亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        指數(shù)權(quán)的加權(quán)Lebesgue空間中擬齊次核最優(yōu)Hilbert型積分不等式的參數(shù)條件及應(yīng)用

        2024-01-01 00:00:00趙茜洪勇孔蔭瑩
        關(guān)鍵詞:積分算子有界范數(shù)

        摘要: 首先, 引入擬齊次核的概念, 討論權(quán)函數(shù)為指數(shù)函數(shù)的加權(quán)Lebesgue空間中具有擬齊次核的Hilbert型積分不等式; 其次, 利用權(quán)系數(shù)方法及若干分析技巧, 給出最優(yōu)Hilbert型積分不等式的等價(jià)參數(shù)條件, 并獲得了最佳常數(shù)因子的計(jì)算公式; 最后, 討論其在算子理論中的應(yīng)用.

        關(guān)鍵詞: 加權(quán)Lebesgue空間; 擬齊次核; Hilbert型積分不等式; 最佳搭配參數(shù); 等價(jià)條件; 有界算子; 算子范數(shù)

        中圖分類號(hào): O178""文獻(xiàn)標(biāo)志碼: A""文章編號(hào): 1671-5489(2024)06-1325-09

        Parameter Conditions of Optimal Hilbert-Type Integral Inequalitieswith Quasi-homogeneous Kernel in Weighted Lebesgue Spaceswith Exponential Weight and Applications

        ZHAO Qian1, HONG Yong1, KONG Yinying2

        (1. College of Artificial Intelligence, Guangzhou Huashang College, Guangzhou 511300, China; 2. College of Statistics and Mathematics, Guangdong University of Finance and Ec

        onomics, Guangzhou 510320, China)

        Abstract: Firstly, the concept of quasi-homogeneous kernel was introduced to discuss Hilbert-type integral inequalities with quasi-homogeneous kernel

        in weighted Lebesgue spaces with exponential functions. Secondly, by using the weight coefficient method and several "analysis techniques, equivalent parameter conditio

        n for optimal Hilbert-type integral inequalities was given, and the calculation formula for the best constant factor was obtained. Finally, its applications in operator theory were discussed.

        Keywords: weighted Lebesgue space; quasi-homogeneous kernel; Hilbert-type integral inequality; optimal matching parameter; equivalent condition; bounded operator; operator norm

        0"引"言

        設(shè)1p+1q=1(pgt;1), f(x)∈Lp(0,+∞), g(y)∈Lq(0,+∞), 則Hilbert積分不等式[1]

        +∞0∫+∞01x+yf(x)g(y)dxdy≤πsin(π/p)‖f‖p‖g‖q,(1)

        其中常數(shù)因子πsin(π/p)是最佳值. 定義積分算子

        T(f)(y)=∫+∞01x+yf(x)dx,""f(x)∈Lp(0,+∞),

        則式(1)可等價(jià)地表示為如下算子T的不等式:

        ‖T(f)‖p≤πsin(π/p)‖f‖p.

        因此T是Lp(0,+∞)中的有界算子, 且算子范數(shù)‖T‖=πsin(π/p).

        設(shè)φ(x)gt;0, 引入加權(quán)Lebesgue空間:

        Lφ(x)p(a,b)=f(x): ‖f‖p,φ(x)=∫baφ(x)f(x)pdx1/plt;+∞.

        一般地, 若1p+1q=1(pgt;1), φ1(x)gt;0, φ2(y)gt;0, 則以K(x,y)為核的不等式

        ∫ba∫baK(x,y)f(x)g(y)dxdy≤M‖f‖p,φ1(x)‖g‖q,φ2(y)(2)

        稱為Hilbert型積分不等式, 若其常數(shù)因子M為最佳值, 則式(2)稱為最優(yōu)不等式.

        目前, 關(guān)于Hilbert型不等式的研究已有很多成果[2-24]. 例如: 文獻(xiàn)[2]考慮指數(shù)權(quán)函數(shù)的加權(quán)Lebesgue空間, 得到了一個(gè)具有最佳常數(shù)因子的Hilbert型不等式:

        +∞-∞∫+∞-∞f(x)g(y)(1+exey)λdxdy≤Bλ2,λ2‖f‖2,e-λx‖g‖2,e-λy,

        其中λgt;0, B(u,v)是Beta函數(shù); 文獻(xiàn)[3]在文獻(xiàn)[2]的基礎(chǔ)上引入獨(dú)立參數(shù)σ和σ1, 討論了核為H(eaxeby)的Hilbert型積分不等式:

        +∞-∞∫+∞-∞H(eaxeby)f(x)g(y)dxdy≤

        M‖f‖p,exp{σapx}‖g‖q,exp{σ1bqy},

        并得到了最佳常數(shù)因子的等價(jià)條件. 本文引入一類廣義齊次核:

        K(x,y)=G(eλ1x,eλ2y),

        其中G(u,v)是λ階齊次非負(fù)函數(shù), 討論指數(shù)函數(shù)加權(quán)Lebesgue空間中最優(yōu)Hilbert型不等式的等價(jià)參數(shù)條件.

        1"引"理

        引理1"設(shè)G(u,v)是λ階齊次非負(fù)函數(shù), λ1λ2gt;0, K(x,y)=G(eλ1x,eλ2y), 則

        K(x,y)=eλλ1xK0,y-λ1λ2x=eλλ2yKx-λ2λ1y,0.

        特別地, 有

        K(0,t)=eλλ2tK-λ2λ1t,0,""K(t,0)=eλλ1tK0,-λ1λ2t.

        證明: 根據(jù)G(u,v)是λ階齊次函數(shù), 有

        K(x,y)=G(eλ1x,eλ2y)=eλλ1xG(1,eλ2y-λ1x)eλλ1xGe0λ1,eλ2\=eλλ1xK0,y-λ1λ2x.

        同理可證K(x,y)=eλλ2yKx-λ2λ1y,0.

        引理2"設(shè)1p+1q=1(pgt;1), λ1λ2gt;0, a,b∈, G(u,v)是λ階齊次非負(fù)函數(shù),

        K(x,y)=G(eλ1x,eλ2y), 記

        W1(s)=∫+∞-∞K(0,t)estdt,""W2(s)=∫+∞-∞K(t,0)estdt,

        則有

        ω1(b,p,x)=∫+∞-∞K(x,y)e-bpydy=eλ1\1λ1aq+1λ2bp=λ, 則1λ1W1(-bp)=1λ2W2(-aq).

        證明: 根據(jù)引理1, 有

        ω1(b,p,x)= "eλλ1x+∞-∞K0,y-λ1λ2xe-bpydy

        =eλλ1x+∞-∞K(0,t)e-bp\"eλ1\

        類似可證ω2(a,q,y)=eλ2\1λ1aq+1λ2bp=λ, 則

        W1(-bp)= "∫+∞-∞K(0,t)e-bptdt=∫+∞-∞K-λ2λ1t,0e

        (λλ2-bp)tdt= "λ1λ2∫+∞-∞K(u,0)e"λ1λ2∫+∞-∞K(u,0)e-aqudu=λ1λ2W2(-aq),

        故1λ1W1(-bp)=1λ2W2(-aq).

        引理3"設(shè)1p+1q=1(pgt;1), K(x,y)≥0, φ1(x)gt;0, φ2(y)gt;0, Ω是一個(gè)可測(cè)集, 積分算子T為

        T(f)(y)=∫ΩK(x,y)f(x)dx,

        則Hilbert型不等式

        ∫Ω∫ΩK(x,y)f(x)g(y)dxdy≤M‖f‖p,φ1(x)‖g‖q,φ2(y)(3)

        等價(jià)于算子不等式

        ‖T(f)‖p,φ1-p2(y)≤M‖f‖p,φ1(x).(4)

        證明: 若式(4)成立, 則根據(jù)H?lder不等式, 有

        ∫Ω∫ΩK(x,y)f(x)g(y)dxdy= "∫Ωg(y)T(f)(y)dy= "∫Ωφ1/q2(y)g(y)φ-1/q2(y)T(f)(y)dy

        ≤ "∫Ωφ2(y)g(y)qdy1/q∫Ωφ-p/q2(y)T(f)(y)pdy1/p

        = "‖g‖q,φ2(y)∫Ωφ1-p2(y)T(f)(y)pdy1/p

        = "‖g‖q,φ2(y)‖T(f)‖p,φ1-p2(y)≤M‖f‖p,φ1(x)‖g‖q,φ2(y),

        故式(4)成立.

        反之, 若式(3)成立, 則

        ‖T(f)‖pp,φ1-p2(y)= "∫Ωφ1-p2(y)T(f)(y)pdy= "∫Ωφ1-p2(y)∫ΩK(x,y)f(x)dxpdy

        ≤ "∫Ωφ1-p2(y)∫ΩK(x,y)f(x)dxp-1∫ΩK(x,y)f(x)dxdy.

        令g(y)=φ1-p2(y)∫ΩK(x,y)f(x)dxp-1, 則

        ‖T(f)‖pp,φ1-p2(y)≤ "∫Ωg(y)∫ΩK(x,y)f(x)dxdy= "∫Ω∫ΩK(x,y)f(x)g(y)dxdy

        ≤ "M‖f‖p,φ1(x)‖g‖q,φ2(y)=M‖f‖p,φ1(x)‖g‖q,φ2(y)= "M‖f‖p,φ1(x)∫Ωφ2(y)

        φ1-p2(y)∫ΩK(x,y)f(x)dxp-1qdy1/q=

        M‖f‖p,φ1(x)∫Ωφ1-p2(y)∫ΩK(x,y)f(x)dxpdy1/q

        = "M‖f‖p,φ1(x)∫Ωφ1-p2(y)T(f)(y)pdy1/q= "M‖f‖p,φ1(x)‖T(f)‖p-1

        p,φ1-p2(y),

        從而可得式(4).

        2"主要結(jié)果

        定理1"設(shè)1p+1q=1(pgt;1), a,b∈, λ1λ2gt;0, G(u,v)是λ階齊次非負(fù)函數(shù),

        K(x,y)=G(eλ1x,eλ2y), 則下列結(jié)論成立:

        1) 記φ1(x)=expλ1paλ1-bλ2+λx,

        φ2(y)=expλ2qbλ2-aλ1+λy, 則

        A(K,f,g)=∶ "∫+∞-∞∫+∞-∞K(x,y)f(x)g(y)dxdy

        ≤ "W1/p1(-bp)W1/q2(-aq)‖f‖p,φ1(x)‖g‖q,φ2(y),(5)

        其中f(x)∈Lφ1(x)p(-∞,+∞), g(y)∈Lφ2(y)q(-∞,+∞).

        2) 若W1(-bp)lt;+∞, W2(-aq)lt;+∞, 則W1/p1(-bp)W1/q2(-aq)是式(5)最佳常數(shù)因子的充分必要條件是1λ1aq+1λ2bp=λ, 且當(dāng)1λ1aq+1λ2bp=λ時(shí), 式(5)化為

        A(K,f,g)≤λ2λ11/qW1(-bp)‖f‖p,exp{apqx}‖g‖q,exp{bpqy},(6)

        其中λ2λ11/qW1(-bp)是最佳常數(shù)因子.

        證明: 1) 選取a,b為搭配參數(shù), 利用H?lder不等式及引理2, 有

        A(K,f,g)= "∫+∞-∞∫+∞-∞(eax-byf(x))(eby-axg(y))K(x,y)dxdy≤

        +∞-∞∫+∞-∞e(ax-by)pf(x)pK(x,y)dxdy1/p

        × "∫+∞-∞∫+∞-∞e(by-ax)qg(y)qK(x,y)dxdy1/q

        = "∫+∞-∞eapxf(x)pω1(b,p,x)dx1/p

        +∞-∞ebqyg(y)qω2(a,q,y)dy1/q= "W1/p1(-bp)W1/q2(-aq)

        +∞-∞expλ1paλ1-bλ2+λxf(x)pdx1/p× "∫+∞-∞expλ2qbλ2-

        aλ1+λyg(y)qdx1/q= "W1/p1(-bp)W1/q2(-aq)‖f‖p,φ1(x)‖g‖q,φ2(y).

        故式(5)成立.

        2) 充分性. 設(shè)1λ1aq+1λ2bp=λ, 則計(jì)算可得φ1(x)=exp{apqx}, φ2(y)=exp{bpqy}.

        又根據(jù)引理2, 有1λ1W1(-bp)=1λ2W2(-aq), 于是式(5)可化為式(6). 從而只需證明式(6)的常數(shù)因子最佳即可.

        若式(6)的常數(shù)因子不是最佳的, 則存在常數(shù)M0lt;λ2λ11/qW1(-bp), 使得

        A(K,f,g)≤M0‖f‖p,exp{apqx}‖g‖q,exp{bpqy}.

        取充分小的εgt;0及足夠大的正數(shù)N, 令

        f(x)=exp{(-apq-λ1ε)x/p},x≥N,0,xlt;N,

        g(y)=exp{(-bpq-λ2ε)y/q},y≥0,0,ylt;0,

        則有

        ‖f‖p,exp{apqx}‖g‖q,exp{bpqy}= "∫+∞Ne-λ1εxdx1/p

        +∞0e-λ2εydy1/q= "1λ1εe-λ1εN1/p1λ2ε1/q= "1ελ11/pλ21/q

        e-λ1εN/p.

        根據(jù)引理1, 有

        A(K,f,g)= "∫+∞Nexp-aq-λ1εpx

        +∞0K(x,y)exp-bp-λ2εqydydx

        = "∫+∞Nexp-aq-λ1εpx×

        +∞0K0,y-λ1λ2xe

        λλ1xexp-bp-λ2εqydydx=

        +∞Nexpλλ1-aq-λ1εpx×

        +∞-(λ1/λ2)xK(0,t)exp-bp-λ2εqt+λ1λ2xdtdx

        = "∫+∞Nexpλλ1-aq-λ1εp-λ1λ2bp+

        λ1εqx× "∫+∞-(λ1/λ2)xK(0,t)exp-bp-λ2εqtdtdx= "∫+∞Neλ1εx

        +∞-(λ1/λ2)xK(0,t)exp-bp-λ2εqtdtdx

        ≥ "∫+∞Neλ1εxdx∫+∞-(λ1/λ2)NK(0,t)exp-bp-λ

        2εqtdt= "1ελ1e-λ1εN

        +∞-(λ1/λ2)NK(0,t)exp-bp-λ2εqtdt.

        綜上可得

        1λ1e-λ1εN+∞-(λ1/λ2)NK(0,t)exp-bp-λ

        2εqtdt≤M01λ11/pλ21/qe-λ1εN/p.

        令ε→0+, 利用Fatou引理[25], 有

        1λ1∫+∞-(λ1/λ2)NK(0,t)e-bptdt≤M01λ11/pλ21/q,

        再令N→+∞, 得

        1λ1W1(-bp)=1λ1∫+∞-∞K(0,t)e-bptdt

        ≤M01λ11/pλ21/q,

        于是有λ2λ11/qW1(-bp)≤M0, 與M0lt;λ2λ11/qW1(-bp)矛盾,

        故λ2λ11/qW1(-bp)是式(6)的最佳常數(shù)因子.

        必要性. 設(shè)W1/p1(-bp)W1/q2(-aq)是式(5)的最佳常數(shù)因子, 記1λ1aq+1λ2bp-λ=c, a1=a-λ1cpq,

        b1=b-λ2cpq, 則

        1λ1a1q+1λ2b1p=1λ1aq+1λ2bp-cp-cq=λ+c-c=λ,

        φ1(x)=expλ1paλ1-bλ2+λx

        =expλ1pa1λ1-b1λ2+λx=exp{a1pqx},

        φ2(y)=expλ2qbλ2-aλ1+λy

        =expλ2qb1λ2-a1λ1+λy=exp{b1pqy},

        W2(-aq)= "∫+∞-∞K(t,0)e-aqtdt=∫+∞-∞K0,-λ1λ2te

        λλ1-aq)tdt= "λ2λ1∫+∞-∞K(0,u)e(-bp+λ2c)udu=λ2λ1∫+∞-∞K(0,t)e(-bp+λ2c)tdt,

        于是式(5)可化為

        A(K,f,g)=W1/p1(-bp)λ2λ1∫+∞-∞K(0,t)e(-bp+λ2c)tdt1/q

        ‖f‖p,exp{a1pqx}‖g‖q,exp{b1pqy}.(7)

        由于式(5)的常數(shù)因子是最佳的, 故式(7)的常數(shù)因子為

        λ2λ11/qW1/p1(-bp)∫+∞-∞K(0,t)e(-bp+λ2c)tdt1/q,

        因?yàn)?λ1a1q+1λ2b1p=λ, 故根據(jù)充分條件的證明可知, 式(7)的最佳常數(shù)因子應(yīng)為

        λ2λ11/qW1(-bp)=λ2λ11/q

        +∞-∞K(0,t)exp-bpt+λ2cqtdt.

        于是

        +∞-∞K(0,t)exp-bpt+λ2cqtdt=W1/p1(-bp)∫+∞-∞K(0,t)exp{(-bp+λ2c)t}d

        t1/q.(8)

        利用H?lder不等式, 有

        +∞-∞K(0,t)exp-bp+λ2cqtdt= "∫+∞-∞1·

        expλ2cqtK(0,t)e-bptdt≤

        +∞-∞1pK(0,t)e-bptdt1/p+∞-∞eλ2ctK(0,t)e-bptdt1/q

        = "W1/p1(-bp)∫+∞-∞K(0,t)e(-bp+λ2c)tdt1/q.(9)

        由式(8)知式(9)取等號(hào), 再根據(jù)H?lder不等式取等號(hào)的條件, 可得eλ2ct=常數(shù), 從而c=0, 即1λ1aq+1λ2bp=λ.

        3"應(yīng)"用

        根據(jù)引理3和定理1, 可得下面關(guān)于算子理論的定理.

        定理2"設(shè)1p+1q=1(pgt;1), a,b∈, λ1λ2gt;0, G(u,v)是λ階齊次非負(fù)可測(cè)函數(shù),

        K(x,y)=G(eλ1x,eλ2y), W1(-bp)lt;+∞, W2(-aq)lt;+∞, 積分算子T為

        T(f)(y)=∫+∞-∞K(x,y)f(x)dx.

        1) 記φ1(x)=expλ1paλ1-bλ2+λx,

        φ2(y)=expλ2qbλ2-aλ1+λy,

        則T是從Lφ1(x)p(-∞,+∞)到Lφ1-p2(y)p(-∞,+∞)的有界算子, 且T的算子范數(shù)‖T‖≤W1/p1(-bp)W1/q2(-aq).

        2) 當(dāng)且僅當(dāng)1λ1aq+1λ2bp=λ時(shí), T的算子范數(shù)‖T‖=W1/p1(-bp)W1/q2(-aq). 當(dāng)1λ1aq+

        1λ2bp=λ時(shí), 有φ1(x)=exp{apqx}, φ2(y)=exp{bpqy}, 且

        ‖T‖=W1/p1(-bp)W1/q2(-aq)=λ2λ11/qW1(-bp).

        推論1"設(shè)1p+1q=1(pgt;1), λgt;0, λ1λ2gt;0, k1gt;0, k2gt;0, 則積分算子

        T(f)(y)=∫+∞-∞f(x)(k1eλ1x+k2eλ2y)λdx

        是從Lexp{-λλ1x}p(-∞,+∞)到Lexp{-λλ2(1-p)y}p(-∞,+∞)的有界算子, 且T的算子范數(shù)為

        ‖T‖=1λ11/qλ21/pkλ/p1

        kλ/q2Bλp,λq,

        其中B(s,t)是Beta函數(shù).

        證明: 令G(u,v)=1(k1u+k2v)λ, 則G(u,v)是-λ階齊次函數(shù), 且

        K(x,y)=G(eλ1x,eλ2y)=1(k1eλ1x+k2eλ2y)λ.

        取a=-λλ1pq, b=-λλ2pq, 則

        1λ1aq+1λ2bp=-λ,"exp{apqx}=exp{-λλ1x},"exp{bpq(1-p)y}=exp{-λλ2(1-p)y},

        W1(-bp)= "∫+∞-∞K(0,t)e-bptdt=∫+∞-∞1(k1+k2eλ2t)λe

        (λλ2/q)tdt= "1kλ1∫+∞-∞1\e(λλ2/q)tdt= "1kλ1

        +∞-∞1(1+u)λk1k2uλ/q1λ2u-1du

        = "1λ21kλ/p1kλ/q2∫+∞-∞1(1+u)λuλ/q-1du=

        1λ2kλ/p1kλ/q2Bλq,λ-λq

        =1λ2kλ/p1kλ/q2Bλp,λq.

        于是可得

        λ2λ11/qW1(-bp)=1λ11/qλ21/pkλ

        /p1kλ/q2Bλp,λq.

        綜上并根據(jù)定理2知結(jié)論成立.

        推論2"設(shè)1p+1q=1(pgt;1), λ1λ2gt;0, 0lt;σlt;λ, k1gt;0, k2gt;0, 則積分算子

        T(f)(y)=∫+∞-∞f(x)(k1+k2eλ1x-λ2y)λdx

        是從Lexp{-λ1σpx}p(-∞,+∞)到Lexp{-λ2σpy}p(-∞,+∞)的有界算子, 且T的算子范數(shù)為

        ‖T‖=kσ-λ1k2λ11/qλ21/pB(σ,λ-σ).

        證明: 令G(u,v)=1(k1+k2u/v)λ, 則G(u,v)是0階齊次函數(shù), 且

        K(x,y)=G(eλ1x,eλ2y)=1(k1+k2eλ1x-λ2y)λ.

        取a=-λ1σq, b=λ2σp, 則

        1λ1aq+1λ2bp=0,"exp{apqx}=exp{-λ1σpx},"exp{bpq(1-p)y}=exp{-λ2σpy},

        W1(-bp)= "∫+∞-∞K(0,t)e-bptdt=∫+∞-∞1(k1+k2e-λ2t)λe

        -λ2σtdt= "1kλ1∫+∞-∞1\e-λ2σtdt= "1λ2kσ-λ1k2

        +∞-∞1(1+u)λuσ-1du=1λ2kσ-λ1k2B(σ,λ-σ),

        于是可得

        λ2λ11/qW1(-bp)=kσ-λ1k2λ11/qλ

        21/pB(σ,λ-σ).

        綜上并根據(jù)定理2知結(jié)論成立.

        若在推論2中取σ=1p, λ=1, 則可得:

        推論3"設(shè)1p+1q=1(pgt;1), λ1λ2gt;0, k1gt;0, k2gt;0, 則積分算子

        T(f)(y)=∫+∞-∞f(x)k1+k2eλ1x-λ2ydx

        是從Lexp{-λ1x}p(-∞,+∞)到Lpexp{-λ2y}(-∞,+∞)的有界算子, 且T的算子范數(shù)為

        ‖T‖=k-1/q1k-1/p2λ11/qλ21/pB1p,1-1p

        =1λ11/qλ21/pk1/q1k1/p2πsin(π/p).

        參考文獻(xiàn)

        [1]"HARDY G H, LETTLEWOOD J E, PLYA G. Inequalities [M]. Cambridge: Cambridge University Press, 1934: 255-284.

        [2]"YANG B C. A New Hilbert-Type Integral Inequalities [J]. Soochow Journal of Mathematics, 2007, 33(4): 849-859.

        [3]"WANG A Z, YANG B C. Equivalent Statements of a Hilbert-Type Integral Inequality with the Extended Hurwitz Zeta Function in the Whol

        e Plane [J]. Journal of Mathematical Inequalities, 2020, 14(4): 1039-1054.

        [4]"KUANG J C. On New Extensions of Hilbert,s Integral

        Inequality [J]. Journal of Mathematical Analysis and Applications, 1999, 235(2): 608-614.

        [5]"洪勇. 關(guān)于零階齊次核的Hardy-Hilbert型積分不等式 [J]. 浙江大學(xué)學(xué)報(bào)(理學(xué)版), 2013, 40(1): 15-18.

        (HONG Y. On Hardy-Hilbert Type Integral Inequality with Homogeneous Kernel of 0-Degree [J]. Journal of Zhejiang University (Science Edition), 2013, 40(1): 15-18.)

        [6]"洪勇, 孔蔭瑩. 含變量可轉(zhuǎn)移函數(shù)核的Hilbert型級(jí)數(shù)不等式 [J]. 數(shù)學(xué)物理學(xué)報(bào), 201

        4, 34A(3): 708-715. (HONG Y, KONG Y Y. A Hilbert Type Series Inequality with Transferable Variable Kernel [J]. Acta Mathematica Scientia, 2014, 34A(3): 708-715.)

        [7]"YANG B C. On New Generalizations of Hilbert,s Inequality [J]. Journal of Mathematical Analysis and Applications, 2000, 248(1): 29-40.

        [8]"RASSIAS M Th, YANG B C. On a Hilbert-Type Inequality in the Plane Related to

        the Extended Riemann Zeta Function [J]. Complex Analysis and Operator Theory, 2019, 13(4): 1765-1782.

        [9]"IMEIJA A, KRINBC' M, PE

        CARIC' J. General Hilbert-Type Inequalities with Non-conjugate Exponents [J]. Mathematical Inequalities and Applications, 2008, 11(2): 237-269.

        [10]"LI Y J, HE B. On Inequalities of Hilbert,s Type [J]. Bulletin of the Australian Mathematical Society, 2007, 76(1): 1-13.

        [11]"KRNIC' M, PEARIC'

        J E. Hilbert,s Inequalities and Their Reverses [J]. Publications Mathematical Debrecen, 2005, 67(3/4): 315-331.

        [12]"RASSIAS M Th, YANG B C, RAIGORODSKII A. On a More Accurate Reverse Hilbert-Ty

        pe Inequality in the Whole Plane [J]. Journal of Mathematical Inequalities, 2020, 14(4): 1359-1374.

        [13]"洪勇, 溫雅敏. 齊次核的Hilbert型級(jí)數(shù)不等式取最佳常數(shù)因子的充要條件 [J]. 數(shù)學(xué)年刊(A輯), 2016, 37(3): 329-336. (HONG Y, WEN Y M. A

        Necessary and Sufficient Condition of That Hilbert Type Series Inequality with Homogeneous Kernel Has the Best Constant Factor [J]. Chinese Annals of Mathematics (Series A), 2016, 37(3): 329-336.)

        [14]"洪勇, 吳春陽(yáng), 陳強(qiáng). 一類非齊次核的最佳Hilbert型積分不等式的搭配參數(shù)條件[J]. 吉林大學(xué)學(xué)報(bào)(理學(xué)版), 2021, 59(2): 207-212. (HONG Y, WU C Y, CHEN Q. Mathing Pa

        rameter Conditions for the Best Hilbert-Type Integral Inequality with a Class of Non-homogeneous Kernels [J]. Journal of Jilin University (Science Edition), 2021, 59(2): 207-212.)

        [15]"HE B, HONG Y, LI Z. Conditions for the Validity of a Class of Optimal Hilbert Type Multiple Integral Inequa

        lities with Nonhomogeneous Kernels [J/OL]. Journal of Inequalities and Applications, (2021-04-02)[2024-02-20]. "https://doi.org/10.1186/s13660-021-02593-z.

        [16]"LIAO J Q, HONG Y, YANG B C. Equivalent Conditions of a Hilbert-Type Multiple

        Integral Inequality Holding [J/OL]. Journal of Function Spaces, (2020-04-15)[2024-01-15]. https://doi.org/10.1155/2020/3050952.

        [17]"HONG Y, HUANG Q L, YANG B C, et al. The Necessary and Sufficient Conditions for the Existence of a Kind of Hilbert-Type Multiple

        Integral Inequality with the Non-homogeneous Kernel and Its Applications [J/OL]. Journal of Inequalities and Applications, (2017-12-28)[2024-02-15]. https://doi.org/10.1186/s13660-017-1592-8.

        [18]"HONG Y, HUANG Q L, CHEN Q. The Parameter Conditions for the Existence of the Hilbert-Type Multiple Integral Inequality and Its Best Constant Factor [J/OL].

        Annals of Functional Analysis, (2020-10-15)[2024-03-10]. https://doi.org/10.1007/s43034-020-00087-5.

        [19]"CHEN Q, YANG B C. A Reverse Hardy-Hilbert-Type Integral Inequality Involving

        One Derivative Function [J/OL]. Annals of Functional Analysis, (2020-12-11)[2024-02-20]. https://doi.org/10.1186/s13660-020-02528-0.

        [20]"WANG A Z, YANG B C, CHEN Q. Equivalent Properties of a Reverse Half-Discrete Hi

        lbert,s Inequality [J/OL]. Annals of Functional Analysis, (2019-11-04)[2024-03-10]. https://doi.org/10.1186/s13660-019-2236-y.

        [21]"HUANG Z X, SHI Y P, YANG B C. On a Reverse Extended Hardy-Hilberts Inequali

        ty [J/OL]. Annals of Functional Analysis, (2020-03-12)[2024-03-15]. https://doi.org/10.1186/s13660-020-02333-9.

        [22]"洪勇. 一類具有準(zhǔn)齊次核的涉及多個(gè)函數(shù)的Hilbert型積分不等式 [J]. 數(shù)學(xué)學(xué)報(bào)(中文版), 2014, 57(5): 833-840. (HONG Y. A Hilbert-Type Integral Inequality wi

        th Quasi-homogeneous Kernel and Several Functions [J]. Acta Mathematica Sinica (Chinese Series), 2014, 57(5): 833-840.)

        [23]"YANG B C. On a Extension of Hilbert,s Integral Inequality with Some Parameter

        s [J]. The Australian Journal of Mathematical Analysis and Applications, 2004, 1(1): 11-1-11-8.

        [24]"匡繼昌. 常用不等式 [M]. 5版. 濟(jì)南: 山東科學(xué)技術(shù)出版社, 2021: 744-765. (KUAN

        G J C. Applied Inequalities [M]. 5th ed. Jinan: Shandong Science and Technology Press, 2021: 744-765.)

        [25]""程其襄, 張奠宙, 魏國(guó)強(qiáng), 等. 實(shí)變函數(shù)與泛函分析[M]. 北京: 高等教育出版社, 1983: 123-130.

        (CHENG Q X, ZHANG D Z, WEI G Q, et al. Function of Real Variable and Functional Analysis[M]. Beijing: Higher Education Press, 1983: 123-130.)

        (責(zé)任編輯: 趙立芹)

        猜你喜歡
        積分算子有界范數(shù)
        復(fù)Banach空間的單位球上Bloch-型空間之間的有界的加權(quán)復(fù)合算子
        齊次核誘導(dǎo)的p進(jìn)制積分算子及其應(yīng)用
        一類具低階項(xiàng)和退化強(qiáng)制的橢圓方程的有界弱解
        一類振蕩積分算子在Wiener共合空間上的有界性
        基于加權(quán)核范數(shù)與范數(shù)的魯棒主成分分析
        矩陣酉不變范數(shù)H?lder不等式及其應(yīng)用
        平均振蕩和相關(guān)于具有非光滑核的奇異積分算子的Toeplitz型算子的有界性
        淺談?wù)?xiàng)有界周期數(shù)列的一些性質(zhì)
        一類具有準(zhǔn)齊次核的Hilbert型奇異重積分算子的范數(shù)及應(yīng)用
        基于sub-tile的對(duì)稱有界DNA結(jié)構(gòu)自組裝及應(yīng)用
        亚洲AⅤ无码国精品中文字慕| 久久无码潮喷a片无码高潮| 欧美日韩精品久久久久| 男女18禁啪啪无遮挡| 久久夜色精品国产亚洲噜噜| 亚洲精品熟女av影院| 中国娇小与黑人巨大交| 欧美亚洲国产片在线播放| 老熟妇Av| 亚洲av网站在线免费观看| 4455永久免费视频| 成全高清在线播放电视剧| 亚洲成a人片在线播放观看国产 | 先锋影音av资源我色资源| 久久久2019精品视频中文字幕| 黄色国产精品福利刺激午夜片| 18禁黄污吃奶免费看网站| 成人天堂资源www在线| 中文字幕日韩精品美一区二区三区| 久久精品中文字幕有码| 日本熟妇hdsex视频| 高清在线亚洲中文精品视频| 国产av一区二区三区国产福利| 国产一区二区视频免费在线观看| 在线看片免费人成视频久网下载 | 在线观看91精品国产免费免费| 精品国产亚洲av成人一区| 久久狼精品一区二区三区| 日韩成人无码| 亚洲女同精品一区二区久久| 国产熟女露脸大叫高潮| 国产免码va在线观看免费| 国产成人精品无码播放 | 亚洲av高清一区二区| 国产在热线精品视频| 亚洲男同志gay 片可播放| 国产精品一区二区三区蜜臀| 日韩精品久久中文字幕| 中日韩精品视频在线观看| 91网红福利精品区一区二| 日本中文字幕精品久久 |