摘 要:分子標(biāo)記技術(shù)的發(fā)展與育種工作的結(jié)合,改變了植物育種研究的模式。多種類型的分子標(biāo)記被開發(fā)和應(yīng)用,與測序技術(shù)的進(jìn)步共同加快了作物改良的進(jìn)程。闡述了分子標(biāo)記在種質(zhì)資源評價、回交轉(zhuǎn)育篩選、性狀聚合、育種材料早代選擇、QTL定位等方面發(fā)揮的重要作用,這些技術(shù)的應(yīng)用將更好地助力作物新品種培育;分析了分子標(biāo)記輔助選擇應(yīng)用存在的問題;展望了分子標(biāo)記輔助選擇在育種中的應(yīng)用前景。
關(guān)鍵詞:分子標(biāo)記; 育種; QTL
中圖分類號:S330" " " "文獻(xiàn)標(biāo)識碼:A" " " 文章編號:1002-204X(2024)05-0035-09
doi:10.3969/j.issn.1002-204x.2024.05.006
Advancements in Research of Crop Molecular Marker-Assisted Breeding
Li Xin
(1.Agricultural Biotechnology Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia 750002; 2.Ningxia Key Laboratory of Agricultural Biotechnology, Yinchuan, Ningxia 750002)
Abstract The development of molecular marker technology combined with breeding work has changed the model of plant breeding research. Many types of molecular markers have been developed and applied, and together with advances in sequencing technology, the process of crop improvement has been accelerated. Molecular markers play an important role in germplasm resource evaluation, backcross transfer-breeding screening, trait aggregation, early selection of breeding materials, QTL mapping, etc.. The application of these technologies will better facilitate the cultivation of new crop varieties. The existing problems in the application of molecular marker-assisted selection are analyzed. The application prospect of molecular marker-assisted selection in breeding is prospected.
Key words Molecular marker; Breeding; QTL
糧食安全事關(guān)國計民生,是國家安全的重要基礎(chǔ)。種子是農(nóng)業(yè)的“芯片”,種業(yè)是保障糧食安全的關(guān)鍵。育種是按照人類需求創(chuàng)造和選擇遺傳變異、改良物種性狀并使之穩(wěn)定遺傳以培育優(yōu)良動植物新品種的技術(shù),其核心是優(yōu)良基因型的選擇和應(yīng)用。遺傳變異是作物新品種改良和發(fā)展的基礎(chǔ)[1]。變異在物種傳代和環(huán)境影響下隨機發(fā)生,存在很大的不確定性,且大多產(chǎn)生有害性狀。人為選擇大大加快了作物有利性狀的形成和積累,使農(nóng)業(yè)生產(chǎn)得以穩(wěn)定發(fā)展。自20世紀(jì)50年代以來,隨著作物“綠色革命”的掀起和雜交育種技術(shù)推廣應(yīng)用,育種技術(shù)推動了產(chǎn)業(yè)變革,作物產(chǎn)量實現(xiàn)了快速提升[2]。伴隨著生物技術(shù)的興起,新一輪育種革新蓄勢待發(fā)。分子標(biāo)記輔助選擇、轉(zhuǎn)基因、基因編輯、高通量測序、基因組選擇等生物技術(shù)與育種廣泛結(jié)合,推動育種研究向著更加快速、精準(zhǔn)、高效的方向發(fā)展[3]。分子標(biāo)記輔助選擇是應(yīng)用性狀控制基因組區(qū)域的功能標(biāo)記選擇感興趣的表型性狀的過程。根據(jù)目標(biāo)性狀連鎖多態(tài)性區(qū)域序列信息設(shè)計分子標(biāo)記位點,通過分子標(biāo)記輔助作物育種,實現(xiàn)目標(biāo)性狀的精準(zhǔn)和高效鑒定。
1 育種中常用的分子標(biāo)記技術(shù)
遺傳標(biāo)記是植物育種領(lǐng)域的重要發(fā)展[4]。遺傳標(biāo)記是具有控制特定基因或性狀的已知染色體位置的基因或DNA序列。遺傳標(biāo)記與靶基因密切相關(guān),它們起著標(biāo)志或旗幟的作用[5]。遺傳標(biāo)記大致分為兩類:經(jīng)典標(biāo)記和分子標(biāo)記。經(jīng)典標(biāo)記主要包括形態(tài)學(xué)、細(xì)胞學(xué)和生物化學(xué)標(biāo)記。分子標(biāo)記則主要是基于DNA序列開發(fā)的標(biāo)記。隨著分子生物學(xué)技術(shù)的發(fā)展和對DNA序列了解的逐步深入,分子標(biāo)記逐漸成為關(guān)注度最高的遺傳標(biāo)記[6]。理想的DNA標(biāo)記應(yīng)該是共顯性、具有高度多態(tài)性、在整個基因組中均勻分布、具有高度可重復(fù)性,以便于區(qū)分不同的基因型[7]。自分子標(biāo)記技術(shù)出現(xiàn)以來,已開發(fā)了多種不同類型的分子標(biāo)記:限制性片段長度多態(tài)性(restriction fragment length polymorphism, RFLP)[8]、多態(tài)性DNA隨機擴增(Randomly amplified polymorphic DNA, RAPD)[9-10]、擴增片段長度多態(tài)性(amplified fragment length polymorphism, AFLP)[11]、微衛(wèi)星或簡單序列重復(fù)(simple sequence repeats, SSR)[12-13]、序列特征擴增區(qū)(sequence characterized amplified region, SCAR)[14]、切割擴增多態(tài)性序列(Cleaved amplified polymorphic sequences, CAPS)[15]、單核苷酸多態(tài)性(single- nucleotide polymorphism, SNP)[16]和多樣性陣列技術(shù)(diversity arrays technology, DArT)標(biāo)記[17]等。
1.1 RFLP
RFLP是最早開發(fā)的分子標(biāo)記技術(shù),也是唯一一種基于雜交的標(biāo)記系統(tǒng)。同一物種不同個體基因組中由于插入/缺失、點突變、易位、重復(fù)和倒置而表現(xiàn)多態(tài)性。分離純化基因組DNA是RFLP方法的第一步。將基因組DNA經(jīng)由限制性內(nèi)切酶消化切割,形成大量不同長度的DNA片段。經(jīng)過瓊脂糖或聚丙烯酰胺凝膠電泳分離這些片段。
1.2 RAPD
RAPD技術(shù)是由WILLIAMS等[9]以及WELSH等[10]獨立開發(fā)的。具體是以基因組DNA為模板,通過使用單個、短序列隨機引物進(jìn)行PCR擴增實現(xiàn)的。在PCR過程中,當(dāng)兩個引物結(jié)合位點彼此相似且方向相反時,就可以完成擴增。這些擴增的片段完全取決于靶基因組和引物的長度和大小[18]。所選引物的GC含量應(yīng)至少為40%,因為GC含量低于40%的引物可能無法承受PCR過程中DNA延伸的退火溫度(72 ℃)[9]。存在于引物結(jié)合位點或引物結(jié)合位點之間的多態(tài)性可以在電泳中通過確認(rèn)特異性條帶的存在或不存在來檢測[18]。DNA的數(shù)量和質(zhì)量、PCR緩沖液、氯化鎂濃度、退火溫度和DNA聚合酶的類型等是影響RAPD標(biāo)記再現(xiàn)性的重要因素[19]。
1.3 AFLP
AFLP標(biāo)記是結(jié)合RFLP標(biāo)記和PCR擴增各自的優(yōu)勢,克服了RAPD和RFLP技術(shù)的局限性[11]。在AFLP中,既可以使用高質(zhì)量的DNA,也可以使用部分降解的DNA,并且不需要先前的序列信息。在AFLP中,兩種限制性內(nèi)切酶(一種常見內(nèi)切酶和一種罕見內(nèi)切酶)用于切割DNA,將得到的片段的每一端與寡核苷酸接頭連接。PCR反應(yīng)以寡核苷酸接頭為引物[20]。
1.4 SSR
SSR也被稱為微衛(wèi)星標(biāo)記,由2~6 bp的短序列串聯(lián)重復(fù)組成,大量存在于各物種的基因組中[21]。在葉綠體和線粒體中同樣存在SSR標(biāo)記[22-23]。甚至在蛋白質(zhì)編碼基因和表達(dá)序列標(biāo)簽中也有SSR位點存在[24]。一般來說,SSR標(biāo)記位點側(cè)翼序列是保守的,可用于設(shè)計引物?;蚪M文庫開發(fā)和基因組測序均可進(jìn)行SSR位點的篩選和引物開發(fā)[25]。SSR標(biāo)記是一種共顯性的選擇標(biāo)記,具有高再現(xiàn)性和更大的基因組豐度,并且可以在基因和QTL定位研究中應(yīng)用[25]。
1.5 SNP
不同個體間基因組序列中存在許多差異,其中同等位置單個堿基對的變化被稱為SNP。SNP可以是基于核苷酸取代的轉(zhuǎn)換(C/T或G/A)或顛換(C/G、A/T、C/A或T/G),或者單堿基的插入/缺失(InDel)。單核苷酸堿基是最小的遺傳單位,SNP可以提供最簡單和最大數(shù)量的標(biāo)記。SNP在植物和動物中大量存在,植物基因組中每100~300 bp中會出現(xiàn)1個SNP[26]。SNP廣泛分布在基因組內(nèi),可以在基因的編碼區(qū)或非編碼區(qū)或基因間區(qū)發(fā)現(xiàn)[26]。一些基因內(nèi)部的單核苷酸變化與其功能存在相關(guān)性,因此SNP作為功能標(biāo)記在植物育種中更加有效[27]?;诓煌牡任换蜃R別技術(shù)和檢測平臺,已經(jīng)開發(fā)了大量的SNP基因分型方法。如果限制性內(nèi)切酶的結(jié)合位點存在于一個等位基因上,而其他等位基因沒有結(jié)合位點,則酶切消化將產(chǎn)生不同長度的片段。SNPs的識別是通過分析存儲在數(shù)據(jù)庫中的序列數(shù)據(jù)來實現(xiàn)的。基于不同的分子機制,已經(jīng)開發(fā)了不同種類的SNPs基因分型分析。其中,引物延伸、侵入性切割、寡核苷酸連接和等位基因特異性雜交是最重要的[28]。各種高通量基因分型方法,如二代測序、基因芯片、等位基因特異性PCR等使SNPs成為基因分型最具吸引力的方案之一[29]。
2 分子標(biāo)記技術(shù)在育種中的應(yīng)用
分子標(biāo)記輔助選擇在育種過程中的多個環(huán)節(jié)均可發(fā)揮重要作用。在種質(zhì)資源評價、回交轉(zhuǎn)育篩選、性狀聚合、育種材料早代選擇、QTL定位等方面均能夠體現(xiàn)優(yōu)勢[7]。將分子標(biāo)記輔助選擇與表型鑒定相結(jié)合,也能夠提高選擇效率[30-33]。
2.1 種質(zhì)資源評價
種質(zhì)資源是作物品種改良的根本,是提高產(chǎn)量、改善質(zhì)量、增強抗逆的重要基因來源。在植物分子生物學(xué)方法普遍應(yīng)用之前,評估種質(zhì)的主要遺傳標(biāo)記是各種表型特征[11]。為了篩選種質(zhì)中特定表型性狀的等位基因變異,許多與目標(biāo)性狀控制基因或QTL直接連鎖的標(biāo)記位點被開發(fā),并逐漸用于育種[34]。
分子標(biāo)記和基因組測序的最新進(jìn)展為大量種質(zhì)資源開展遺傳多樣性分析提供了巨大的便利。在品種鑒定、遺傳多樣性和親本選擇的評估及雜交種的確認(rèn)等方面,分子標(biāo)記均可發(fā)揮重要作用[35-37]。在作物雜交生產(chǎn)中,保持高水平的遺傳純度對于利用雜種優(yōu)勢至關(guān)重要。通過分子標(biāo)記檢測,可以對雜交親本和雜交種的種子純度進(jìn)行準(zhǔn)確鑒定[38-42]。育種材料的遺傳多樣性是制約育種結(jié)果的重要因素。通過分子標(biāo)記檢測,可以對育種材料的遺傳多樣性進(jìn)行評估。分子標(biāo)記技術(shù)可以準(zhǔn)確判定親本遺傳多樣性,并為親本選擇提供重要的遺傳依據(jù)。
2.2 回交轉(zhuǎn)育篩選
回交技術(shù)是植物育種中廣泛應(yīng)用的技術(shù),可以將外來種質(zhì)中所需的性狀通過回交轉(zhuǎn)移到目標(biāo)作物種質(zhì)中[43]。分子標(biāo)記可大大提高回交轉(zhuǎn)育過程中的選擇效率。首先,通過與靶基因或QTL連鎖的分子標(biāo)記可以進(jìn)行“前景選擇”[44],這可能對表型篩選過程費力或耗時的性狀特別有用。其次,可以在幼苗階段對成熟階段相關(guān)性狀進(jìn)行“早期選擇”,確定最佳植株進(jìn)行回交。此外,還可以對表型鑒定難以區(qū)分的隱性等位基因進(jìn)行篩選。兩個SSR標(biāo)記已被成功用于轉(zhuǎn)移與粳稻低筋水平相關(guān)的Lgc-1基因座,選擇效率為93%~97%[45]。大麥黃花葉病毒是大麥中的一種重要疾病,rym4和rym5是對該疾病產(chǎn)生抗性的基因,已經(jīng)開發(fā)了多種標(biāo)記物來選擇這些基因[46]。
2.3 性狀聚合
性狀聚合是將特定的多個基因組合成一個單一基因型的過程[47]。通過傳統(tǒng)育種手段也可以實現(xiàn)性狀的聚合,但對目標(biāo)性狀的評價較為繁瑣。尤其是對于聚合目標(biāo)性狀較多或一些需要將材料破碎進(jìn)行測定的指標(biāo),分子標(biāo)記技術(shù)相對傳統(tǒng)表型調(diào)查擁有獨特的優(yōu)勢[48]。分子標(biāo)記可以極大地促進(jìn)選擇效率,同時分子標(biāo)記測定是非破壞性的,并且可以使用單個DNA樣本測試多個特定基因的連鎖標(biāo)記,而無需等待表型性狀表現(xiàn)[47]。
通過聚合多個抗病基因?qū)崿F(xiàn)作物抗病性的提升是性狀聚合的一種主要目標(biāo)。這樣有助于使作物具備“持久”或穩(wěn)定的抗病性。因為隨著植物病原體致病力增加或新的小種出現(xiàn),單基因宿主抗性經(jīng)常被克服。研究表明,多個基因的組合(對病原體的特定小種有效)可以提供持久的(廣譜)抗性[49-53]。一般認(rèn)為,病原體通過突變克服兩個或兩個以上有效基因的能力比通過單個基因控制的抗性要低得多。對多個抗性基因聚合的子代難以通過表型鑒定區(qū)分,因為它們通常表現(xiàn)相同的表型。因此需要通過分子標(biāo)記輔助來確定哪些植株擁有一個以上的基因,確定其中抗性基因的數(shù)量。通過分子標(biāo)記輔助選擇多個QTL位點控制的定量抗性提供了另一種發(fā)展持久抗病性的有前景的策略。數(shù)量抗性組合的一個典型例子是單個條銹病基因和兩個QTL的聚合[54]。
分子標(biāo)記也是對來自多個親本(即多個雜交群體)的基因進(jìn)行檢測的有效手段。分子標(biāo)記輔助性狀聚合被認(rèn)為是創(chuàng)制具有持久抗性的三元F1雜交種的有效方法[55]。聚合3個親本的抗稻瘟病基因的水稻種質(zhì)和抗條銹病基因的大麥種質(zhì)通過分子標(biāo)記輔助選擇創(chuàng)制[54,56]。分子標(biāo)記還可以對多個非生物脅迫耐受性QTL的組合進(jìn)行準(zhǔn)確檢測,特別是在不同生長階段發(fā)揮作用的QTL;或者與其他QTL相互作用的單個QTL(即上位QTL),比如通過實驗驗證了水稻黃斑駁病毒的兩個相互作用抗性QTL[57]。
2.4 育種材料早代選擇
盡管分子標(biāo)記檢測在育種過程的任何階段均可以應(yīng)用,但早期世代篩選是其一個顯著優(yōu)勢,因為具有不利基因組合的個體可以提前被清除[58]。這使育種人員能夠?qū)⒆⒁饬性跀?shù)量較少的高優(yōu)先級品系上。當(dāng)標(biāo)記和所選QTL之間的連鎖不是很緊密時,由于標(biāo)記和QTL之間重組的概率增加,分子標(biāo)記輔助篩選最大效率在早期世代[59]。應(yīng)用分子標(biāo)記輔助選擇的主要缺點是對大量個體進(jìn)行基因分型的成本。對于創(chuàng)制作物種質(zhì),一個重要的目標(biāo)是盡快實現(xiàn)等位基因的純合狀態(tài)。在傳統(tǒng)育種方法中,通常在F5或F6代才能夠使大多數(shù)基因達(dá)到純合。使用共顯性DNA標(biāo)記,早在F2代就可以確定特定等位基因的純合狀態(tài)。當(dāng)然,這可能需要龐大的規(guī)模,而且每一代可能僅有少量基因能夠純合[60]。另一種策略是在群體中“富集”而不是固定等位基因—通過選擇目標(biāo)基因座的純合子和雜合子—以減少所需繁殖群體的規(guī)模[61]。
2.5 表型鑒定與分子標(biāo)記結(jié)合
組合應(yīng)用可能比單獨運用表型篩選或分子標(biāo)記更有優(yōu)勢,以最大限度地提高遺傳增益[62]。當(dāng)控制性狀的QTL未全部確定或需要調(diào)查大量QTL時,可以采用這種方法。這種方法比單獨的表型篩選更有效,尤其是當(dāng)群體規(guī)模大且性狀遺傳力較低時[63]。有研究報道,單獨應(yīng)用分子標(biāo)記對熱帶玉米抗蟲性進(jìn)行分析時,甚至比傳統(tǒng)的表型選擇效率低。將分子標(biāo)記和表型篩選相結(jié)合時,效率略有提高[64]。運用分子標(biāo)記與表型篩選相結(jié)合的方法鑒定到位于小麥3BS染色體上的鐮刀菌穗枯病抗性主效QTL[65]。
2.6 QTL定位
大多數(shù)具有經(jīng)濟意義的農(nóng)業(yè)性狀本質(zhì)上是多基因和數(shù)量性狀,由同一/不同染色體上的許多基因控制[66-67],具有這些數(shù)量性狀基因的染色體區(qū)域被稱為QTL[66]。QTL定位是一種利用分子標(biāo)記定位影響目標(biāo)性狀的基因的方法,這些性狀分為兩組:一組是數(shù)量性狀,另一組是質(zhì)量性狀[66]。不連續(xù)變異可以表現(xiàn)為質(zhì)量性狀,而連續(xù)變異則表現(xiàn)為數(shù)量性狀。對于QTL研究來說,分子標(biāo)記是非常重要的,被認(rèn)為是實現(xiàn)這一目的的理想工具[68]。QTL定位的一些重要步驟包括選擇具有影響目標(biāo)性狀的等位基因變異的兩個不同親本。QTL定位應(yīng)該選擇兩個不同的親本,并且親本應(yīng)該足夠多樣化,以表現(xiàn)足夠水平的多態(tài)性。近等基因系(NILs)、DHs、回交系(BCs)、重組自交系(RILs)和F2群體可用作做圖群體[69]。在對做圖群體進(jìn)行表型分析后,利用多態(tài)性標(biāo)記獲得遺傳數(shù)據(jù)。然后構(gòu)建遺傳圖譜,并應(yīng)用一些統(tǒng)計程序來識別與感興趣性狀相關(guān)的分子標(biāo)記。
通常,在遺傳圖譜研究中,100~200個標(biāo)記已被用于構(gòu)建連鎖圖譜[70]。但對于高分辨率和精細(xì)圖譜繪制,需要更大規(guī)模的群體[71]。標(biāo)記數(shù)量取決于物種基因組大小,因為基因組大小較大的物種需要更多的標(biāo)記。隨著測序技術(shù)的進(jìn)步和測序數(shù)據(jù)的迅速增加,現(xiàn)在數(shù)千個分子標(biāo)記位點被用于高分辨率遺傳圖譜[71-72]。
3 分子標(biāo)記輔助選擇應(yīng)用存在的問題
3.1 分子標(biāo)記輔助選擇仍處于發(fā)展完善階段
盡管分子標(biāo)記技術(shù)最早是在20世紀(jì)80年代末被開發(fā)的,但直到接近21世紀(jì)才開發(fā)出更方便使用的標(biāo)記類型,如SSR。而像SNP的推廣應(yīng)用則更加滯后。盡管目前主要糧食作物已開發(fā)出大量的標(biāo)記位點,并公開供廣大科研人員使用,但許多標(biāo)記使用率并不高[73-76]。隨著基因組和泛基因組數(shù)據(jù)的不斷充實,分子標(biāo)記將迎來新的一波發(fā)展浪潮。
3.2 QTL定位的可靠性和準(zhǔn)確性
QTL定位的準(zhǔn)確性對分子標(biāo)記輔助選擇的應(yīng)用至關(guān)重要。當(dāng)對復(fù)雜性狀(如產(chǎn)量)進(jìn)行QTL定位時,準(zhǔn)確性尤為重要。復(fù)雜性狀通常由較多QTL控制,定位準(zhǔn)確性可能受到許多因素影響,例如用于生成表型數(shù)據(jù)的重現(xiàn)水平和群體規(guī)模等[77-78]。模擬和實驗研究表明,典型群體個體數(shù)量少于200個時,QTL檢測精度會明顯下降[77,79]。因此,QTL所在區(qū)域的置信區(qū)間可能很大,即使對于具有較強效應(yīng)的QTL也是如此。此外,抽樣偏差也可能導(dǎo)致QTL效應(yīng)出現(xiàn)偏差,尤其是在相對較小的群體中[80],這些因素都可能影響分子標(biāo)記輔助選擇的準(zhǔn)確性,因為選擇標(biāo)記的基礎(chǔ)取決于QTL的位置和對性狀的作用效果。近年來,大量關(guān)于QTL定位的論文被發(fā)表,提供了許多新鑒定的QTL座位信息。這些QTL尚需要仔細(xì)驗證,并開發(fā)成功能性標(biāo)記,被應(yīng)用到育種計劃之中[81]。
3.3 育種材料中可用分子標(biāo)記和多態(tài)性較少
理想情況下,分子標(biāo)記位點應(yīng)該對育種材料各方面性狀均有所對應(yīng),即能夠明確區(qū)分不同品種的性狀表現(xiàn)。然而,已發(fā)現(xiàn)有些標(biāo)記不能夠準(zhǔn)確區(qū)分不同性狀。比如,應(yīng)用SSR標(biāo)記對多個澳大利亞小麥品種中控制稈銹病抗性的Sr2基因進(jìn)行分型鑒定,在易感品種和抗性品種中檢測相同標(biāo)記,無法準(zhǔn)確區(qū)分,需要開發(fā)額外的標(biāo)記[82]。即使現(xiàn)在已有大量可用標(biāo)記被開發(fā),也仍可能存在包含重要基因或QTL的特定染色體區(qū)域缺乏多態(tài)標(biāo)記可用。在某些情況下,由于連鎖不緊密,在分子標(biāo)記和基因/QTL之間可能因發(fā)生重組而分離[83-84]。即使來自初步QTL定位研究的遺傳距離表明緊密連鎖,也可能發(fā)生這種情況,因為來自單個QTL定位實驗的數(shù)據(jù)可能不準(zhǔn)確[83]。這也需要通過增加標(biāo)記的數(shù)量進(jìn)行甄別。
4 分子標(biāo)記輔助選擇在育種中的應(yīng)用前景
隨著高通量測序等技術(shù)手段逐漸被應(yīng)用于育種實踐,分子標(biāo)記在植物育種中的應(yīng)用水平大大提高[29-34]。SNP標(biāo)記已成為當(dāng)前的首選標(biāo)記,并已被應(yīng)用于各種作物的基因分型。大量的連鎖標(biāo)記已轉(zhuǎn)化為功能標(biāo)記,并成功用于不同作物的輔助育種。然而,這些標(biāo)記物大多以單位點形式存在。為了獲得更有效和精確的結(jié)果,單位點分析正在轉(zhuǎn)向多重系統(tǒng)[85]。KASP(競爭性等位基因特異性PCR)是一種最新的多重技術(shù),用于通過在單個測定中結(jié)合幾個標(biāo)記將單一系統(tǒng)轉(zhuǎn)化為多重系統(tǒng)。
KASP最初由LGC Genomics開發(fā),旨在實現(xiàn)內(nèi)部基因分型,并已發(fā)展成為全球領(lǐng)先的基因分型技術(shù)[86]。KASP技術(shù)基于熒光進(jìn)行基因分型,具有節(jié)省時間且成本低的優(yōu)勢[87-88]。KASP測定法已被成功應(yīng)用于小麥、玉米、水稻和其他一些作物中[89-93]。70種KASP測定法被開發(fā),并在小麥中得到成功驗證,它們與小麥中受到關(guān)注的多種性狀顯著相關(guān)[94]。
基因組選擇(GS)是基于分子標(biāo)記輔助選擇發(fā)展而來的另一種高級形式,最早由MEUWISSEN T H等[95]開發(fā)。基因組選擇首先建立表型數(shù)據(jù)與分子標(biāo)記和譜系數(shù)據(jù)相結(jié)合的預(yù)測模型,并根據(jù)這種模型利用分布在整個基因組中的高密度標(biāo)記預(yù)測目標(biāo)個體的一系列育種指標(biāo)。與分子標(biāo)記輔助選擇相比,基因組選擇依賴于大量的標(biāo)記位點,包括主要和次要標(biāo)記物效應(yīng)[96]。選擇和利用覆蓋整個基因組的標(biāo)記位點,使所有QTL與至少一個標(biāo)記于連鎖不平衡中[97]。復(fù)雜性狀的基因組選擇和高通量表型分析能夠提高選擇的準(zhǔn)確性,給育種帶來了一場革命[98]。結(jié)合高通量表型鑒定技術(shù)和CRISPR基因編輯技術(shù),相信分子標(biāo)記技術(shù)能夠繼續(xù)創(chuàng)新,向著更精確、更高效、更具成本效益發(fā)展,更好地滿足育種工作需要。
參考文獻(xiàn):
[1] SALGOTRA R K, STEWART JR C N. Functional markers for precision plant breeding[J]. International Journal of Molecular Sciences, 2020,21(13):4792.
[2] 景海春,田志喜,種康,等. 分子設(shè)計育種的科技問題及其展望概論[J]. 中國科學(xué):生命科學(xué),2021,51(10):1356-1365,1355.
[3] CORT?魪D A J, L?譫PEZ-HERN?譧NDEZ F, BLAIR M W. Genome-environment associations, an innovative tool for studying heritable evolutionary adaptation in orphan crops and wild relatives[J]. Frontiers in Genetics, 2022,13,910386.
[4] KEBRIYAEE D, KORDROSTAMI M, REZADOOST M H, et al. QTL analysis of agronomic traits in rice using SSR and AFLP markers[J]. Notulae Scientia Biologicae, 2012,4(2):116-123.
[5] COLLARD B C Y, JAHUFER M Z Z, BROUWER J B, et al. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts[J]. Euphytica, 2005,142(1-2):169-196.
[6] 陳星,高子厚. DNA分子標(biāo)記技術(shù)的研究與應(yīng)用[J]. 分子植物育種,2019,17(6):1970-1977.
[7] MONDINI L, NOORANI A, PAGNOTTA M A. Assessing plant genetic diversity by molecular tools[J]. Diversity,2009,1:19-35.
[8] BOTSTEIN D, WHITE R L, SKOLNICK M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphism[J]. The American Journal of Human Genetics, 1980,32(3):314-331.
[9] WILLIAMS J G K, KUBELIK A R, LIVAK K J, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucleic Acids Research, 1990,18(22):6531-6535.
[10] WELSH J, MCCLELLAND M. Fingerprinting genomes using PCR with arbitrary primers[J]. Nucleic Acids Research, 1990,18(24):7213-7218.
[11] VOS P, HOGERS R, BLEEKER M, et al. AFLP: a new technique for DNA fingerprinting[J]. Nucleic Acids Research, 1995,23(21):4407-4414.
[12] TAUTZ D. Hypervariability of simple sequences as a general source of polymorphic DNA markers[J]. Nucleic Acids Research, 1989,17(16):6463-6471.
[13] LITT M, LUTY J A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene[J]. American Journal of Human Genetics, 1989,44(3):397-401.
[14] PARAN I, MICHELMORE R W. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce[J]. Theoretical and Applied Genetics, 1993,85:985-993.
[15] KONIECZNY A, AUSUBEL F M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers[J]. The Plant Journal, 1993,4(2):403-410.
[16] GUPTA P K, ROY J K, PRASAD M. Single nucleotide polymorphisms: A new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants[J]. Current Science, 2001,80(4):524-535.
[17] JACCOUD D, PENG K, FEINSTEIN D, et al. Diversity arrays: a solid state technology for sequence information independent genotyping[J]. Nucleic Acids Research, 2001,29(4):e25.
[18] JIANG G L. Molecular markers and marker-assisted breeding in plants[M]// ANDERSEN S B. Plant breeding from laboratories to fields. Rijeka: InTech, 2013:45-83.
[19] WOLFF K, SCHOEN E D, VANRIJIN P J. Optimizing the generation of random amplified polymorphic DNAs in chrysanthemum[J]. Theoretical and Applied Genetics, 1993,86(8):1033-1037.
[20] MISHRA K K, FOUGAT R S, BALLANI A, et al. Potential and application of molecular markers techniques for plant genome analysis[J]. International Journal of Pure amp; Applied Bioscience, 2014,2(1):169-188.
[21] BECHMAN J S, WEBER J L. Survey of human and rat microsatellites[J]. Genomics, 1992,12(4):627-631.
[22] PROVAN J, POWELL W, HOLLINGSWORTH P M. Chloroplast microsatellites: new tools for studies in plant ecology and evolution[J]. Trends in Ecology amp; Evolution, 2001,16(3):142-147.
[23] RAJENDRAKUMAR P, BISWAL A K, BALACHANDRAN S M, et al. Simple sequence repeats in organellar genomes of rice: frequency and distribution in genic and intergenic regions[J]. Bioinformatics. 2007,23(1):1-4.
[24] MORGANTE M, HANAFEY M, POWELL W. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes[J]. Nature Genetics, 2002,30(2):194-200.
[25] KALIA R K, RAI M K, KALIA S, et al. Microsatellite markers: an overview of the recent progress in plants[J]. Euphytica, 2011,177(3):309-334.
[26] XU Y B. Molecular plant breeding[M]. Wallingford: CABI, 2010.
[27] ANDERSEN J R, UBBERSTEDT T. Functional markers in plants[Review][J]. Trends in Plant Science, 2003,8(11):554-560.
[28] SOBRINO B, BRI?譫N M, CARRACEDO A. SNPs in forensic genetics: a review on SNP typing methodologies[J]. Forensic Science International, 2005,154(2-3):181-194.
[29] AGARWAL M, SHRIVASTAVA N, PADH H. Advances in molecular marker techniques and their applications in plant sciences[J]. Plant Cell Reports, 2008,27(4):617-631.
[30] 張馨月,錢秋,陳婕,等. 分子標(biāo)記輔助選擇與花藥培養(yǎng)相結(jié)合選育攜帶抗白葉枯病基因Xa39的水稻恢復(fù)系[J/OL]. 浙江農(nóng)業(yè)科學(xué),[2023-09-03]. https://link.cnki.net/urlid/33.1076.S.20230830.1239.002.
[31] 楊德衛(wèi),何旎清,黃鳳凰. 利用分子標(biāo)記輔助選擇聚合水稻抗病基因Pigm-1和Xa23[J].西北農(nóng)林科技大學(xué)學(xué)報(自然科學(xué)版),2023,51(11):1-9.
[32] TU W, LI J C, DONG J K, et al. Molecular marker-assisted selection for frost tolerance in a diallel population of potato[J]. Cells, 2023,12(9):1226.
[33] 陳宗祥,馮志明,張亞芳,等. 分子標(biāo)記輔助選擇育成抗稻瘟病粳稻新品種揚農(nóng)粳3091[J]. 中國稻米,2022,28(6):107-109.
[34] NADEEM M A, NAWAZ M A, SHAHID M Q, et al. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing[J]. Biotechnology amp; Biotechnological Equipment, 2018,32(2):261-285.
[35] LORENZ A J, CHAO S, ASORO F G, et al. Genomic selection in plant breeding: knowledge and prospects[J]. Advances in Agronomy, 2011,110:77-123.
[36] WANG Y S, GHOURI F, SHAHID M Q, et al. The genetic diversity and population structure of wild soybean evaluated by chloroplast and nuclear gene sequences[J]. Biochemical Systematics and Ecology, 2017,71:170-178.
[37] NAWAZ M A, BALOCH F S, REHMAN H M, et al. Development of a competent and trouble free DNA isolation protocol for downstream genetic analyses in Glycine species[J]. Turkish Journal of Agriculture - Food Science and Technology, 2016,4(8):700-705.
[38] YASHITOLA J, THIRUMURUGAN T, SUNDARAM R M, et al. Assessment of purity of rice hybrids using microsatellite and STS markers[J]. Crop Science, 2002,42(4):1369-1373.
[39] 韓博文,姜楠,楊緒磊,等. 基于SRAP分子標(biāo)記的春大豆雜交種核心親本雜種優(yōu)勢群劃分[J]. 中國農(nóng)業(yè)大學(xué)學(xué)報,2023,28(10):38-49.
[40] 雷蕾,關(guān)哲允,曹士亮,等. 基于產(chǎn)量相關(guān)性狀SSR分子標(biāo)記的大豆雜種優(yōu)勢群劃分[J]. 作物雜志,2022(4):54-61.
[41] 吳倩,李智,于偉,等. 大豆親本間遺傳距離與雜種優(yōu)勢的相關(guān)性研究[J]. 中國農(nóng)學(xué)通報,2020,36(1):43-48.
[42] MARC?譫N F, MART?魱NEZ E J, RODR?魱GUEZ G R, et al. Genetic distance and the relationship with heterosis and reproductive behavior in tetraploid bahiagrass hybrids[J]. Molecular Breeding, 2019,39(6):89.
[43] SIMMONDS N W. Introgression and incorporation. Strategies for the use of crop genetic resources[J]. Biological Reviews, 1993,68(4):539-562.
[44] HOSPITAL F, MOREAU L, LACOUDRE F, et al. More on the efficiency of marker-assisted selection[J]. Theoretical and Applied Genetics, 1997,95:1181-1189.
[45] WANG Y H, LIU S J, JI S L, et al. Fine mapping and marker-assisted selection (MAS) of a low glutelin content gene in rice[J]. Cell Research, 2005, 15(8):622-630.
[46] YANG Y X, LI Y H, TONG J F, et al. Wide-compatibility gene S5n exploited by functional molecular markers and its effect on fertility of intersubspecific rice hybrids[J]. Crop Science, 2012,52(2):669-675.
[47] GOUDA G, GUPTA M K, DONDE R, et al. Marker-assisted selection for grain number and yield-related traits of rice (Oryza sativa L.) [J]. Physiology and Molecular Biology of Plants, 2020,26(5):885-898.
[48] 周立訓(xùn). 分子標(biāo)記輔助選擇技術(shù)在水稻育種中應(yīng)用的研究進(jìn)展[J]. 農(nóng)業(yè)與技術(shù),2013,33(12):11-12.
[49] KLOPPERS F J, PRETORIUS Z A. Effects of combinations amongst genes Lr13, Lr34 and Lr37 on components of resistance in wheat to leaf" rust[J]. Plant Pathology, 1997,46(5):737-750.
[50] SHANTI M L, GEORGE M L C, VERA CRUZ C M, et al. Identification of resistance genes effective against rice bacterial blight pathogen in eastern India[J]. Plant Disease, 2001,85(5):506-512.
[51] LI X N, WEI Y X, MA Y M, et al. Marker-assisted pyramiding of CRa and CRd genes to improve the clubroot resistance of Brassica rapa[J]. Genes, 2022,13(12):2414.
[52] SAHA P, GHOSHAL C, SAHA N D, et al. Marker-assisted pyramiding of downy mildew-resistant gene Ppa3 and black rot-resistant gene Xca1bo in popular early cauliflower variety pusa meghna[J]. Frontiers in Plant Science, 2021,12:603600.
[53] 畢研飛,徐兵劃,錢春桃,等. 分子標(biāo)記輔助甜瓜抗蔓枯病基因的聚合及品種改良[J]. 中國農(nóng)業(yè)科學(xué),2015,48(3):523-533.
[54] CASTRO A J, CAPETTINI F, COREY A E, et al. Mapping and pyramiding of qualitative and quantitative resistance to stripe rust in barley[J]. Theoretical and Applied genetics, 2003, 107(5):922-930.
[55] WITCOMBE J R, HASH C T. Resistance gene deployment strategies in cereal hybrids using marker-assisted selection: gene pyramiding, three-way hybrids, and synthetic parent populations[J]. Euphytica, 2000,112(2):75-186.
[56] HITTALMANI S, PARCO A, MEW T V, et al. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice[J]. Theoretical and Applied Genetics, 2000,100(7):1121-1128.
[57] AHMADI N, ALBAR L, PRESSOIR G, et al. Genetic basis and mapping of the resistance to rice yellow mottle virus. III. Analysis of QTL efficiency in introgressed progenies confirmed the hypothesis of complementary epistasis between two resistance QTLs[J]. Theoretical and Applied Genetics, 2001,103(6):1084-1092.
[58] PIYASATIAN N, FERMAMDO R L, DEKKERS J C. Genomic selection for marker-assisted improvement in line crosses[J]. Theoretical and Applied Genetics, 2007,115(5):665-674.
[59] KUMAR A, SANDHU N, DIXIT S, et al. Marker-assisted selection strategy to pyramid two or more QTLs for quantitative trait-grain yield under drought. [J]. Rice, 2018,11(1):35.
[60] KOEBNER R M D, SUMMERS R W. 21st century wheat breeding: plot selection or plate detection? [J]. Trends in Biotechnology, 2003,21(2):59-63.
[61] BONNETT D G, REBETZKE G J, SPIELMEYER W. Strategies for efficient implementation of molecular markers in wheat breeding[J]. Molecular Breeding, 2005,15:75-85.
[62] MOREAU L, CHARCOSSET A, GALLAIS A. Experimental evaluation of several cycles of marker-assisted selection in maize[J]. Euphytica, 2004,137:111-118.
[63] HOSPITAL F, CHARCOSSET A. Marker-assisted introgression of quantitative trait loci[J]. Genetics, 1997,147:1469-1485.
[64] BOHN M, GROH S, KHAIRALLAH M M, et al. Re-evaluation of the prospects of marker-assisted selection for improving insect resistance against Diatraea spp. in tropical maize by cross validation and independent validation[J]. Theoretical and Applied Genetics, 2001,103:1059-1067.
[65] ZHOU W C, KOLB F L, BAI G H, et al. Validation of a major QTL for scab resistance with SSR markers and use of marker-assisted selection in wheat[J]. Plant Breeding, 2003,122(1):40-46.
[66] POWDER K E. Quantitative trait loci (QTL) mapping[J]. Methods in Molecular Biology, 2020,2082:211-229.
[67] RAJ S R G, NADARAJAH K. QTL and candidate genes: techniques and advancement in abiotic stress resistance breeding of major cereals[J]. International Journal of Molecular Sciences, 2022,24(1):6.
[68] ANGAJI S A. QTL mapping: a few key points[J]. International Journal of Applied Research in Natural Products, 2009,2(2):1-3.
[69] COLLARD B C Y, JAHUFER M Z, BROUWER J B, et al. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts[J]. Euphytica. 2005, 142(1-2):169-196.
[70] MOHAN M, NAIR S, BHAGWAT A, et al. Genome mapping, molecular markers and marker-assisted selection in crop plants[J]. Molecular Breeding, 1997,3(2):87-103.
[71] DHINGANI R M, UMRANIA V V, TOMAR R S, et al. Introduction to QTL mapping in plants[J]. Annals of Plant Sciences, 2015,4(4):1072-1079.
[72] BERNARDO A, WANG S, AMAND P S, et al. Using next generation sequencing for multiplexed trait-linked markers in wheat[J]. Plos One. 2015,10(12):e0143890.
[73] XU Y B, CROUCH J H. Marker-assisted selection in plant breeding: from publications to practice[J]. Crop Science, 2008,48(2):391-407.
[74] BALOCH F S, ALSALEH A, ANDEDEN E E, et al. High levels of segregation distortion in the molecular linkage map of bread wheat representing the West Asia and North Africa region[J]. Turkish Journal of Agriculture and Forestry, 2016,40(3):352-364.
[75] BALOCH F S, DERYA M, ANDEDEN E E, et al. Inter-primer binding site retrotransposon and inter-simple sequence repeat diversity among wild Lens species[J]. Biochemical Systematics and Ecology, 2015, 58:162-168.
[76] ANDEDEN E E, BALOCH F S, ?覶AKIR E, et al. Development, characterization and mapping of microsatellite markers for lentil(Lens culinaris Medik.)[J]. Plant Breeding, 2015, 134(5):589-598.
[77] KEARSEY M J, FARQUHAR A G L. QTL analysis in plants; where are we now?[J]. Heredity, 1998,80(2):137-142.
[78] YOUNG N D. A cautiously optimistic vision for marker-assisted breeding[J]. Molecular Breeding, 1999,5(6):505-510.
[79] BEAVIS W D. QTL analyses: power, precision and accuracy[M]// PATERSON A H. Molecular dissection of complex traits. Boca Raton: CRC Press, 1998:145-162.
[80] MELCHINGER A E, UTZ H F, SCH?N C C. Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects[J]. Genetics, 1998,149(1):383-403.
[81] HOSPITAL F. Selection in backcross programmes[J]. Philosophical Transactions of The Royal Society B Biological Sciences, 2005,360:1503-1511.
[82] SPIELMEYER W, SHARP P J, LAGUDAH E S. Identification and validation of markers linked to broad-spectrum stem rust resistance gene Sr2 in wheat (Triticum aestivum L.)[J]. Crop Science, 2003,43:333-336.
[83] SHARP P J, JOHNSTON S , BROWN G ,et al. Validation of molecular markers for wheat breeding[J]. Australian Journal of Agricultural Research, 2001, 52:1357-1366.
[84] THOMAS W T B. Prospects for molecular breeding of barley[J]. Annals of Applied Biology, 2003,142(1):1-12.
[85] BERNARDO A, WANG S, AMAND P S, et al. Using next generation sequencing for multiplexed trait-linked markers in wheat[J]. Plos One, 2015,10(12):e0143890.
[86] HE C L, HOLME J, ANTHONY J. SNP genotyping: the KASP assay[J]. Methods in molecular biology, 2014,1145:75-86.
[87] KUMPATLA S P, BUYYARAPU R, ABDURAKHMONOV I Y, et al. Genomics-assisted plant breeding in the 21st century: technological advances and progress[M]// ABDURAKHMONOV I Y. Plant Breeding. London: InTech Open, 2012:131-184.
[88] ALVAREZ-FERNANDEZ A, BERNAL M J, FRADEJAS I, et al. KASP: a genotyping method to rapid identification of resistance in Plasmodium falciparum[J]. Malaria Journal, 2021,20(1):16.
[89] ZENG Z K, GUO C, YAN X F, et al. QTL mapping and KASP marker development for seed vigor related traits in common wheat[J]. Frontiers in Plant Science, 2022,13:994973.
[90] TANG W J, LIN J, WANG Y P, et al. Selection and validation of 48 KASP markers for variety identification and breeding guidance in conventional and hybrid rice (Oryza sativa L.)[J]. Rice, 2022,15(1):48.
[91] CHEN Z J, TANG D G, NI J X, et al. Development of genic KASP SNP markers from RNA-Seq data for map-based cloning and marker-assisted selection in maize[J]. BMC Plant Biology, 2021,21(1):157.
[92] ZHANG Z H, CAO Y C, WANG Y F, et al. Development and validation of KASP markers for resistance to Phytophthora capsici in Capsicum annuum L[J]. Molecular Breeding, 2023,43(3):20.
[93] MAKHOUL M, OBERMEIER C. Development of breeder-friendly KASP markers from genome-wide association studies results[J]. Methods in Molecular Biology, 2022,2481:287-310.
[94] RASHEED A, WEN W E, GAO F M, et al. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat[J]. Theoretical and Applied Genetics, 2016,129(10):1843-1860.
[95] MEUWISSEN T H, HAYES B J, GODDARD M E. Prediction of total genetic value using genome-wide dense marker maps[J]. Genetics, 2001,157(4):1819-1829.
[96] NEWELL M A, JANNINK J L. Genomic selection in plant breeding[M]//FLEURY D, WHITFORD R. Crop breeding: methods and protocols. New York: Humana Press, 2014:117-130.
[97] GODDARD M E, HAYES B J. Genomic selection[J]. Journal of Animal Breeding and Genetics, 2007,124(6):323-330.
[98] INGVARSSON P K, STREET N R. Association genetics of complex traits in plants[J]. The New Phytologist, 2011,189(4):909-922.
責(zé)任編輯:達(dá)海莉