率與試飛值的誤差較巡航狀態(tài)、下降狀態(tài)略大,絕大部分點(diǎn)在5%誤差帶以內(nèi),個別點(diǎn)偏離了5%誤差帶。
對于該螺旋槳飛機(jī)來說,使用該極曲線模型計算的飛行性能與試飛結(jié)果的誤差在工程計算精度允許的范圍,證明了該極曲線模型的工程實(shí)用性,可用于該飛機(jī)在不同飛行階段的飛行性能擴(kuò)展計算,同時為工程設(shè)計中確定螺旋槳飛機(jī)滑流影響下的極曲線提供參考。