摘要:碳/氮化鈦(TiC/N)兼具了金屬和陶瓷特性,在機(jī)加工、電子和催化等領(lǐng)域引起了廣泛關(guān)注。高質(zhì)量TiC/N 粉體對于制備高性能材料至關(guān)重要,但現(xiàn)有合成體系存在傳質(zhì)屏障與高反應(yīng)能壘等問題,制備高質(zhì)量TiC/N 粉體面臨較大挑戰(zhàn)。本文系統(tǒng)分析了不同方法制備高質(zhì)量TiC/N 粉體的難點(diǎn),并從強(qiáng)化傳質(zhì)和反應(yīng)等方面介紹了最新進(jìn)展,同時(shí)展望了TiC/N 粉體的發(fā)展趨勢。
關(guān)鍵詞:碳化鈦;氮化鈦;粉體合成;反應(yīng)工程;過程強(qiáng)化
中圖分類號(hào):TQ134 文獻(xiàn)標(biāo)志碼:A
電負(fù)性較大的氮(N)和碳(C)與電負(fù)性較小的鈦(Ti) 可形成多種碳化物(TiC, Ti2C, Ti3C2, Ti8C12,Ti13C14,Ti13C22)和氮化物(TiN,Ti2N,Ti3N4)[1-3],其中面心立方結(jié)構(gòu)的TiC 和TiN 最穩(wěn)定,同時(shí)含有共價(jià)鍵、離子鍵、金屬鍵[4],決定了其既具有金屬特性又具有陶瓷特性。碳/氮化鈦(TiC/N)不僅熔點(diǎn)高、硬度大、耐磨損、抗腐蝕[5],還具有優(yōu)異的導(dǎo)電性能[6],是服役于極端環(huán)境中的關(guān)鍵材料[7]。TiC/N 常作為機(jī)加工領(lǐng)域中的高速切削刀具[8]、核反應(yīng)堆和高速飛行器中的高溫零部件[9-10],以及微電子領(lǐng)域中的元素阻擋層[11-13]。此外,TiC/N 具有與鉑類似的電子結(jié)構(gòu),且具有優(yōu)異的穩(wěn)定性和抗腐蝕性,在快速崛起的電催化和新能源領(lǐng)域引起了廣泛關(guān)注,被認(rèn)為是下一代催化劑或催化劑載體[14-16]。
高質(zhì)量TiC/N 粉體是制備高性能材料的基礎(chǔ)[2]。由于TiC/N 是非化學(xué)計(jì)量比的化合物(TiCx,x = 0.47~1.00;TiNy,y = 0.6~1.2),在非化學(xué)計(jì)量比內(nèi)仍然可以保持面心立方結(jié)構(gòu)[17]。然而,只有在近化學(xué)計(jì)量比(x = y ≈ 1)時(shí)TiC/N 才能呈現(xiàn)出最高的熔點(diǎn)[17]、最大的硬度[18]、以及最優(yōu)的熱導(dǎo)率和電導(dǎo)率[19]。因此,高質(zhì)量TiC/N粉體通常需要滿足近化學(xué)計(jì)量比要求。此外,對于燒結(jié)制備高溫結(jié)構(gòu)陶瓷,TiC/N 粉體通常還需要滿足粒徑?。?.1~2.0 μm),純度高(氧雜質(zhì)的質(zhì)量分?jǐn)?shù)小于0.3%、游離碳的質(zhì)量分?jǐn)?shù)小于0.1%、金屬雜質(zhì)和非金屬雜質(zhì)含量均小于100 μg/g),流動(dòng)性好等要求。對于催化來說,粉體應(yīng)需具有高比表面積(大于100 m2/g)和暴露特定高活性晶面[20-22]。目前合成TiC/N 粉體主要有碳熱還原碳/氮化法、直接碳/氮化法和化學(xué)氣相沉積法。由于這些合成方法存在傳質(zhì)屏障、氧固溶、副反應(yīng)多、形核能壘高等問題,同時(shí)滿足上述多項(xiàng)指標(biāo)非常困難,合成高質(zhì)量TiC/N粉體面臨較大挑戰(zhàn)。
本文從反應(yīng)體系出發(fā)介紹了制備TiC/N 粉體的現(xiàn)狀,分析了影響TiC/N 粉體質(zhì)量的關(guān)鍵因素,并從強(qiáng)化傳熱傳質(zhì)以及反應(yīng)路徑優(yōu)化等方面介紹了TiC/N粉體制備技術(shù)的最新研究進(jìn)展和發(fā)展趨勢。
1 合成方法及粉體性能
1.1 基于TiO2 的碳熱反應(yīng)
由于TiO2、C 和N2 價(jià)廉且無毒,目前工業(yè)中主要基于TiO2 碳熱還原法制備TiC/N 粉體,即TiO2-C 和TiO2-C-N2 體系。該合成方法較為簡單,將C 粉和TiO2 粉體按照反應(yīng)比例混合后置于高溫爐中,在Ar 或N2 氣氛中逐步將TiO2 還原并碳化或氮化(反應(yīng)方程式TiO2 + 3C = TiC + 2CO 或2TiO2 + N2 + 4C =2TiN + 4CO)。上述反應(yīng)活化能大(260 ~ 730 kJ/mol)、溫度高(1 300 ~ 3 000 ℃)且時(shí)間長(10 ~ 24 h)[23-26],且反應(yīng)體系存在很多副反應(yīng)[27],只有在特定溫度和反應(yīng)比例下才能得到TiC/N(圖1)。在批量生產(chǎn)過程中,難以確保TiO2 與C 粉按照所需反應(yīng)比例均勻混合,通常存在局部原料配比失衡,產(chǎn)物中含有殘留TiO2或中間相TiOx(質(zhì)量分?jǐn)?shù)約5% )以及游離碳(質(zhì)量分?jǐn)?shù)約2%)[5,27,28]。對于合成TiN 來說,原料配比失衡還會(huì)導(dǎo)致產(chǎn)物中存在TiC 雜相。因此,強(qiáng)化傳質(zhì)和改善物料配比均勻性是減少或消除原料殘留和雜相的關(guān)鍵。為強(qiáng)化傳質(zhì),現(xiàn)有策略包括機(jī)械活化法,即通過球磨機(jī)或氣流將初始形成的外殼磨碎,暴露出未反應(yīng)的TiO2,并與殘留碳粉反應(yīng)。反復(fù)3~5 次研磨再碳/氮化后,最小粉體粒徑可控制到0.1 μm,計(jì)量比約0.78,游離碳質(zhì)量分?jǐn)?shù)約1.0%[29-31]。由于TiC和TiN 硬度大、耐磨損,球磨會(huì)引入約1.76%(質(zhì)量分?jǐn)?shù))的Fe、W、Zr、O 等雜質(zhì)[32]。理論上減小原料粒徑,縮短傳質(zhì)距離可避免球磨后處理。當(dāng)TiO2 粉體粒徑降低到約20 nm 時(shí),盡管可以消除TiO2 殘留,計(jì)量比可提升至約0.89,但由于合成溫度高,納米粉體會(huì)燒結(jié)團(tuán)聚,仍需研磨后處理才能獲得亞微米粉體,且粉體中還含有游離碳(質(zhì)量分?jǐn)?shù)約0.8%)[33-35]。游離碳難避免的主要原因在于TiO2 與C 的密度和尺寸相差大,難以實(shí)現(xiàn)按照所需比例均勻混合。為改善物料的均勻性,減少游離碳,當(dāng)前主要方法為包覆法[24],即通過液相或氣相沉積在亞微米TiO2 上包覆特定厚度碳,可將游離碳質(zhì)量分?jǐn)?shù)降低到約0.5%[24, 36-39]。為進(jìn)一步減少游離碳,可采用在原子或分子尺度上能實(shí)現(xiàn)較均勻混合的溶膠-凝膠法[40-41],通過調(diào)控網(wǎng)絡(luò)聚合結(jié)構(gòu)中Ti-O-C 的比例,將游離碳質(zhì)量分?jǐn)?shù)降低至約0.2%,粉體計(jì)量比約0.92,粒徑約20~300 nm,但氧雜質(zhì)的質(zhì)量分?jǐn)?shù)較高(約0.5%)。這主要是由于C、N、O 原子半徑相差不大,Ti?O 親和性較強(qiáng)[42],能固溶在TiC 和TiN 晶格中(最高可固溶氧的質(zhì)量分?jǐn)?shù)達(dá)到12.9%,形成TiO0.5C0.5)[43,44]。如何進(jìn)一步強(qiáng)化傳質(zhì),控制氮/碳化反應(yīng),揭示氧元素遷移機(jī)制,減少或避免氧固溶,是未來碳熱法亟待解決的關(guān)鍵問題。
1.2 基于Ti 粉的碳化和氮化反應(yīng)
直接碳/氮化法摒棄了TiO2 作為鈦源, 采用Ti 粉與C 或N2 直接合成粉體(反應(yīng)方程式Ti + C =TiC, Ti + 0.5N2 = TiN) ,即Ti-C/CH4 和Ti-N2 體系。然而,反應(yīng)過程中存在與碳熱還原法類似的傳質(zhì)屏障(圖2) 。通常產(chǎn)物中含有游離Ti(質(zhì)量分?jǐn)?shù)約1.0%),而且碳/氮化效率低[2]。在約1 100 ℃ 合成TiN時(shí),外殼的生成速率約0.075 μm/h,氮化10 μm 鈦粉至少需要133 h,并且氮含量從表面到內(nèi)部逐漸降低[45],粉體整體計(jì)量比約0.87。理論上減小粒徑可縮短反應(yīng)時(shí)間和提升計(jì)量比,然而獲得高純超細(xì)鈦粉非常困難,因?yàn)殁伔蹣O易被氧化,表面存在氧化膜,粉體越細(xì),氧質(zhì)量分?jǐn)?shù)越高。直徑約70 μm 的鈦粉粒徑降至約30 μm 時(shí),氧質(zhì)量分?jǐn)?shù)從0.2% 增加到0.5%[46]。此外,超細(xì)鈦粉成本非常高,工業(yè)中并不直接使用超細(xì)鈦粉,而是采用氮化粗鈦粉(粒徑50 μm)并結(jié)合球磨機(jī)或等離子體輔助球磨機(jī)強(qiáng)化傳質(zhì)優(yōu)化粉體性能[47],最細(xì)粒徑約0.1 μm,計(jì)量比約0.9。但是,球磨會(huì)引入質(zhì)量分?jǐn)?shù)約1.76% 的Fe、W、O 等雜質(zhì)。本課題組[48]的研究表明,當(dāng)采用氧質(zhì)量分?jǐn)?shù)較低(0.4%)、粒徑約5 μm 的TiH2 粉體時(shí),可一步直接合成約5 μm 的單相TiN0.98 粉體。盡管該方法合成了近化學(xué)計(jì)量比的粉體,但是粉體粒徑較大,且由于固有傳質(zhì)屏障,導(dǎo)致直接合成法溫度高、時(shí)間長、能耗較高。
為解決直接合成法中能耗高的問題,工業(yè)中常采用自蔓延燃燒法合成TiC/N,即將鈦粉與碳粉通過混料機(jī)混合后堆積在臥式反應(yīng)爐中,或鈦粉堆積在N2 氣氛的臥式反應(yīng)爐中,由于鈦粉的碳化反應(yīng)(焓變?yōu)?189 kJ/mol)和氮化反應(yīng)(焓變?yōu)?337 kJ/mol)為強(qiáng)放熱反應(yīng),電火花引燃后,可依靠自身反應(yīng)釋放出的熱量維持后續(xù)反應(yīng),反應(yīng)非常迅速,通常幾秒鐘至幾分鐘即可結(jié)束反應(yīng)。因此,自蔓延燃燒法具有效率高、能耗低的顯著優(yōu)勢。由于放熱量較大,燃燒波中前端鈦粉液化黏連,被碳化或氮化后形成粗大塊體(粒徑為100 μm ~ 10 mm),粉體粒徑達(dá)不到要求。因此,控制熱量至關(guān)重要。目前已開發(fā)出3 類熱量稀釋劑:
(1)添加易分解、揮發(fā)或升華的物質(zhì)[49-51],例如NH4Cl、NaCl、KCl、MgCl3、CaCl2等,但是這些添加劑會(huì)引入Cl 和金屬雜質(zhì),雜質(zhì)的總質(zhì)量分?jǐn)?shù)約0.6%。
(2)添加TiO2 和碳粉混合物[52],耦合TiO2 碳/氮化吸熱反應(yīng)。然而,由于反應(yīng)路徑復(fù)雜、氧固溶、物料配比均勻性問題,產(chǎn)物中游離碳(約0.6%) 和氧雜質(zhì)(約0.5%) 的質(zhì)量分?jǐn)?shù)較高。
(3)添加TiC/N種子粉體[53]。由于TiC/N 熔點(diǎn)高(約3 000 ℃),難以融化,可起到物理阻隔作用,抑制燒結(jié),但是物料難以均勻混合,完全避免局部大塊體非常困難,仍需球磨后處理才能獲得超細(xì)粉體。目前優(yōu)化后的自蔓延燃燒法可合成粒徑約0.1~5.0 μm,氧質(zhì)量分?jǐn)?shù)約0.3%,計(jì)量比約0.93 的TiC/N 粉體。如何破解傳質(zhì)屏障并開發(fā)與反應(yīng)體系相匹配的高效精準(zhǔn)控制熱量的方法,避免復(fù)雜的后處理工藝,是直接法合成高質(zhì)量TiC/N粉體的重要突破口。例如,可將熱量稀釋劑包覆在鈦粉表面再進(jìn)行碳化或氮化反應(yīng),實(shí)現(xiàn)熱量稀釋劑在料床均勻分布,從而解決局部熱量難控的問題。
1.3 化學(xué)氣相合成法
原子或者分子尺度的化學(xué)氣相合成法可有效避免固相反應(yīng)體系中的傳質(zhì)屏障。目前TiC/N 的化學(xué)氣相合成主要為基于TiCl4 的碳/氮化反應(yīng)[2,54,55],即TiCl4-CxHy、TiCl4-N2-H2、TiCl4-NH3 體系, 其中CxHy碳源為CH4、C2H2、C2H4、C3H8 等。根據(jù)氣相形核理論可知,上述體系要實(shí)現(xiàn)均相形核制備TiC/N 粉體,沉積反應(yīng)平衡常數(shù)(K)需要大于103,否則只能基于異質(zhì)形核獲得涂層[2]。因此,上述體系中粉體合成溫度至少需要1 300 ℃,目前主要采用高溫等離子體或電弧化學(xué)氣相沉積法合成粉體。該方法可獲得粒徑約10 nm ~ 5 μm,氧質(zhì)量分?jǐn)?shù)約0.45% 的粉體。由于合成溫度遠(yuǎn)高于CxHy 裂解碳化溫度,碳化鈦產(chǎn)物中含有5%~30% 的碳雜質(zhì)[53]。另外,高溫下碳/氮化反應(yīng)路徑非常復(fù)雜[56],不同反應(yīng)路徑中Ti?Cl 鍵斷裂和Ti?C/N 鍵形成難以精確匹配,且等離子火炬內(nèi)外溫差大(約10 倍溫差),不同溫區(qū)的產(chǎn)物組成不同(圖3),存在TiCl2 和TiCl3 雜質(zhì)(質(zhì)量分?jǐn)?shù)約5%)[57]。通過乙醇洗滌除去TiCl2 和TiCl3 雜質(zhì)后,產(chǎn)物中高計(jì)量比(約1.20)和低計(jì)量比(約0.60)粉體混雜,精準(zhǔn)合成近化學(xué)計(jì)量比的粉體難度大。此外,等離子體設(shè)備成本較高,形成低成本的工業(yè)化大規(guī)模生產(chǎn)還存在一定挑戰(zhàn)。
為降低反應(yīng)合成溫度和簡化反應(yīng)路徑,美國礦山局開發(fā)了Mg 蒸氣輔助的氣相沉積法[58,59], 即TiCl4-Mg-CH4/NH3 體系, 利用Mg 蒸氣的強(qiáng)還原性將TiCl4 還原并碳/氮化獲得粉體。在1 000 ℃ (K =1021 gt;gt; 103)基于均相形核獲得粉體,洗滌研磨后可獲得粒徑小于1.0 μm、計(jì)量比約0.91、游離碳質(zhì)量分?jǐn)?shù)約0.23% 的粉體。但是,該粉體中存在較多雜質(zhì),其中O 雜質(zhì)的質(zhì)量分?jǐn)?shù)為0.6%~1.1%,F(xiàn)e 雜質(zhì)的質(zhì)量分?jǐn)?shù)為0.1%~0.6%,Mg 雜質(zhì)的質(zhì)量分?jǐn)?shù)為0.3%~0.8%,Cl 雜質(zhì)的質(zhì)量分?jǐn)?shù)為0.1%~0.3%[58]。
最近,本課題組[60,61] 針對化學(xué)氣相沉積難以均相形核的問題,設(shè)計(jì)了H2 預(yù)還原流態(tài)化合成TiC/N的方法,即首先采用H2 將TiCl4 還原為TiCl3,隨后將氣態(tài)TiCl3 引入到含有種子粉體的流化床中進(jìn)行碳化或氮化反應(yīng)(圖4(a) ) , 即TiCl3-CH4、TiCl3-N2、TiCl3-NH3 體系。在1 000 ℃ 時(shí),TiCl3 的碳化和氮化反應(yīng)平衡常數(shù)分別達(dá)到104 和105.8,實(shí)現(xiàn)了均相形核,獲得了平均粒徑約77.1 nm、純度為99.46 % 的TiC0.94粉體和平均粒徑約100 nm 的TiN0.96 粉體,其中氧雜質(zhì)的質(zhì)量分?jǐn)?shù)約0.4%。此外,當(dāng)采用TiCl3 作為鈦源時(shí),可以顯著降低碳化和氮化反應(yīng)溫度(降低約400 ℃),在600~700 ℃ 可以合成層狀結(jié)構(gòu)的Ti2CCl2 和Ti2NCl2粉體[62],而在約800 ℃ 時(shí),Ti2CCl2和Ti2NCl2粉體會(huì)脫氯分別轉(zhuǎn)化為碳化鈦和氮化鈦。由于合成溫度遠(yuǎn)低于CH4 裂解溫度(約1 000 ℃) ,產(chǎn)物中幾乎不含游離碳。
為進(jìn)一步提升均相形核驅(qū)動(dòng)力,本課題組提出了“基于TiCl2 歧化反應(yīng)活化碳化/氮化反應(yīng)”的新思路。首先明確了TiCl4 的分壓是基于Ti 和TiCl4 歸中反應(yīng)定向合成TiCl2 的關(guān)鍵控制因數(shù),探明了鈦粉粒徑對流化行為和產(chǎn)率的影響關(guān)系,開發(fā)了流態(tài)化定向合成TiCl2 的方法(圖4(b))[63]。隨后,基于TiCl2歧化反應(yīng)釋放出高活性Ti 原子活化碳/氮化反應(yīng),即TiCl2-CH4、TiCl2-N2、TiCl2-NH3 體系。在1 000 ℃ 時(shí),活性鈦的碳/氮化反應(yīng)平衡常數(shù)分別為1021 和1025(遠(yuǎn)大于103),解決了難以均相形核的難題,獲得了平均粒徑約0.4~1.2 μm、計(jì)量比約0.94~0.96、純度約99.4%~99.8% 的碳化鈦和氮化鈦粉體。在此基礎(chǔ)上,解析了沉積溫度、濃度對粉體形貌的影響行為,初步實(shí)現(xiàn)了單晶立方[64-65]、球形[66]、二維TiC/N 粉體[67]形貌定向合成(圖5),在超高溫陶瓷和催化領(lǐng)域呈現(xiàn)出優(yōu)異的性能,為解決難以合成高質(zhì)量粉體的問題提供了新方案。
2 結(jié)論及展望
針對傳統(tǒng)反應(yīng)體系存在“傳質(zhì)與反應(yīng)”不匹配以及均相形核能壘高的問題,近年來通過強(qiáng)化傳熱傳質(zhì)以及優(yōu)化反應(yīng)體系,顯著改善了TiC/N 粉體的質(zhì)量,但是合成正化學(xué)計(jì)量比或近化學(xué)計(jì)量比TiC/N 粉體還面臨較大挑戰(zhàn)。如何構(gòu)建Ti 和C/N 原子等計(jì)量比成鍵是未來亟待解決的關(guān)鍵問題。此外,盡管與貴金屬相比,TiC/N 粉體的催化活性仍然較低,但其成本優(yōu)勢和優(yōu)異的穩(wěn)定性使其在迅速崛起的新能源和電催化領(lǐng)域受到廣泛關(guān)注。通過增加比表面積、選擇性暴露{100},{111},{110},{311}等特定高活性晶面、負(fù)載單原子等策略來提高催化活性和選擇性,以實(shí)現(xiàn)功能的多樣化和性能的定向優(yōu)化,是未來TiC/N 粉體亟待研究的主要內(nèi)容和重要發(fā)展方向。
參考文獻(xiàn):
[ 1 ]CUI C, ZHANG H, GU Y, et al. Tailoring titanium carbideclusters for new materials: From met-cars to carbon-dopedsuperatoms[J]. Journal of the American Chemical Society,2024, 146: 9302-9310.
[ 2 ]XIANG M, DING W, DONG Q, et al. Synthesis methodsand powder quality of titanium monocarbide[J]. ChineseJournal of Chemical Engineering, 2024, 72: 10-18.
[ 3 ]ASGARY S, EBRAHIMINEJAD Z, RAMEZANI A. Correlationof heat treatment and structural, optical, and electricalproperties of titanium nitride thin layers[J]. Journal ofInterfaces, Thin Films, and Low Dimensional Systems,2022, 6: 591-602.
[ 4 ]ZHANG Y, LI J, ZHOU L, et al. A theoretical study on thechemical bonding of 3d-transition-metal carbides[J]. SolidState Communications, 2002, 121: 411-416.
[ 5 ] MAO H, SHEN F, ZHANG Y, et al. Microstructure and mechanical properties of carbide reinforced TiC-basedultra-high temperature xeramics: A review[J]. Coatings,2021, 11(12): 1444.
[ 6 ]LI Y, LIN C, WU Z, et al. Solution-processed all-ceramicplasmonic metamaterials for efficient solar-thermal conversionover 100—727 ℃[J]. Advanced Materials, 2021,33(1): 2005074.
[ 7 ]LIDA H, PABLO F L, FRANCISCO A C, et al. Ti(C, N)and WC-based cermets: A review of synthesis, propertiesand applications in additive manufacturing[J]. Materials,2021, 14: 6786.
[ 8 ]WANG D, BAI Y, XUE C, et al. Optimization of sinteringparameters for fabrication of Al2O3/TiN/TiC micro-nanocompositeceramic tool material based on microstructureevolution simulation[J]. Ceramics International, 2021, 47:5776-5785.
[ 9 ]ZHANG S, HUANG X, ZHAO D, et al. Fabrication andtest of a conceptual first wall containing titanium nitride asa tritium permeation barrier[J]. Fusion Engineering andDesign, 2022, 182: 113244.
[10]AGARWAL S, KOYANAGI T, BHATTACHARYAA, et al. Neutron irradiation-induced microstructure damagein ultra-high temperature ceramic TiC[J]. Acta Materialia,2020, 186: 1-10.
[11]PATSALAS P, KALFAGIANNIS N, KASSAVETIS S.Optical properties and plasmonic performance of titaniumnitride[J]. Materials, 2015, 8(6): 3128-3154.
[12]PENG L, WANG X, COROPCEANU I, et al. Titaniumnitride modified photoluminescence from single semiconductornanoplatelets[J]. Advanced Functional Materials,2020, 30: 1904179.
[13]GRIGORAS K, KESKINEN J, GRONBERG L, et al.Conformal titanium nitride in a porous silicon matrix: Ananomaterial for in-chip supercapacitors[J]. Nano Energy,2016, 26: 340-345.
[14]LI Z, CUI Y R, WU Z W, et al. Reactive metal-supportinteractions at moderate, temperature in two-dimensional niobium-carbide-supported platinum catalysts[J]. NatureCatalysis, 2018, 1: 349-355.
[15]SAHA S, RAJBONGSHI B M, RAMANI V, et al. Titaniumcarbide: An emerging electrocatalyst for fuel cell andelectrolyser[J]. International Journal of Hydrogen Energy,2021, 46: 12801-12821.
[16]HE P, WANG Y, ZHOU H. Titanium nitride catalystcathode in a Li–air fuel cell with an acidic aqueous solution[J]. Chemical Communications, 2011, 47: 10701-10703.
[17]BERCHE A, DUPIN N, GUENAU C, et al. Ti (Titanium)binary alloy phase diagrams[J]. Computer Coupling ofPhase Diagrams and Thermochemistry, 1994, 18(1): 71-79.
[18]HUANG J H, LAU K W, YU G P. Effect of nitrogen flowrate on structure and properties of nanocrystalline TiN thinfilms produced by unbalanced magnetron sputtering[J]. Surfaceand Coatings Technology, 2005, 191: 17-24.
[19]孫金峰. MA 制備非化學(xué)計(jì)量比TiCx 和TiNx 及其燒結(jié)特性的研究[D]. 河北秦皇島: 燕山大學(xué), 2009.
[20]王康明, 張海濤, 李濤. CuFe (100) 及(110) 面上合成氣制低碳醇碳鏈增長機(jī)理研究[J]. 華東理工大學(xué)學(xué)報(bào)(自然科學(xué)版), 2022, 48(2): 139-147.
[21]廖春鑫, 盧澤強(qiáng), 陳愛平, 等. 納米片組裝的花球狀BiOI 光催化劑[J]. 華東理工大學(xué)學(xué)報(bào)(自然科學(xué)版),2022, 48(1): 44-50.
[22]張鵬, 李蔚, 陶宏磊. 煅燒硫酸鋁銨復(fù)鹽低溫合成α-Al2O3: 葡萄糖和預(yù)壓的影響[J]. 華東理工大學(xué)學(xué)報(bào)(自然科學(xué)版), 2023, 49(5): 647-652.
[23]KOC R. Kinetics and phase evolution during carbothermalsynthesis of titanium carbide from ultrafine titania/carbonmixture[J]. Journal of Materials Science, 1998, 33: 1049-1055.
[24]SWIFT G A, KOC R. Formation studies of TiC from carboncoated TiO2[J]. Journal of Materials Science, 1999, 34:3083-3093.
[25]SEKI I. Kinetic investigation into the formation of titaniumnitride from titanium sioxide by carbonitrization[J]. MaterialsTransactions, 2017, 58: 1546-1554.
[26]ZHANG R, FAN G Q, HOU Y, et al. Carbonitridingreduction of TiO2 in the CH4-H2-N2 system: Reductiontemperature effect and kinetics[J]. Journal of Mining andMetallurgy, Section B: Metallurgy, 2024, 60: 127-137.
[27]WEI W, ZHAO W, LIU G, et al. Thermodynamic descriptionof the Ti-C-N-O system[J]. Calphad, 2023, 80: 102520.
[28]MHADHBIA M, DRISS M. Titanium carbide: Synthesis,properties and applications[J]. Brilliant Enginering, 2021, 2:1-11.
[29]REN R M, YANG Z G, SHAW L L. Synthesis of nanostructuredTiC via carbothermic reduction enhanced bymechanical activation[J]. Scripta Materialia, 1998, 38: 735-741.
[30]XU X Y, ZHENG Y, ZHANG J J, et al. Evolution ofmicrostructure and interfacial characteristics of completesolid-solution Ti(C, N)-based cermets fabricated by mechanicalactivation and subsequent in situ carbothermal reduction[J]. Ceramics International, 2021, 47(12): 16786-16793.
[31]LAPSHIN O, SHKODA O, IVANOVA O, et al. Discreteone-stage mechanochemical synthesis of titanium-nitride ina high-energy mill[J]. Metals, 2021, 11: 1743.
[32]RAHAEI M B, YAZDANIRAD R, KAZEMZADEHA, et al. Mechanochemical synthesis of nano TiC powderby mechanical milling of titanium and graphite powders[J].Powder Technology, 2012, 217: 369-376.
[33]BERGER L M, GRUNER W. Investigation of the effect ofa nitrogen-containing atmosphere on the carbothermalreduction of titanium dioxide[J]. International Journal ofRefractory Metals and Hard Materials, 2002, 20(3): 235-251.
[34]SHAVIV R. Synthesis of TiN and TiNxCy: Optimization ofreaction parameters[J]. Materials Science and Engineering:A, 1996, 209: 345-352.
[35]REN R, YANG Z, SHAW L L. Nanostructured TiN powderprepared via an integrated mechanical and thermal activation[J]. Materials Science and Engineering: A, 2000, 286:65-71.
[36]LIU X, ZHANG S. Low-temperature preparation of titaniumcarbide coatings on graphite flakes from molten salts[J].Journal of the American Ceramic Society, 2008, 91: 667-670.
[37]KOC R, FOLMER J S. Carbothermal synthesis of titaniumcarbide using ultrafine titania powders[J]. Journal of MaterialsScience, 1997, 32: 3101-3111.
[38]LECONTE Y, MASKROT H, BOIME N, et al. TiC nanocrystalformation from carburization of laser-grown Ti/O/Cnanopowders for nanostructured ceramics[J]. The Journal ofPhysical Chemistry B, 2006, 110: 158-163.
[39]SAURABH A, MEGHANA C M, SINGH P K, et al.Titanium-based materials: Synthesis, properties, and applications[J]. Materials Today: Proceedings, 2022, 56: 412-419.
[40]SHARIFI F, MAHMOODI Z, ABBASI S M, et al.Synthesis and characterization of mesoporous TiCnanopowder/nanowhisker with low residual carbon processedby sol-gel method[J]. Journal of Materials Researchand Technology, 2023, 22: 2462-2472.
[41]GIORDANO C, ANTONIETTI M. Synthesis of crystallinemetal nitride and metal carbide nanostructures by sol-gelchemistry[J]. Nano Today, 2011, 6: 366-380.
[42]CAO Z, XIE W, JUNG I, et al. Critical evaluation andthermodynamic optimization of the Ti-C-O system and itsapplications to carbothermic TiO2 reduction process[J].Metallurgical and Materials Transactions B, 2015, 46B:1782.
[43]MILLER D N, AZAD A K, DELPOUVE H, et al. Studieson the crystal structure, magnetic and conductivity propertiesof titanium oxycarbide solid solution (TiO1-xCx)[J].Journal of Materials Chemistry A, 2016, 4: 5730.
[44]JIANG B, HOU N, HUANG S, et al. Structural studies ofTiO1-xCx solid solution by Rietveld refinement and firstprinciplescalculations[J]. Journal of Solid State Chemistry,2013, 204: 1-8.
[45]SINGH R P, DOHERTY R D. Synthesis of titanium nitridepowders under glow discharge plasma[J]. Materials Letters,1990, 9: 87-89.
[46]JENA K D, XU Y, HAYAT M D, et al. Aiming at low-oxygentitanium powder: A review[J]. Powder Technology,2021, 394: 1195.
[47]LAPSHIN O, IVANOVA O. Modeling of the mechanicaltreatment of a solid reactant under active gas in the highenergymill on the example of the titanium-gaseous nitrogensystem[J]. Advanced Powder Technology, 2022, 33:103852.
[48]SONG M, XIANG M, YANG Y, et al. Synthesis ofstoichiometric TiN from TiH2 powder and its nitridationmechanism[J]. Ceramics International, 2018, 44: 16947-16952.
[49]WANG Z, LING Y Y, WANG Z H, et al. Researchdevelopment in preparation of TiC materials via moltensalt-assisted method[J]. Chinese Journal of Engineering,2021, 43(1): 97-107.
[50]YAN M G, XIONG Q M, HUANG J T, et al. Molten saltsynthesis of titanium carbide using different carbon sourcesas templates[J]. Ceramics International, 2021, 47: 17589-17596.
[51]ZAKORZHEVSKII V V, KOVALEV I D, BARINOV YN. Self-propagating high-temperature synthesis of titaniumnitride with the participation of ammonium chloride[J].Inorganic Materials, 2017, 53: 278-286.
[52]BOROVINSKAYA I P, IGNAT’EVA T I, EMEL’YANOVA O M, et al. Self-propagating high-temperaturesynthesis of ultrafine and nanometer-sized TiC particles[J].Inorganic Materials, 2007, 43: 1206-1214.
[53]CHICARDI E, GOTOR F J, ALCALá M D, et al. Effectsof additives on the synthesis of TiCxN1?x by a solid-gasmechanically induced self-sustaining reaction[J]. CeramicsInternational, 2018, 44: 7605-7610.
[54]胡宏晨, 胡黎明. 微波等離子體化學(xué)氣相沉積合成TiN 超細(xì)顆粒[J]. 華東理工大學(xué)學(xué)報(bào)(自然科學(xué)版), 1994,20(2): 141-144.
[55]SAMOKHIN A V, ALEKSEEV N V, SINAISKIY MA, et al. Equilibrium energy and technological character-istics of plasma synthesis of titanium nitride,carbide, and carbonitride from titanium tetrachloride[J]. InorganicMaterials: Applied Research, 2016, 7: 344-349.
[56]BABOUL A G, SCHLEGEL H B. Structures and energeticsof some potential intermediates in titanium nitridechemical vapor deposition: TiClm(NH2)n, TiClm(NH2)nNH,and TiClm(NH2)nN. an ab initio molecular orbital study[J].The Journal of Physical Chemistry B, 1998, 102(26): 5152-5157.
[57]OKABE Y, HOJO J I, KATO A. Formation of fine titaniumcarbide powders by a vapor-phase reaction[J]. Journalof the Ceramic Society of Japan, 1978, 86: 518-526.
[58]LEE D W, YU J H, JANG T S. Properties of TiC and TiCNnanoparticles fabricated by a magnesium thermal reductionprocess[J]. Solid State Phenom, 2007, 124-126: 1225-1228.
[59]HARBUCK D D, DAVIDSON C F, SHIRTS M B.Gas-phase production of titanium nitride and carbidepowders[J]. JOM, 1986, 38: 47-50.
[60]SONG M, YANG Y, XIANG M, et al. Synthesis of nanosizedTiC powders by designing chemical vapor depositionsystem in a fluidized bed reactor[J]. Powder Technology,2021, 380: 256-264.
[61]桑元, 向茂喬, 宋淼,等. 流化床化學(xué)氣相沉積法制備近化學(xué)計(jì)量比的TiN 粉體[J]. 化工學(xué)報(bào), 2020, 71: 2743-2751.
[62]XIANG M, SHEN Z, ZHENG J, et al. Gas-phase synthesisof Ti2CCl2 enables an efficient catalyst for lithiumsulfurbatteries[J]. The Innovation, 2024, 5: 100540.
[63]SONG M, YANG Y, ZHAO H, et al. Synthesis of TiCl2powders through reactive gas phase infiltration in a fluidizedbed reactor[J]. Particuology, 2021, 57: 95-103.
[64]SONG M, CHEN D H, YANG Y, et al. Crystal facetengineering of single-crystalline TiC nanocubes for improvedhydrogen evolution reaction[J]. Advanced FunctionalMaterials, 2021, 31: 2008028.
[65]DONG Q, MA S, ZHU J Y, et al. Ultrahigh mass activityfor the hydrogen evolution reaction by anchoring platinumsingle atoms on active (100) facets of TiC via cation defectengineering[J]. Advanced Functional Materials, 2023, 33:2210665.
[66]XIANG M, SONG M, ZHU Q S, et al. Facile synthesis ofhigh-melting point spherical TiC and TiN powders at lowtemperature[J]. Journal of the American Ceramic Society,2020, 103: 889-898.
[67]XIANG M, SONG M, ZHU Q S, et al. Inducing twodimensionalsingle crystal TiN arrays with exposed {111}facets by a novel chemical vapor deposition with excellentelectrocatalytic activity for hydrogen evolution reaction[J].Chemical Engineering Journal, 2021, 404: 126451.
(責(zé)任編輯:劉亞萍)
基金項(xiàng)目: 國家自然科學(xué)基金(22178348);中國科學(xué)院基礎(chǔ)前沿科學(xué)研究項(xiàng)目(ZDBS-LY-JSC041)