亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        固體瀝青形態(tài)、成因以及應用研究進展

        2024-01-01 00:00:00李長志郭佩豆霜文華國
        沉積學報 2024年5期

        摘 要 【目的】固體瀝青廣泛分布于全球各大含油氣盆地中,在油氣勘探領域具有廣闊的應用前景,特別對深層—超深層碳酸鹽巖油氣勘探尤為重要。然而,在固體瀝青具體應用過程中,也存在固體瀝青反射率難以確定、油氣源對比參數(shù)適用性受成因約束等諸多問題,若不妥善處理,可能會得出錯誤的成果認識。因此,需要對固體瀝青在油氣勘探中的應用進行有效的歸納總結。【方法】此次研究結合廣泛的文獻調研,首先對與應用研究密切相關的固體瀝青形態(tài)學特征和成因類型進行分析,然后總結固體瀝青在油氣勘探中的諸多應用并指出其中的優(yōu)勢與不足?!窘Y果】固體瀝青發(fā)育復雜多樣的光性結構,主要受形成環(huán)境、母質成分等因素控制;其同樣具有復雜多樣的超顯微形態(tài),可能受運移和天然氣的生成及逸散等因素控制。固體瀝青具有多種成因類型,在有機元素組成、碳和硫同位素值以及生物標志化合物組成等方面差異顯著;可用于指示油氣的生成和運聚、表征熱演化成熟度以及追蹤油氣來源等,但由于不同成因固體瀝青油氣源對比參數(shù)的適用性差異很大,應用時需判斷其成因類型?!窘Y論】該研究為固體瀝青的有效應用提供了有力的支撐,對深層—超深層油氣勘探具有重要的指導作用。

        關鍵詞 固體瀝青;微觀結構;成因類型;熱演化成熟度;油氣源對比

        第一作者簡介 李長志,男,1991年出生,博士,講師,油氣成藏地質學,E-mail: nwulcz@126.com

        通信作者 文華國,男,博士,教授,儲層沉積學,E-mail: wenhuaguo08@cdut.edu.cn

        中圖分類號 P618.13 文獻標志碼 A

        0 引言

        瀝青的概念范疇在不同學科領域差異很大,在有機地球化學領域,瀝青被定義為石油中可溶于有機溶劑如二氯甲烷、甲苯等的組分[1?2];而在有機巖石學領域,瀝青被定義為充填巖石孔、洞、縫,由干酪根或原油等分解形成的次生組分[3?5]。本文采用有機巖石學的概念,為便于區(qū)分,稱為固體瀝青。作為干酪根或原油等成巖蝕變的產物,固體瀝青與油氣之間存在密切的聯(lián)系,其巖石礦物學和地球化學等特征被廣泛應用于油氣勘探,例如固體瀝青的反射率可以反映熱演化成熟度,固體瀝青蘊含的生物標志化合物等信息可以追蹤油氣的來源等[6?8]。固體瀝青廣泛分布于世界各大含油氣盆地中,例如美國的拉頓盆地[9]、加拿大的西加拿大沉積盆地[10]、中東的美索不達米亞盆地[11]、澳大利亞的喬治亞盆地[12] 和我國的四川盆地[13?14]、塔里木盆地[15?16]、準噶爾盆地[17?18]以及鄂爾多斯盆地[19?20]等,因而固體瀝青具有廣闊的應用前景。

        近年來,隨著油氣向深層—超深層領域的不斷推進,固體瀝青及其在油氣勘探中的應用受到了越來越多的關注,已成為全球研究熱點[21?25]。然而,在固體瀝青具體應用過程中,也存在諸多問題,若不妥善處理,可能會得出錯誤的成果認識。典型的問題有:(1)不同成因固體瀝青油氣源對比參數(shù)的適用性差異很大,不能直接應用[26?29];(2)固體瀝青具有多種產狀且部分固體瀝青發(fā)育復雜的光性結構,給反射率的測定帶來很大困惑[9,21,30?31];(3)固體瀝青的反射率和拉曼光譜參數(shù)與成熟度的對應關系不同地區(qū)差異很大,不能直接套用[32?35];(4)古油藏對應的固體瀝青含量下限值仍有分歧,給古油藏的判別帶來很大不便等等[36?38]。

        固體瀝青的應用研究與其形態(tài)學特征和成因類型密切相關,例如固體瀝青反射率的測定受其微觀結構的影響,固體瀝青油氣源對比參數(shù)的應用受其成因類型的約束。為了更好地推進固體瀝青的應用研究,筆者通過廣泛的文獻調研和分析,對固體瀝青的應用研究、形態(tài)學特征和成因類型進行歸納總結,梳理固體瀝青復雜的形態(tài)學特征和多樣的成因類型,明確固體瀝青在實際應用中的優(yōu)勢與不足,為固體瀝青在油氣勘探領域的應用提供有力的支撐。

        1 固體瀝青的形態(tài)學特征

        1.1 產狀

        作為干酪根或原油等成巖蝕變的產物,固體瀝青在野外露頭或探井巖心中多以充填溶洞或各類裂縫的形式存在(圖1)。固體瀝青可以獨自全充填于溶洞、裂縫之中(圖1a~c),也可與方解石、白云石、黃鐵礦、閃鋅礦、石英等礦物共同充填溶洞、裂縫(圖1d~f)。對后者而言,根據(jù)固體瀝青與共存礦物的分布特征可以大致判別其形成時間和期次,若固體瀝青緊貼洞壁或縫壁分布(圖1d),說明其形成時間早于共存礦物;若固體瀝青分布于溶洞或裂縫中心(圖1e,f),說明其形成時間晚于共存礦物或與共存礦物一致。

        在顯微鏡下,固體瀝青多呈貼邊充填(圖2a)、獨自全充填(圖2b,c)或與其他礦物共同充填(圖2d)于各類孔隙以及微裂縫之中,獨自全充填的固體瀝青產狀受所充填的孔隙或裂縫的形態(tài)約束。與其他礦物共同充填孔隙或微裂縫時,也可根據(jù)固體瀝青與共存礦物的賦存特征判斷其形成時間和期次。在單偏光下,固體瀝青為黑色、棕黑色(圖2a~d);在熒光下,低成熟固體瀝青大多數(shù)情況下發(fā)黃綠色熒光,而高—過成熟固體瀝青基本不發(fā)光[24,42](圖2e,f)。

        1.2 微觀結構

        在微觀視角下,固體瀝青并不像表觀那樣具有均一的質地,反而具有復雜多樣的微觀結構特征。在油浸偏振光/反射光下,固體瀝青具有兩類光性結構:均一性(isotropic)和各向異性(anisotropy),其中各向異性光學結構主要出現(xiàn)在熱成因固體瀝青(在高溫條件下受熱作用形成的固體瀝青)中,可進一步分為細粒馬賽克型(fine-grained mosaic)、中粒馬賽克型(medium-grained mosaic)、粗粒馬賽克型(coarsegrainedmosaic)、粗流線馬賽克型(coarse flowmosaic)、域型(domain)以及纖維型(fibrous)等[10,31,43](圖3)。在高精度場發(fā)射掃描電鏡下,固體瀝青同樣具有多樣的超顯微形態(tài),常呈塊狀、指狀、多孔狀、瘤狀、片狀、薄皮球狀、葡萄狀以及蠕蟲狀等(圖4)。

        固體瀝青的各向異性光學結構主要緣于有機質受熱在內部形成的中間相,一些模擬實驗表明固體瀝青光性結構由均一性向各向異性轉變一般需要350 ℃左右高溫[45?48]。但母質成分同樣影響固體瀝青受熱形成的各向異性光性結構類型,具有弱各向異性光性結構的固體瀝青(如細粒馬賽克型)可能來源于高分子量、低可塑性、低流動性的富瀝青質原油,而具有強各向異性光性結構的固體瀝青(如粗粒馬賽克型、域型以及纖維型等)可能來源于低分子量、高可塑性、高流動性的富芳香烴原油[40,43]。此外,值得注意的是,Khavari-Khorosani et al.[49]、Creaney etal.[50]、Goodarzi et al.[51]、Wilson[52]和Zhang et al.[53]認為具有強各向異性光性結構固體瀝青的形成與異常熱事件有關。另外,Gao et al.[43]認為固體瀝青的粗流線馬賽克型和域型光性結構是由小尺寸顆粒馬賽克型光性結構合并而成,而粗流線馬賽克型和域型光性結構向纖維型光性結構的轉變與大量原油裂解生氣造成的超壓有關。

        固體瀝青的超顯微形態(tài)受到了廣大學者們的密切關注,但一直未明確其具體成因,可能受多種因素控制[43?44,54]。Gao et al.[43]認為固體瀝青的囊泡或多孔狀形態(tài)主要源自原油向固體瀝青轉化過程中天然氣的生成和逸散。另外,固體瀝青的超顯微形態(tài)也可能與其是否經歷運移有關。一般而言,原地形成的固體瀝青形態(tài)較為完整,多貼靠孔壁或縫壁,發(fā)育收縮縫,而異地運移固體瀝青類似碎屑顆粒,較為破碎,分散分布在孔隙或裂縫中的自生礦物之間[44,55]。四川盆地東北部長興組—飛仙關組蠕蟲狀固體瀝青并未緊貼孔壁或縫壁,而是雜亂不規(guī)則地堆積于溶縫或溶蝕孔之中,具有斷裂接觸結構,且被伊利石等黏土礦物包裹纏繞。因此,李勝勇等[44]認為蠕蟲狀超顯微形態(tài)可能是固體瀝青呈固態(tài)或半固態(tài)狀隨熱液型流體異地運移,然后由于溫壓條件改變雜亂堆積于孔洞及裂縫中且形態(tài)發(fā)生改變的結果。

        2 固體瀝青的成因類型

        固體瀝青存在多種成因類型,可分為熱成因和冷變質成因兩類[56],其中熱成因包括熱化學蝕變作用和熱化學硫酸鹽還原作用,冷變質成因包括脫瀝青作用、生物降解作用等(圖5)。值得注意的是,很多研究表明有些固體瀝青是多種機制共同作用的產物[24,57],例如南阿曼鹽盆前寒武晚期—早寒武世Ara群儲層內固體瀝青是由熱蝕變作用和氣體脫瀝青共同作用形成[58]。

        熱化學蝕變作用是指原油等烴類在高溫下熱裂解形成固體瀝青以及天然氣等小分子烴類,需要較高的溫度,通常在150 ℃以上[59?60]。熱化學蝕變作用形成的固體瀝青典型案例有英國北海中部中生界儲集層中的固體瀝青[61]和美國阿拉斯加布魯克斯山脈區(qū)域三疊系—下白堊統(tǒng)地表露頭處的固體瀝青[62]。值得注意的是,熱化學蝕變作用可分為正常熱演化蝕變作用(埋藏引起溫度升高)和熱液蝕變作用(熱液引起溫度升高)。Gao et al.[43]和Zhang et al.[53]認為川中地區(qū)震旦系—寒武系儲集層中部分固體瀝青由熱液蝕變作用形成,與晚二疊世峨眉山玄武巖噴發(fā)這一異常熱事件有關[43,53]。由熱化學蝕變作用形成的固體瀝青通常在巖石熱解參數(shù)上具有低氫指數(shù)(HI)和高最高熱解峰溫(Tmax)的特征[24],具有較高的N/C 原子比和δ13C 值以及較低的S/C 原子比、δ34S值[28,62?64]、多環(huán)生物標志化合物含量[65],其中由熱液蝕變作用形成的固體瀝青常與熱液礦物(如馬鞍狀白云石等)共存[53]。

        熱化學硫酸鹽還原作用通常發(fā)生在深埋藏碳酸鹽巖儲集層中,硫酸根離子與油氣發(fā)生還原反應形成固體瀝青以及小分子烴類、硫化氫、二氧化碳等。熱化學硫酸鹽還原作用形成的固體瀝青典型案例有美國懷俄明州LaBarge油田密西西比系Madison組碳酸鹽巖儲集層中的固體瀝青[66]和加拿大阿爾伯塔省布拉佐河區(qū)域Nisku 組儲集層中的固體瀝青[67]。由熱化學硫酸鹽還原作用形成的固體瀝青一般具有較低的N/C原子比和δ13C值以及較高的S/C原子比和δ34S值[53,66,68?69]。

        脫瀝青作用是指在外界影響下原油中沉淀析出固體瀝青,通常受控于天然氣的注入(gas deasphalting,天然氣脫瀝青作用)和黏土礦物對瀝青質的吸附(natural deasphalting,自然脫瀝青作用)[1,43,70?71]。烴類氣體或二氧化碳注入未飽和油藏中會使原油中瀝青溶解度降低進而造成固體瀝青的沉淀[72],天然氣脫瀝青作用形成的固體瀝青典型案例有美國得克薩斯州東部West Purt 油田斷控油藏中發(fā)育的固體瀝青[73]。黏土礦物(特別是伊利石和高嶺石)表面具有很強的吸附極性化合物(如瀝青質和樹脂)能力,可以使固體瀝青從原油中沉淀析出,因此在富含大量黏土礦物的砂巖儲集層中,固體瀝青常由自然脫瀝青作用形成[70?71]。由自然脫瀝青作用形成的固體瀝青典型案例如埃及Shushan盆地侏羅系Khatatba砂巖儲集層中發(fā)育的固體瀝青[71]。脫瀝青作用形成的固體瀝青主要由NSO 化合物、芳烴和瀝青質組成[24,74],通常具有較低的熱演化成熟度,發(fā)黃綠色等熒光,其中天然氣脫瀝青作用形成的固體瀝青常發(fā)育豐富的不均勻分布的囊泡[52,74?75]。

        生物降解作用是指在微生物作用下原油中的正構烷烴、異戊二烯烴、芳香族化合物等易降解成分逐漸被消耗,瀝青質和NSO化合物含量逐漸增加,進而衍變?yōu)楣腆w瀝青[76?78]。生物降解作用多發(fā)生在近地表溫度小于80 ℃的環(huán)境中[79?80],由生物降解作用形成的固體瀝青典型案例如塔里木盆地哈拉哈塘次洼志留系和石炭系儲集層中的固體瀝青[27]以及美國俄克拉何馬州Ouachita山區(qū)的固體瀝青[81]。由生物降解作用形成的固體瀝青中正構烷烴、甾烷及藿烷等易降解組分被生物降解,通常存在生物降解的產物,如25-降藿烷、17-降三環(huán)萜烷、C23去甲基四環(huán)萜烷等系列生物標志化合物[27,82]。

        3 固體瀝青在油氣勘探中的應用

        固體瀝青在油氣勘探中主要有以下應用:(1)是油氣生成、運移、聚集的有效證據(jù)[6,83?84];(2)光學和譜學特征是評價宿主巖石熱演化成熟度的有利指標[31,58,85?86];(3)蘊含來自源巖的地球化學信息,是油氣源對比的重要研究對象[87?89]。

        3.1 指示油氣的生成、運移和聚集

        固體瀝青可分為前油固體瀝青(pre-oil solidbitumen)和后油固體瀝青(post-oil solid bitumen),前者形成于原油生成之前,由烴源巖中的有機質轉化而成,而后者形成于原油生成之后,由烴源巖生成的原油、濕氣等蝕變而成[24,90]。因此,固體瀝青特別是后油固體瀝青的存在可以有效證明地質歷史時期曾發(fā)生過油氣的生成、運移和聚集,在油氣勘探的早期甚至是尋找地下油氣藏的主要標志之一[91]。

        固體瀝青對油氣在烴源巖中的初次運移起著非常重要的作用[24,83,92]。油氣的初次運移發(fā)生在烴源巖互相連通的油潤濕相孔隙網(wǎng)絡中[93],然而在油氣生成期,烴源巖中的干酪根卻難以形成互相連通的網(wǎng)絡[24]。由烴源巖中有機質轉化而成的網(wǎng)絡狀前油固體瀝青形成于原油形成之前,是早期油氣初次運移的有利通道[94]。后油固體瀝青網(wǎng)絡最早可形成于中成熟階段(Ro=0.76%)(圖6a,b),在Rogt;0.80%~0.90%時便可發(fā)育納米級孔隙(圖6c,d)[84,95?96]。由于納米級孔隙的存在,固體瀝青更容易破裂形成微裂縫,因此,網(wǎng)絡狀后油固體瀝青中的納米級孔隙和微裂縫相互連通,是中成熟階段以來油氣初次運移的重要通道[24,84]。另外,由于儲集層中的固體瀝青主要由原油后期蝕變形成,因此固體瀝青中的生物標志化合物特征與原油相似,也應受到運移分餾效應的影響,故可用來研究原油二次運移的方向。Chen et al.[6]以四川盆地高磨地區(qū)下寒武統(tǒng)氣藏為例,利用固體瀝青的二苯并噻吩以及烷基二苯并噻吩系列參數(shù)順利恢復了原油的運移方向。

        古油藏的識別有多種方法,例如含油包裹體顆粒指數(shù)(GOI)、定量顆粒熒光(QGF)、可溶有機質或殘余油含量等[36,97?98],但對處于高—過成熟階段的古老深埋藏地層而言,由于原油已經大規(guī)模裂解成天然氣和固體瀝青,上述方法基本已不再適用[38],因此利用固體瀝青含量識別古油藏成為極為重要一種方法。關于古油藏對應的固體瀝青含量下限值,前人有不同的見解,王飛宇等[36]認為當固體瀝青含量大于2%時存在古油藏,而Li et al.[37?38]認為這一下限值為1%。因而在利用固體瀝青含量判斷古油藏時,應結合研究區(qū)具體實際,謹慎選取合適的下限值進行分析。

        3.2 表征熱演化成熟度

        成熟度是評價烴源巖有機質生烴和成藏演化的一個重要指標,長久以來是石油地質地球化學和有機巖石學研究的重要科學問題[24,99]。鏡質體反射率是表征熱演化成熟度最為常用的指標,然而對于缺少鏡質體的古老海相地層而言,固體瀝青的反射率和拉曼光譜參數(shù)是表征熱演化成熟度的有利指標[7?8,31,56]。

        與鏡質體反射率能夠表征熱演化成熟度的原理一致,隨著熱演化程度的逐漸增高,固體瀝青中鏈烷結構逐漸減少,由于縮合、締合等作用,芳環(huán)結構出現(xiàn)片狀結構,且芳香片的間距逐漸縮小,因而導致反射率逐漸增高[100]。已有大量的研究表明,固體瀝青反射率與鏡質體反射率具有很好的對應關系,因此可以有效表征熱演化成熟度[32?33,58,101?102]。然而,固體瀝青反射率表征熱演化成熟度也存在一些不足,需謹慎使用。首先,巖石中可能存在多種固體瀝青[21,30],同時高熱演化固體瀝青大多具有很強的光性結構各向異性[9,31],致使瀝青反射率測定目標鎖定困難、測值偏差很大。其次,固體瀝青可以以非常小的顆粒形式存在,容易與鏡質組混淆[24,103]。再次,不同區(qū)域不同巖性中固體瀝青反射率與鏡質體反射率的對應關系存在較大差異[32?33],不能隨意地套換公式,甚至在一些區(qū)域,固體瀝青反射率根本不能有效表征熱演化成熟度[21,104?105]。

        隨著熱演化程度的增高,固體瀝青的分子結構從無序向有序變化,對應的拉曼光譜特征也會隨之變化(圖7),因而,固體瀝青的拉曼光譜參數(shù)可以表征熱演化成熟度[107]。拉曼光譜由兩個區(qū)域組成:一級區(qū)域(1 000~1 800 cm-1)和二級區(qū)域(2 400~3 500 cm-1),其中一級區(qū)域包含兩個主峰:無序峰(D峰,1 340~1 360 cm-1)和石墨峰(G峰,約1 580 cm-1)[35]。常用的拉曼參數(shù)大都為這兩個峰的特征參數(shù)或參數(shù)比值,例如G峰半高寬、D峰半高寬、G-D峰間距、峰面積比、半高寬比、峰高比以及D峰或G峰峰位等[8,34,85]。利用固體瀝青的拉曼參數(shù)表征熱演化成熟度也需注意以下問題:首先,不同區(qū)域、不同類型樣品對應的能夠有效反映熱演化成熟度的拉曼光譜參數(shù)不同[8,34?35];其次,不同拉曼參數(shù)可以有效表征的熱演化成熟度范圍不同,這可能與不同熱演化成熟度范圍內有機質結構變化不同有關[108],例如G-D峰間距可以有效表征Rolt;3.5%時的成熟度,而峰高比可以有效表征Rogt;3.5%時的成熟度[85,109];另外,由于數(shù)據(jù)處理方法以及擬合方法等差異,可能導致不同學者得出的拉曼參數(shù)與熱演化成熟度的擬合結果不同,使得研究可復制性低[34?35]。

        3.3 追蹤油氣來源

        固體瀝青是烴源巖中的有機質直接或間接轉化后的產物,因此固體瀝青中蘊含了母巖的地球化學信息,可以用于追蹤油氣來源,特別對高—過成熟階段地層而言,由于烴類主要以天然氣形式存在,蘊含的地化信息少,與其共生的固體瀝青是確定天然氣來源的有利研究對象。固體瀝青常用的油氣源對比指標可分為有機和無機兩種,有機指標包括碳同位素、生物標志化合物等,無機指標包括微量元素、稀土元素以及錸—鋨同位素等[6,26,39,110?111]。

        一般而言,由原油熱化學蝕變作用形成的固體瀝青,其碳同位素值比原油重2‰~3‰,而原油碳同位素值一般比其源巖輕1‰~2‰,因此固體瀝青的碳同位素值與源巖相似,可以有效用于油氣源對比研究[112?115]。陳哲龍等[18]結合有機碳同位素對比分析認為,準噶爾盆地瑪湖凹陷百口泉組固體瀝青來自風城組烴源巖而非烏爾禾組烴源巖。生物標志化合物可以指示源巖的生物來源、沉積環(huán)境、熱演化成熟度等,是固體瀝青最為常用的油氣源對比指標[78,116?119]。Chen et al.[6]成功地利用甾烷、藿烷、三環(huán)萜烷、三芳甾烷、三芴系列等生物標志化合物參數(shù)對四川盆地中部高磨地區(qū)震旦系固體瀝青的來源進行了分析,認為其主要源自震旦系燈影組藻云巖和下寒武統(tǒng)筇竹寺組海相頁巖。

        利用固體瀝青的無機指標進行油氣源對比是目前較新的研究領域,特別對高—過成熟階段油氣源對比研究具有非常重要的作用[120]。某些微量元素和稀土元素在油氣運移過程中較為穩(wěn)定且受成熟度和后期蝕變作用影響小[3,120?122],因此可用于固體瀝青的油氣源對比研究。常用的指標有反映沉積環(huán)境的V/(V+Ni)、Th/U、V/Cr、Mo/Ni、Ce異常值等以及反映物源的Ni和V含量、La/Co、La/Sc等[29,111]。Zhu et al.[29]綜合利用上述指標對比分析了川中地區(qū)震旦系—下寒武統(tǒng)固體瀝青與潛在烴源巖的親緣性,認為與固體瀝青共生的下寒武統(tǒng)龍王廟組天然氣來自下寒武統(tǒng)筇竹寺組烴源巖,而震旦系燈影組天然氣主要來自筇竹寺組以及燈三段(燈影組第三段)烴源巖。錸和鋨具有明顯的親有機質特征[123],主要存在于重組分瀝青質中,受熱演化、生物降解和水洗作用影響小[78,120,124],在原油運移過程中同樣較為穩(wěn)定[125?126],因此也可用于固體瀝青的油氣源對比研究。錸—鋨同位素常用于確定固體瀝青的形成時間[16,39,127?128],結合恢復的潛在烴源巖的生烴史,便可確定固體瀝青的源巖。另外,單獨利用固體瀝青的鋨同位素(187Os/188Os)也可進行油氣源對比,例如Liu et al.[129]通過對比固體瀝青和烴源巖的鋨同位素值,認為安哥拉近海Kwanza盆地Chela組碳酸鹽巖中固體瀝青主要來源于Red Cuvo和Grey Cuvo組烴源巖。

        利用固體瀝青的地球化學特征進行油氣源對比研究時需謹慎使用相關地化參數(shù)指標,特別是要充分考慮不同成因固體瀝青地化參數(shù)的適用性。一般而言,由熱化學硫酸鹽還原作用形成的固體瀝青,其碳同位素值會明顯降低[28,53],甚至比熱化學蝕變作用形成的固體瀝青低7‰[130],相反由嚴重生物降解作用形成的固體瀝青,其碳同位素值可能增高[11,131]。由于微生物的降解,固體瀝青源自母巖的生物標志化合物特征發(fā)生改變,致使易降解的生物標志化合物系列可能不再適用于分析由生物降解作用形成的固體瀝青的來源,應根據(jù)其生物降解級別謹慎使用相關油氣源對比參數(shù)[26?27]。另外,部分生物標志化合物在高—過成熟條件下會發(fā)生復雜的轉變,可能致使由熱化學蝕變作用等形成的高—過成熟固體瀝青中一些對應的參數(shù)失去原本的指示意義[29,78,89]。值得注意的是,由于微量元素、稀土元素以及錸—鋨同位素可以有效用于油氣源對比研究的理論基礎仍存在不足[120],考慮到不同成因固體瀝青在形成過程中受到的復雜流體—巖石相互作用差異性很大,因此不同成因固體瀝青微量元素、稀土元素以及錸—鋨同位素等參數(shù)的適用性可能存在差異,所以在進行油氣源對比時需注意所選參數(shù)的有效性分析。

        4 對油氣勘探的啟示

        由于國際油氣需求量的持續(xù)增長和常規(guī)油氣資源的后繼乏力,深層—超深層逐步變?yōu)橛蜌饪碧降闹攸c領域。對于深層—超深層地層,由于埋深大,地層熱演化程度高,大多處于高—過成熟狀態(tài),烴源巖生成的原油大都熱裂解形成天然氣和固體瀝青,因此固體瀝青是指示油氣生成、運移和聚集的有利證據(jù)。同時,天然氣成分簡單,可用的地球化學指標少,難以精確地追蹤源巖,而固體瀝青成分復雜,蘊含豐富的地球化學信息,是確定共生天然氣來源的有效手段。另外,對于深層—超深層海相碳酸鹽巖地層而言,由于鏡質體相對缺乏,固體瀝青反射率同樣是表征熱演化成熟度的主要手段。因此,固體瀝青在深層—超深層油氣勘探領域具有不可替代的作用,應用前景廣闊。

        利用固體瀝青的碳同位素、生物標志化合物等特征追蹤油氣來源,在油氣勘探中應用最為普遍[6,29,132]。由于不同成因類型的固體瀝青在形成過程中一些源自母巖的地球化學特征會發(fā)生不同程度的改變,其油氣源對比參數(shù)的適用性差異很大[28?29,53,89,133]。因此,在利用固體瀝青進行油氣源對比研究時應首先判別其成因類型,然后再選擇合適的參數(shù)進行研究。

        5 結論

        (1) 固體瀝青發(fā)育復雜多樣的微觀結構,主要受形成環(huán)境、母質成分、天然氣的生成和逸散等因素控制,常見的光性結構可分為均一性和各向異性,其中各向異性光性結構包括細粒馬賽克型、中粒馬賽克型、粗粒馬賽克型、粗流線馬賽克型、域型以及纖維型等;常見的超顯微形態(tài)有塊狀、指狀、多孔狀、瘤狀、片狀、薄皮球狀、葡萄狀以及蠕蟲狀等。

        (2) 固體瀝青具有多種成因類型,地球化學等特征差異顯著。由熱化學蝕變作用形成的固體瀝青具有較高的N/C原子比和δ13C值以及較低的S/C原子比和δ34S值,其中由熱液蝕變作用形成的固體瀝青常與熱液礦物如馬鞍狀白云石等共存。由熱化學硫酸鹽還原作用形成的固體瀝青具有較低的N/C原子比和δ13C值以及較高的S/C原子比和δ34S值。由脫瀝青作用形成的固體瀝青主要由NSO化合物、芳烴和瀝青質組成,通常具有較低的熱演化成熟度,發(fā)黃綠色等熒光,并且由天然氣脫瀝青作用形成的固體瀝青常發(fā)育豐富的不均勻分布的囊泡。由生物降解作用形成的固體瀝青中正構烷烴、甾烷及藿烷等易降解組分被生物降解并且通常存在生物降解的產物,如25-降藿烷、17-降三環(huán)萜烷、C23去甲基四環(huán)萜烷等系列生物標志化合物。

        (3) 固體瀝青在油氣勘探領域具有廣泛的應用,其本身可用于指示油氣的生成、運移和聚集,反射率和激光拉曼參數(shù)可用于表征熱演化成熟度,碳同位素、生物標志化合物、微量和稀土元素以及錸—鋨同位素等可用于追蹤油氣來源。由于不同成因固體瀝青的形成機制不同,源自母巖的地球化學特征會發(fā)生不同程度的改變,致使不同成因固體瀝青油氣源對比參數(shù)的適用性差異很大,因此在應用前需要判別固體瀝青的成因類型。

        致謝 感謝評審專家提出的寶貴修改意見,使得文章內容更加詳實;同時也感謝編輯對稿件的快速處理,使得文章能夠順利錄用。

        參考文獻(References)

        [1] Hwang R J, Teerman S C, Carlson R M. Geochemical comparison

        of reservoir solid bitumens with diverse origins[J]. Organic

        Geochemistry, 1998, 29(1/2/3): 505-517.

        [2] Killops S, Killops V. Introduction to organic geochemistry[M].

        2nd ed. Malden: Blackwell Publishing, 2005: 1-406.

        [3] Hunt J M. Petroleum geochemistry and geology[M]. 2nd ed.

        New York: W. H. Freeman, 1996: 1-743.

        [4] Waliczek M, Machowski G, Wi?c?aw D, et al. Properties of solid

        bitumen and other organic matter from Oligocene shales of the

        Fore-Magura Unit in Polish Outer Carpathians: Microscopic and

        geochemical approach[J]. International Journal of Coal Geology,

        2019, 210: 103206.

        [5] Suárez-Ruiz I, Juliao T, Rodrigues S, et al. Optical parameters

        and microstructural properties of solid bitumens of high reflectance

        (Impsonites). Reflections on their use as an indicator of organic

        maturity[J]. International Journal of Coal Geology, 2020,

        229: 103570.

        [6] Chen Z H, Yang Y M, Wang T G, et al. Dibenzothiophenes in

        solid bitumens: Use of molecular markers to trace paleo-oil filling

        orientations in the lower Cambrian reservoir of the Moxi-Gaoshiti

        Bulge, Sichuan Basin, southern China[J]. Organic Geochemistry,

        2017, 108: 94-112.

        [7] 王曄,邱楠生,馬中良,等. 固體瀝青反射率與鏡質體反射率的

        等效關系評價[J]. 中國礦業(yè)大學學報,2020,49(3):563-575.

        [Wang Ye, Qiu Nansheng, Ma Zhongliang, et al. Evaluation of

        equivalent relationship between vitrinite reflectance and solid bitumen

        reflectance[J]. Journal of China University of Mining amp;

        Technology, 2020, 49(3): 563-575.]

        [8] 肖賢明,周秦,程鵬,等. 高—過成熟海相頁巖中礦物—有機質復

        合體(MOA)的顯微激光拉曼光譜特征作為成熟度指標的意義[J].

        中國科學(D輯):地球科學,2020,50(9):1228-1241.[Xiao Xianming,

        Zhou Qin, Cheng Peng, et al. Thermal maturation as revealed

        by micro-Raman spectroscopy of mineral-organic aggregation

        (MOA) in marine shales with high and over maturities[J].

        Science China (Seri. D): Earth Sciences, 2020, 50(9): 1228-1241.]

        [9] Rimmer S M, Crelling J C, Yoksoulian L E. An occurrence of

        coked bitumen, Raton Formation, Purgatoire River Valley, Colorado,

        U. S. A. [J]. International Journal of Coal Geology, 2015, 141-

        142: 63-73.

        [10] Stasiuk L D. The origin of pyrobitumens in Upper Devonian

        Leduc Formation gas reservoirs, Alberta, Canada: An optical and

        EDS study of oil to gas transformation[J]. Marine and Petroleum

        Geology, 1997, 14(7/8): 915-929.

        [11] Alkhafaji M W, Connan J, Engel M H, et al. Origin, biodegradation,

        and water washing of bitumen from the Mishraq sulfur

        mine, northern Iraq[J]. Marine and Petroleum Geology, 2021,

        124: 104786.

        [12] Misch D, Gross D, Hawranek G, et al. Solid bitumen in shales:

        Petrographic characteristics and implications for reservoir characterization[

        J]. International Journal of Coal Geology, 2019, 205:

        14-31.

        [13] 田興旺,胡國藝,李偉,等. 四川盆地樂山—龍女寺古隆起地

        區(qū)震旦系儲層瀝青地球化學特征及意義[J]. 天然氣地球科學,

        2013,24(5):982-990.[Tian Xingwang, Hu Guoyi, Li Wei, et

        al. Geochemical characteristics and significance of Sinian reser‐

        voir bitumen in Leshan-Longnvsi paleo-uplift area, Sichuan Basin[

        J]. Natural Gas Geoscience, 2013, 24(5): 982-990.]

        [14] 黃文明,徐邱康,劉樹根,等. 中國海相層系油氣成藏過程與

        儲層瀝青耦合關系:以四川盆地為例[J]. 地質科技情報,2015,

        34(6):159-168.[Huang Wenming, Xu Qiukang, Liu Shugen, et

        al. Coupling relationship between oil amp; gas accumulation process

        and reservoir bitumen of marine system: Taking Sichuan Basin

        as an example[J]. Geological Science and Technology Information,

        2015, 34(6): 159-168.]

        [15] 劉洛夫,趙建章,張水昌,等. 塔里木盆地志留系瀝青砂巖的

        成因類型及特征[J]. 石油學報,2000,21(6):12-17.[Liu Luofu,

        Zhao Jianzhang, Zhang Shuichang, et al. Genetic types and

        characteristics of the Silurian asphaltic sandstones in Tarim Basin

        [J]. Acta Petrolei Sinica, 2000, 21(6): 12-17.]

        [16] 陳強路,范明,尤東華. 塔里木盆地志留系瀝青砂巖儲集性非

        常規(guī)評價[J]. 石油學報,2006,27(1):30-33.[Chen Qianglu,

        Fan Ming, You Donghua. Non-traditional method for evaluating

        physical property of Silurian bitumen sandstone reservoirs in

        Tarim Basin[J]. Acta Petrolei Sinica, 2006, 27(1): 30-33.]

        [17] 路俊剛,陳世加,王緒龍,等. 準東三臺—北三臺地區(qū)儲層瀝

        青和稠油特征與成因分析[J]. 中國石油大學學報(自然科學

        版),2011,35(5):27-31,50.[Lu Jungang, Chen Shijia, Wang

        Xulong, et al. Characteristics and origin analysis of viscous oil

        and reservoir bitumen in Santai-Beisantai area[J]. Journal of

        China University of Petroleum, 2011, 35(5): 27-31, 50.]

        [18] 陳哲龍,柳廣弟,曹正林,等. 儲層瀝青成因及其石油地質意

        義:以準噶爾盆地瑪湖凹陷百口泉組為例[J]. 中國礦業(yè)大學學

        報,2018,47(2):391-399.[Chen Zhelong, Liu Guangdi, Cao

        Zhenglin, et al. Origin of solid bitumen and its significance to

        petroleum geology: A case study of Baikouquan Formation in

        Mahu Sag of Junggar Basin[J]. Journal of China University of

        Mining amp; Technology, 2018, 47(2): 391-399.]

        [19] 張春林,孫粉錦,劉銳娥,等. 鄂爾多斯盆地南部奧陶系瀝青

        及古油藏生氣潛力[J]. 石油勘探與開發(fā),2010,37(6):668-

        673.[Zhang Chunlin, Sun Fenjin, Liu Rui'e, et al. Bitumen and

        hydrocarbon generation potential of paleo-reservoirs in the Ordovician,

        south Ordos Basin[J]. Petroleum Exploration and Development,

        2010, 37(6): 668-673.]

        [20] 黃軍平,林俊峰,張雷,等. 鄂爾多斯盆地下古生界—中元古

        界儲層固體瀝青地質特征及油氣勘探意義[J]. 河南理工大學

        學報(自然科學版),2021,40(4):48-58.[Huang Junping, Lin

        Junfeng, Zhang Lei, et al. Geological characteristics and exploration

        significance of reservoir solid bitumen in the Lower Paleozoic-

        Middle Proterozoic in Ordos Basin[J]. Journal of Henan

        Polytechnic University (Natural Science), 2021, 40(4): 48-58.]

        [21] Gon?alves P A, Filho J G M, da Silva F S, et al. Solid bitumen

        occurrences in the Arruda sub-basin (Lusitanian Basin, Portugal):

        Petrographic features[J]. International Journal of Coal Geology,

        2014, 131: 239-249.

        [22] Wang G W, Li P P, Hao F, et al. Impact of sedimentology, diagenesis,

        and solid bitumen on the development of a tight gas

        grainstone reservoir in the Feixianguan Formation, Jiannan area,

        China: Implications for gas exploration in tight carbonate reservoirs[

        J]. Marine and Petroleum Geology, 2015, 64: 250-265.

        [23] Liu Y K, Xiong Y Q, Li Y, et al. Effect of thermal maturation on

        chemical structure and nanomechanical properties of solid bitumen[

        J]. Marine and Petroleum Geology, 2018, 92: 780-793.

        [24] Mastalerz M, Drobniak A, Stankiewicz A B. Origin, properties,

        and implications of solid bitumen in source-rock reservoirs: A review[

        J]. International Journal of Coal Geology, 2018, 195:

        14-36.

        [25] Li Y, Chen S J, Wang Y X, et al. Relationships between hydrocarbon

        evolution and the geochemistry of solid bitumen in the

        Guanwushan Formation, NW Sichuan Basin[J]. Marine and Petroleum

        Geology, 2020, 111: 116-134.

        [26] Wu L L, Liao Y H, Fang Y X, et al. The study on the source of

        the oil seeps and bitumens in the Tianjingshan structure of the

        northern Longmen Mountain structure of Sichuan Basin, China

        [J]. Marine and Petroleum Geology, 2012, 37(1): 147-161.

        [27] Cheng B, Wang T G, Chen Z H, et al. Biodegradation and possible

        source of Silurian and Carboniferous reservoir bitumens

        from the Halahatang sub-depression, Tarim Basin, NW China

        [J]. Marine and Petroleum Geology, 2016, 78: 236-246.

        [28] Cai C F, Xiang L, Yuan Y Y, et al. Sulfur and carbon isotopic

        compositions of the Permian to Triassic TSR and non-TSR altered

        solid bitumen and its parent source rock in NE Sichuan Basin[

        J]. Organic Geochemistry, 2017, 105: 1-12.

        [29] Zhu L Q, Liu G D, Song Z Z, et al. Reservoir solid bitumensource

        rock correlation using the trace and rare earth elements:

        Implications for identifying the natural gas source of the

        Ediacaran-lower Cambrian reservoirs, central Sichuan Basin[J].

        Marine and Petroleum Geology, 2022, 137: 105499.

        [30] Landis C R, Casta?o J R. Maturation and bulk chemical properties

        of a suite of solid hydrocarbons[J]. Organic Geochemistry,

        1995, 22(1): 137-149.

        [31] 左兆喜,曹劍,胡文瑄,等. 高演化有機質的芳烴成熟度表征:基

        于焦瀝青反射率和拉曼參數(shù)的優(yōu)選[J]. 中國科學(D輯):地球科

        學,2022,52(12):2454-2478.[Zuo Zhaoxi, Cao Jian, Hu Wenxuan,

        et al. Characterizing the maturity of highly evolved organic

        matter based on aromatic hydrocarbons and optimization with

        pyrobitumen reflectance and Raman spectral parameters[J]. Science

        China (Seri. D): Earth Sciences, 2022, 52(12): 2454-2478.]

        [32] Bertrand R. Standardization of solid bitumen reflectance to vitrinite

        in some Paleozoic sequences of Canada[J]. Energy Sources,

        1993, 15(2): 269-287.

        [33] Bertrand R, Malo M. Source rock analysis, thermal maturation

        and hydrocarbon generation in Siluro-Devonian rocks of the

        Gaspé Belt Basin, Canada[J]. Bulletin of Canadian Petroleum

        Geology, 2001, 49(2): 238-261.

        [34] Henry D G, Jarvis I, Gillmore G, et al. A rapid method for deter‐

        mining organic matter maturity using Raman spectroscopy: Application

        to Carboniferous organic-rich mudstones and coals[J].

        International Journal of Coal Geology, 2019, 203: 87-98.

        [35] 劉強,柳少波,魯雪松,等. 拉曼光譜在油氣地質應用中的研

        究進展[J]. 光譜學與光譜分析,2022,42(9):2679-2688.[Liu

        Qiang, Liu Shaobo, Lu Xuesong, et al. Research progress in the

        application of Raman spectroscopy in petroleum geology[J].

        Spectroscopy and Spectral Analysis, 2022, 42(9): 2679-2688.]

        [36] 王飛宇,師玉雷,曾花森,等. 利用油包裹體豐度識別古油藏

        和限定成藏方式[J]. 礦物巖石地球化學通報,2006,25(1):12-

        18.[Wang Feiyu, Shi Yulei, Zeng Huasen, et al. To identify

        paleo-oil reservoir and to constrain petroleum charging model

        using the abundance of oil inclusions[J]. Bulletin of Mineralogy,

        Petrology and Geochemistry, 2006, 25(1): 12-18.]

        [37] Li P P, Hao F, Zhang B Q, et al. Heterogeneous distribution of

        pyrobitumen attributable to oil cracking and its effect on carbonate

        reservoirs: Feixianguan Formation in the Jiannan gas field,

        China[J]. AAPG Bulletin, 2015, 99(4): 763-789.

        [38] Li P P, Li T, Zou H Y, et al. Heterogeneous distribution and potential

        significance of solid bitumen in paleo-oil reservoirs: Evidence

        from oil cracking experiments and geological observations

        [J]. Journal of Petroleum Science and Engineering, 2022, 208:

        109340.

        [39] Zhao B S, Li R X, Qin X L, et al. Biomarkers and Re-Os geochronology

        of solid bitumen in the Beiba dome, northern

        Sichuan Basin, China: Implications for solid bitumen origin and

        petroleum system evolution[J]. Marine and Petroleum Geology,

        2021, 126: 104916.

        [40] Yao L P, Zhong N N, Khan I, et al. Comparison of in-source solid

        bitumen with migrated solid bitumen from Ediacaran-Cambrian

        rocks in the Upper Yangtze region, China[J]. International Journal

        of Coal Geology, 2021, 240: 103748.

        [41] 余新亞,李平平,鄒華耀,等. 川東北長興組:飛仙關組古原油

        成藏的孔隙度門限[J]. 地質學報,2014,88(11):2131-2140.

        [Yu Xinya, Li Pingping, Zou Huayao, et al. Porosity threshold

        for paleo-oil accumulation of Changxing: Feixianguan Formations

        in the northeastern Sichuan Basin[J]. Acta Geologica Sinica,

        2014, 88(11): 2131-2140.]

        [42] Shi C H, Cao J, Tan X C, et al. Discovery of oil bitumen coexisting

        with solid bitumen in the lower Cambrian Longwangmiao

        giant gas reservoir, Sichuan Basin, southwestern China:

        Implications for hydrocarbon accumulation process[J]. Organic

        Geochemistry, 2017, 108: 61-81.

        [43] Gao P, Liu G D, Lash G G, et al. Occurrences and origin of

        reservoir solid bitumen in Sinian Dengying Formation dolomites

        of the Sichuan Basin, SW China[J]. International Journal of

        Coal Geology, 2018, 200: 135-152.

        [44] 李勝勇,傅恒,李仲東,等. 川東北地區(qū)長興組—飛仙關組固體瀝

        青的形貌特征與成因分析[J]. 沉積與特提斯地質,2011,31(1):

        72-79.[Li Shengyong, Fu Heng, Li Zhongdong, et al. Morphology

        and genesis of the solid bitumen from the Changxing

        Formation-Feixianguan Formation in northeastern Sichuan[J].

        Sedimentary Geology and Tethyan Geology, 2011, 31(1): 72-79.]

        [45] Ragan S, Marsh H. Carbonization and liquid-crystal (mesophase)

        development. 22. Micro-strength and optical textures of

        cokes from coal-pitch co-carbonizations[J]. Fuel, 1981, 60(6):

        522-528.

        [46] Nandi B N, Belinko K, Ciavaglia L A, et al. Formation of coke

        during thermal hydrocracking of Athabasca bitumen[J]. Fuel,

        1978, 57(5): 265-268.

        [47] Brooks J D, Taylor G H. Formation of graphitizing carbons

        from the liquid phase[J]. Nature, 1965, 206(4985): 697-699.

        [48] White J L. Mesophase mechanisms in the formation of the microstructure

        of petroleum coke[M]//Deviney M L, O’Grady T

        M. Petroleum derived carbons. Washington: American Chemical

        Society, 1976: 282-314.

        [49] Khavari-Khorosani G, Murchison D G. Thermally metamorphosed

        bitumen from Windy Knoll, Derbyshire, England[J].

        Chemical Geology, 1978, 22: 91-105.

        [50] Creaney S, Jones J M, Holliday D W, et al. The occurrence of bitumen

        in the Great Limestone around Matfen, Northumberland–

        its characterisation and possible genesis[J]. Proceedings of the

        Yorkshire Geological Society, 1980, 43(1): 69-79.

        [51] Goodarzi F, Stasiuk L D. Thermal alteration of gilsonite due to

        bushfire, an example from southwest Iran[J]. International Journal

        of Coal Geology, 1991, 17(3/4): 333-342.

        [52] Wilson N S F. Organic petrology, chemical composition, and reflectance

        of pyrobitumen from the El Soldado Cu deposit, Chile

        [J]. International Journal of Coal Geology, 2000, 43(1/2/3/4):

        53-82.

        [53] Zhang P W, Liu G D, Cai C F, et al. Alteration of solid bitumen

        by hydrothermal heating and thermochemical sulfate reduction

        in the Ediacaran and Cambrian dolomite reservoirs in the central

        Sichuan Basin, SW China[J]. Precambrian Research, 2019, 321:

        277-302.

        [54] Rahman M W, Rimmer S M, Rowe H D. The impact of rapid

        heating by intrusion on the geochemistry and petrography of

        coals and organic-rich shales in the Illinois Basin[J]. International

        Journal of Coal Geology, 2018, 187: 45-53.

        [55] Liu S G, Li Z Q, Deng B, et al. Occurrence morphology of bitumen

        in Dengying Formation deep and ultra-deep carbonate reservoirs

        of the Sichuan Basin and its indicating significance to oil

        and gas reservoirs[J]. Natural Gas Industry B, 2022, 9(1):

        73-83.

        [56] 李勇,陳世加,尹相東,等. 儲層中固體瀝青研究現(xiàn)狀、地質意

        義及其發(fā)展趨勢[J]. 吉林大學學報(地球科學版),2020,50

        (3):732-746.[Li Yong, Chen Shijia, Yin Xiangdong, et al. Research

        status, geological significance and development trend of

        solid bitumen in reservoirs[J]. Journal of Jilin University (Earth

        Science Edition), 2020, 50(3): 732-746.]

        [57] Huc A Y, Nederlof P, Debarre R, et al. Pyrobitumen occurrence

        and formation in a Cambro-Ordovician sandstone reservoir, Fahud

        Salt Basin, North Oman[J]. Chemical Geology, 2000, 168(1/

        2): 99-112.

        [58] Schoenherr J, Littke R, Urai J L, et al. Polyphase thermal evolution

        in the Infra-Cambrian Ara Group (South Oman Salt Basin)

        as deduced by maturity of solid reservoir bitumen[J]. Organic

        Geochemistry, 2007, 38(8): 1293-1318.

        [59] Horsfield B, Schenk H J, Mills N, et al. An investigation of the

        in-reservoir conversion of oil to gas: Compositional and kinetic

        findings from closed-system programmed-temperature pyrolysis

        [J]. Organic Geochemistry, 1992, 19(1/2/3): 191-204.

        [60] Dahl J E, Moldowan J M, Peters K E, et al. Diamondoid hydrocarbons

        as indicators of natural oil cracking[J]. Nature, 1999,

        399(6731): 54-57.

        [61] Isaksen G H. Central North Sea hydrocarbon systems: Generation,

        migration, entrapment, and thermal degradation of oil and

        gas[J]. AAPG Bulletin, 2004, 88(11): 1545-1572.

        [62] Kelemen S R, Walters C C, Kwiatek P J, et al. Distinguishing

        solid bitumens formed by thermochemical sulfate reduction and

        thermal chemical alteration[J]. Organic Geochemistry, 2008, 39

        (8): 1137-1143.

        [63] Kelemen S R, Walters C C, Kwiatek P J, et al. Characterization

        of solid bitumens originating from thermal chemical alteration

        and thermochemical sulfate reduction[J]. Geochimica et Cosmochimica

        Acta, 2010, 74(18): 5305-5332.

        [64] Cai C F, Li K K, Zhu Y M, et al. TSR origin of sulfur in Permian

        and Triassic reservoir bitumen, east Sichuan Basin, China[J].

        Organic Geochemistry, 2010, 41(9): 871-878.

        [65] Blanc P, Connan J. Preservation, degradation, and destruction of

        trapped oil[C]//Magoon L B, Dow W G. The petroleum systemfrom

        source to trap. Tulsa: American Association of Petroleum

        Geologists, 1994, 60: 237-247.

        [66] King H E, Walters C C, Horn W C, et al. Sulfur isotope analysis

        of bitumen and pyrite associated with thermal sulfate reduction

        in reservoir carbonates at the Big Piney-La Barge production

        complex[J]. Geochimica et Cosmochimica Acta, 2014, 134:

        210-220.

        [67] Manzano B K, Fowler M G, Machel H G. The influence of thermochemical

        sulphate reduction on hydrocarbon composition in

        Nisku reservoirs, Brazeau river area, Alberta, Canada[J]. Organic

        Geochemistry, 1997, 27(7/8): 507-521.

        [68] Powell T G, Macqueen R W. Precipitation of sulfide ores and organic

        matter: Sulfate reactions at Pine Point, Canada[J]. Science,

        1984, 224(4644): 63-66.

        [69] Machel H G, Krouse H R, Sassen R. Products and distinguishing

        criteria of bacterial and thermochemical sulfate reduction[J].

        Applied Geochemistry, 1995, 10(4): 373-389.

        [70] Sachsenhofer R F, Gratzer R, Tschelaut W, et al. Characterisation

        of non-producible oil in Eocene reservoir sandstones (Bad

        Hall Nord field, Alpine Foreland Basin, Austria)[J]. Marine and

        Petroleum Geology, 2006, 23(1): 1-15.

        [71] Shalaby M R, Hakimi M H, Abdullah W H. Geochemical

        characterization of solid bitumen (migrabitumen) in the Jurassic

        sandstone reservoir of the Tut field, Shushan Basin, northern

        western desert of Egypt[J]. International Journal of Coal Geology,

        2012, 100: 26-39.

        [72] Wilhelms A, Larter S R. Origin of tar mats in petroleum reservoirs.

        Part II: Formation mechanisms for tar mats[J]. Marine

        and Petroleum Geology, 1994, 11(4): 442-456.

        [73] Lomando A J. The influence of solid reservoir bitumen on reservoir

        quality[J]. AAPG Bulletin, 1992, 76(8): 1137-1152.

        [74] Rogers M A, McAlary J D, Bailey N J L. Significance of reservoir

        bitumens to thermal-maturation studies, western Canada Basin[

        J]. AAPG Bulletin, 1974, 58(9): 1806-1824.

        [75] Jacob H. Nomenclature, classification, characterization, and

        genesis of natural solid bitumen (migrabitumen) [M]//Parnell J,

        Kucha H, Landais P. Bitumens in ore deposits. Berlin Heidelberg:

        Springer, 1993: 11-27.

        [76] Volkman J K, Alexander R, Kagi R I, et al. Biodegradation of aromatic

        hydrocarbons in crude oils from the Barrow sub-basin of

        western Australia[J]. Organic Geochemistry, 1984, 6: 619-632.

        [77] Miiller D E, Holba A G, Hughes W B. Effects of biodegradation

        on crude oils[M]//Meyer R F. Exploration for heavy crude oil

        and natural bitumen. Tulsa: American Association of Petroleum

        Geologists, 1987: 233-241.

        [78] Peters K E, Walters C C, Moldowan J M. The biomarker guide,

        volume 2, biomarkers and isotopes in petroleum exploration and

        earth history[M]. 2nd ed. New York: Cambridge University

        Press, 2005: 608-647.

        [79] Curiale J A. Origin of solid bitumens, with emphasis on biological

        marker results[J]. Organic Geochemistry, 1986, 10(1/2/3):

        559-580.

        [80] Head I M, Jones D M, Larter S R. Biological activity in the deep

        subsurface and the origin of heavy oil[J]. Nature, 2003, 426

        (6964): 344-352.

        [81] Curiale J A, Harrison W E. Correlation of oil and asphaltite in

        Ouachita Mountain region of Oklahoma: Geologic notes[J].

        AAPG Bulletin, 1981, 65(11): 2426-2432.

        [82] Huang H P, Li J. Molecular composition assessment of biodegradation

        influence at extreme levels: A case study from oilsand

        bitumen in the Junggar Basin, NW China[J]. Organic Geochemistry,

        2017, 103: 31-42.

        [83] Xiao X M, Wang F, Wilkins R W T, et al. Origin and gas potential

        of pyrobitumen in the Upper Proterozoic strata from the middle

        paleo-uplift of the Sichuan Basin, China[J]. International

        Journal of Coal Geology, 2007, 70(1/2/3): 264-276.

        [84] Cardott B J, Landis C R, Curtis M E. Post-oil solid bitumen network

        in the Woodford Shale, USA:A potential primary migration

        pathway[J]. International Journal of Coal Geology, 2015, 139:

        106-113.

        [85] Zhou Q, Xiao X M, Pan L, et al. The relationship between

        micro-Raman spectral parameters and reflectance of solid bitumen[

        J]. International Journal of Coal Geology, 2014, 121:

        19-25.

        [86] Lohr C D, Hackley P C. Relating Tmax and hydrogen index to vitrinite

        and solid bitumen reflectance in hydrous pyrolysis residues:

        Comparisons to natural thermal indices[J]. International

        Journal of Coal Geology, 2021, 242: 103768.

        [87] Gao G, Ren J L, Yang S R, et al. Characteristics and origin of

        solid bitumen in glutenites: A case study from the Baikouquan

        Formation reservoirs of the Mahu Sag in the Junggar Basin, China[

        J]. Energy amp; Fuels, 2017, 31(12): 13179-13189.

        [88] Cheng B, Chen Z H, Chen T, et al. Biomarker signatures of the

        Ediacaran–early Cambrian origin petroleum from the central Sichuan

        Basin, South China: Implications for source rock characteristics[

        J]. Marine and Petroleum Geology, 2018, 96: 577-590.

        [89] Shi C H, Cao J, Luo B, et al. Major elements trace hydrocarbon

        sources in over-mature petroleum systems: Insights from the Sinian

        Sichuan Basin, China[J]. Precambrian Research, 2020, 343:

        105726.

        [90] 吳小奇,陳迎賓,翟常博,等. 川西坳陷中三疊統(tǒng)雷口坡組瀝

        青地球化學特征及氣源示蹤[J]. 石油與天然氣地質,2022,43

        (2):407-418.[Wu Xiaoqi, Chen Yingbin, Zhai Changbo, et al.

        Geochemical characteristics of bitumen and tracing of gas source

        in the Middle Triassic Leikoupo Formation, western Sichuan Depression[

        J]. Oil amp; Gas Geology, 2022, 43(2): 407-418.]

        [91] 柳廣第. 石油地質學[M]. 4 版. 北京:石油工業(yè)出版社,2009:

        252-258.[Liu Guangdi. Petroleum geology[M]. 4th ed. Beijing:

        Petroleum Industry Press, 2009: 252-258.]

        [92] L?hr S C, Baruch E T, Hall P A, et al. Is organic pore development

        in gas shales influenced by the primary porosity and structure

        of thermally immature organic matter? [J]. Organic Geochemistry,

        2015, 87: 119-132.

        [93] Ungerer P, Behar E, Discamps D. Tentative calculation of the

        overall volume expansion of organic matter during hydrocarbon

        genesis from geochemistry data. Implications for primary

        migration[M]//Bjor?y M. Advances in organic geochemistry.

        Chichester: John Wiley, 1981: 129-135.

        [94] Lewan M D. Petrographic study of primary petroleum migration

        in the Woodford Shale and related rock units[C]//Proceedings of

        the IFP exploration research conference. Paris: Technip, 1987:

        113-130.

        [95] Curtis M E, Cardott B J, Sondergeld C H, et al. Development of

        organic porosity in the Woodford Shale with increasing thermal

        maturity[J]. International Journal of Coal Geology, 2012, 103:

        26-31.

        [96] Reed R M, Loucks R, Milliken K L. Heterogeneity of shape and

        microscale spatial distribution in organic-matter-hosted pores of

        gas shales[C]//Proceedings of 2012 AAPG annual convention

        and exhibition. Long Beach: AAPG, 2012: 1236631.

        [97] Lisk M, O’Brien G W, Eadington P J. Quantitative evaluation of

        the oil-leg potential in the Oliver gas field, Timor Sea, Australia

        [J]. AAPG Bulletin, 2002, 86(9): 1531-1542.

        [98] Liu K Y, Eadington P, Middleton H, et al. Applying quantitative

        fluorescence techniques to investigate petroleum charge history

        of sedimentary basins in Australia and Papuan New Guinea[J].

        Journal of Petroleum Science and Engineering, 2007, 57(1/2):

        139-151.

        [99] Tissot B P, Welte D H. Petroleum formation and occurrence

        [M]. 2nd ed. Berlin: Springer-Verlag Press, 1984.

        [100] 崔潔珺. 海相烴源巖鏡狀體反射率測定方法在塔東地區(qū)的

        應用[J]. 大慶石油地質與開發(fā),2016,35(6):33-36.[Cui Jiejun.

        Application of the vitrinite-like maceral reflectance measuring

        method for the marine hydrocarbon source rocks in east

        Tarim[J]. Petroleum Geology and Oilfield Development in

        Daqing, 2016, 35(6): 33-36.]

        [101] Jacob H. Classification, structure, genesis and practical importance

        of natural solid oil bitumen (“migrabitumen”)[J]. International

        Journal of Coal Geology, 1989, 11(1): 65-79.

        [102] Valentine B J, Hackley P C, Enomoto C B, et al. Reprint of

        “Organic petrology of the Aptian-age section in the downdip

        Mississippi Interior Salt Basin, Mississippi, USA: Observations

        and preliminary implications for thermal maturation history”

        [J]. International Journal of Coal Geology, 2014, 136: 38-51.

        [103] Wei L, Wang Y Z, Mastalerz M. Comparative optical properties

        of macerals and statistical evaluation of mis-identification

        of vitrinite and solid bitumen from early mature Middle

        Devonian-Lower Mississippian New Albany Shale: Implications

        for thermal maturity assessment[J]. International Journal

        of Coal Geology, 2016, 168: 222-236.

        [104] Petersen H I, Schovsbo N H, Nielsen A T. Reflectance measurements

        of zooclasts and solid bitumen in Lower Paleozoic

        shales, southern Scandinavia: Correlation to vitrinite reflectance

        [J]. International Journal of Coal Geology, 2013, 114: 1-18.

        [105] Kus J, Khanaqa P, Mohialdeen I M J, et al. Solid bitumen, bituminite

        and thermal maturity of the Upper Jurassic-Lower Cretaceous

        Chia Gara Formation, Kirkuk oil field, Zagros Fold Belt,

        Kurdistan, Iraq[J]. International Journal of Coal Geology,

        2016, 165: 28-48.

        [106] 王茂林,肖賢明,魏強,等. 頁巖中固體瀝青拉曼光譜參數(shù)作

        為成熟度指標的意義[J]. 天然氣地球科學,2015,26(9):

        1712-1718.[Wang Maolin, Xiao Xianming, Wei Qiang, et al.

        Thermal maturation of solid bitumen in shale as revealed by Raman

        spectroscopy[J]. Natural Gas Geoscience, 2015, 26(9):

        1712-1718.]

        [107] Henry D G, Jarvis I, Gillmore G, et al. Raman spectroscopy as

        a tool to determine the thermal maturity of organic matter: Application

        to sedimentary, metamorphic and structural geology

        [J]. Earth-Science Reviews, 2019, 198: 102936.

        [108] Zhang Y L, Li Z S. Raman spectroscopic study of chemical

        structure and thermal maturity of vitrinite from a suite of Australia

        coals[J]. Fuel, 2019, 241: 188-198.

        [109] 劉德漢,肖賢明,田輝,等. 固體有機質拉曼光譜參數(shù)計算樣

        品熱演化程度的方法與地質應用[J]. 科學通報,2013,58

        (13):1228-1241.[Liu Dehan, Xiao Xianming, Tian Hui, et al.

        Sample maturation calculated using Raman spectroscopic parameters

        for solid organics: Methodology and geological applications[

        J]. China Science Bulletin, 2013, 58(13): 1228-1241.]

        [110] 郝彬,胡素云,黃士鵬,等. 四川盆地磨溪地區(qū)龍王廟組儲層

        瀝青的地球化學特征及其意義[J]. 現(xiàn)代地質,2016,30(3):

        614-626. [Hao Bin, Hu Suyun, Huang Shipeng, et al. Geochemical

        characteristics and its significance of reservoir bitumen

        of Longwangmiao Formation in Moxi area, Sichuan Basin

        [J]. Geoscience, 2016, 30(3): 614-626.]

        [111] Chen Z H, Simoneit B R T, Wang T G, et al. Molecular markers,

        carbon isotopes, and rare earth elements of highly mature

        reservoir pyrobitumens from Sichuan Basin, southwestern China:

        Implications for PreCambrian-lower Cambrian petroleum

        systems[J]. Precambrian Research, 2018, 317: 33-56.

        [112] Sackett W M. Carbon and hydrogen isotope effects during the

        thermocatalytic production of hydrocarbons in laboratory simulation

        experiments[J]. Geochimica et Cosmochimica Acta,

        1978, 42(6): 571-580.

        [113] Peters K E, Rohrback B G, Kaplan I R. Carbon and hydrogen

        stable isotope variations in kerogen during laboratory-simulated

        thermal maturation[J]. AAPG Bulletin, 1981, 65(3): 501-508.

        [114] Xiong Y Q, Jiang W M, Wang X T, et al. Formation and evolution

        of solid bitumen during oil cracking[J]. Marine and Petroleum

        Geology, 2016, 78: 70-75.

        [115] Fang X Y, Geng A S, Liang X, et al. Comparison of the Ediacaran

        and Cambrian petroleum systems in the Tianjingshan and

        the Micangshan uplifts, northern Sichuan Basin, China[J]. Marine

        and Petroleum Geology, 2022, 145: 105876.

        [116] Hao F, Zhou X H, Zhu Y M, et al. Mechanisms of petroleum

        accumulation in the Bozhong sub-basin, Bohai Bay Basin, China.

        Part 1: Origin and occurrence of crude oils[J]. Marine and

        Petroleum Geology, 2009, 26(8): 1528-1542.

        [117] Hao F, Zhou X H, Zhu Y M, et al. Lacustrine source rock deposition

        in response to co-evolution of environments and

        organisms controlled by tectonic subsidence and climate, Bohai

        Bay Basin, China[J]. Organic Geochemistry, 2011, 42(4):

        323-339.

        [118] Wang Q, Hao F, Xu C G, et al. Geochemical characterization of

        QHD29 oils on the eastern margin of Shijiutuo uplift, Bohai Sea,

        China: Insights from biomarker and stable carbon isotope analysis[

        J]. Marine and Petroleum Geology, 2015, 64: 266-275.

        [119] Li C Z, Xu F H, Huang X B, et al. Migration directions of

        crude oils from multiple source rock intervals based on biomarkers:

        A case study of Neogene reservoirs in the Bodong

        Sag, Bohai Bay Basin[J]. Energy Reports, 2022, 8: 8151-8164.

        [120] 施春華. 四川盆地震旦系—下寒武統(tǒng)大氣藏高演化烴源對

        比無機地球化學研究[D]. 南京:南京大學,2017:3-5.[Shi

        Chunhua. Applying inorganic geochemical approaches to conduct

        hydrocarbon source correlation under post- to over-mature

        conditions: A case in the Sinian and the low Cambrian giant gas

        accumulation, Sichuan Basin, southwestern China[D]. Nanjing:

        Nanjing University, 2017: 3-5.]

        [121] Lewan M D. Factors controlling the proportionality of vanadium

        to nickel in crude oils[J]. Geochimica et Cosmochimica Acta,

        1984, 48(11): 2231-2238.

        [122] Kuznetsova A, Kuznetsov P, Foght J M, et al. Trace metal mobilization

        from oil sands froth treatment thickened tailings exhibiting

        acid rock drainage[J]. Science of the Total Environment,

        2016, 571: 699-710.

        [123] Selby D, Creaser R A. Direct radiometric dating of hydrocarbon

        deposits using Rhenium-Osmium isotopes[J]. Science,

        2005, 308(5726): 1293-1295.

        [124] Lillis P G, Selby D. Evaluation of the rhenium-osmium geochronometer

        in the Phosphoria petroleum system, Bighorn Basin

        of Wyoming and Montana, USA[J]. Geochimica et Cosmochimica

        Acta, 2013, 118: 312-330.

        [125] Selby D, Creaser R A, Dewing K, et al. Evaluation of bitumen

        as a 187Re-187Os geochronometer for hydrocarbon maturation and

        migration: A test case from the Polaris MVT deposit, Canada[J].

        Earth and Planetary Science Letters, 2005, 235(1/2): 1-15.

        [126] Selby D, Creaser R A, Fowler M G. Re-Os elemental and isotopic

        systematics in crude oils[J]. Geochimica et Cosmochimica

        Acta, 2007, 71(2): 378-386.

        [127] Chu Z Y, Wang M J, Liu D W, et al. Re-Os dating of gas accumulation

        in Upper Ediacaran to lower Cambrian dolostone reservoirs,

        central Sichuan Basin, China[J]. Chemical Geology,

        2023, 620: 121342.

        [128] Yin L, Zhao P P, Liu J J, et al. Re-Os isotope system in organicrich

        samples for dating and tracing: Methodology, principle,

        and application[J]. Earth-Science Reviews, 2023, 238: 104317.

        [129] Liu J J, Zhou H G, Pujol M, et al. The bitumen formation and

        Re-Os characteristics of a CO2-rich pre-salt gas reservoir of the

        Kwanza Basin, offshore Angola[J]. Marine and Petroleum Geology,

        2022, 143: 105786.

        [130] Sassen R. Geochemical and carbon isotopic studies of crude oil

        destruction, bitumen precipitation, and sulfate reduction in the

        deep Smackover Formation[J]. Organic Geochemistry, 1988,

        12(4): 351-361.

        [131] Charrié-Duhaut A, Lemoine S, Adam P, et al. Abiotic oxidation

        of petroleum bitumens under natural conditions[J]. Organic

        Geochemistry, 2000, 31(10): 977-1003.

        [132] 謝增業(yè),張本健,楊春龍,等. 川西北地區(qū)泥盆系天然氣瀝青

        地球化學特征及來源示蹤[J]. 石油學報,2018,39(10):1103-

        1118.[Xie Zengye, Zhang Benjian, Yang Chunlong, et al. Geo‐

        chemical characteristics and source trace of the Devonian natural

        gas and bitumen in northwest Sichuan Basin[J]. Acta Petrolei

        Sinica, 2018, 39(10): 1103-1118.]

        [133] 朱揚明,李穎,郝芳,等. 四川盆地東北部海、陸相儲層瀝青

        組成特征及來源[J]. 巖石學報,2012,28(3):870-878.[Zhu

        Yangming, Li Ying, Hao Fang, et al. Compositional characteristics

        and origin of marine and terrestrial solid reservoir bitumen

        in the northeast Sichuan Basin[J]. Acta Petrologica Sinica,

        2012, 28(3): 870-878.]

        亚洲男人的天堂在线aⅴ视频 | 国精产品推荐视频| 人妻丰满熟妇AV无码区HD| 久久精品国产只有精品96| 免费看草逼操爽视频网站| 国产无遮挡aaa片爽爽| 99精品国产99久久久久久97| 国产精品无码无片在线观看3D | 99热这里只有精品国产99热门精品 | 丰满熟女人妻中文字幕免费| JIZZJIZZ国产| 国产精品国产三级国产不卡| 天天综合网网欲色| 天天躁狠狠躁狠狠躁夜夜躁| 欧美成人免费看片一区| 中文字幕视频一区懂色| 色老板美国在线观看| 国产极品久久久久极品| 国产欧美亚洲精品第二区首页| 亚洲最大av在线精品国产| 337p日本欧洲亚洲大胆| 亚洲妇女水蜜桃av网网站| 日韩人妻高清福利视频| 亚洲一二三区免费视频| 国内精品视频在线播放不卡| 国产成人精选在线不卡| 亚洲天堂av中文字幕| 性色av一二三天美传媒| 亚洲精品久久国产高清情趣图文| 香港三级欧美国产精品| 韩国一区二区三区黄色录像| 又粗又大又硬毛片免费看| 猫咪www免费人成网最新网站 | 国产精品亚洲日韩欧美色窝窝色欲| 99久久久久久亚洲精品| 国产一区白浆在线观看| 国产精品欧美一区二区三区| 无码人妻一区二区三区免费手机| 亚洲国产综合精品一区| 一本一道人人妻人人妻αv| 欧美成人一级视频|