徐超 楊再?gòu)?qiáng) 王雨亭 劉布春 楊惠棟 湯雨晴 胡新龍 胡鐘東
摘? ? 要:【目的】探究南豐蜜橘不同品系對(duì)高溫?zé)岷Φ纳眄憫?yīng),并進(jìn)行耐熱性評(píng)價(jià)?!痉椒ā客ㄟ^(guò)測(cè)定高溫下南豐蜜橘不同品系(楊小-26和南豐-28)葉片組織結(jié)構(gòu)、氣孔形態(tài)和生理生化指標(biāo),評(píng)價(jià)兩個(gè)品系的耐熱性強(qiáng)弱?!窘Y(jié)果】高溫顯著影響兩個(gè)品系葉片組織結(jié)構(gòu)和氣孔形態(tài)特征;高溫下兩個(gè)品系的Pn下降,在24 h時(shí)是氣孔因素導(dǎo)致的,而在48 h時(shí)是非氣孔因素。高溫期間楊小-26的Fv/Fm、ABS/CSm、TRo/CSm、ETo/CSm和DIo/CSm值均高于南豐-28,而O2-、H2O2和MDA含量則小于南豐-28。在高溫處理48 h時(shí),楊小-26的SOD和CAT活性高于南豐-28。通過(guò)相關(guān)性分析和主成分分析,篩選出氣孔面積、Pn、MDA、Fv/Fm和SOD作為模型構(gòu)建的關(guān)鍵參數(shù),構(gòu)建TOPSIS的耐熱性評(píng)價(jià)模型,計(jì)算出楊小-26的耐熱性高于南豐-28?!窘Y(jié)論】高溫下楊小-26葉片組織更穩(wěn)定、光合能量轉(zhuǎn)換效率高、細(xì)胞膜損傷較輕、SOD和CAT酶的活性高是其耐熱性較高的主要原因。
關(guān)鍵詞:南豐蜜橘;高溫?zé)岷?;解剖結(jié)構(gòu);光合作用;抗氧化酶活性;耐熱性
中圖分類號(hào):S666.2 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2023)12-2638-14
收稿日期:2023-09-06 接受日期:2023-11-20
基金項(xiàng)目:江西省自然科學(xué)基金面上項(xiàng)目(20224BAB205051);江西現(xiàn)代農(nóng)業(yè)科研協(xié)同創(chuàng)新專項(xiàng)項(xiàng)目(JXXTCXBSJJ202206;JXXTCX202203);國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-26);江西省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系項(xiàng)目(JXARS-07);南豐蜜橘品種改良育種(撫科計(jì)字[2022]8號(hào))
作者簡(jiǎn)介:徐超,博士,研究方向?yàn)楣麡錃庀髮W(xué)。E-mail:xuchao@jxaas.cn
*通信作者 Author for correspondence. E-mail:hzd204028@163.com
Physiological response to high temperature and heat tolerance evaluation of different lines in Nanfeng tangerine
XU Chao1, 2, YANG Zaiqiang3, WANG Yuting1, LIU Buchun2, YANG Huidong1, TANG Yuqing1, HU Xinlong1, HU Zhongdong1*
(1Institute of Horticulture/Nanchang Key Laboratory of Germplasm Innovation and Utilization of Fruit and Tea, Jiangxi Academy of Agricultural Sciences, Nanchang 330299, Jiangxi, China; 2Institute of Environment and Sustainable Development in Agriculture, CAAS/National Engineering Laboratory of Efficient Crop Water Use and Disaster Reduction/Key Laboratory of Agricultural Environment, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; 3School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210046, Jiangsu, China)
Abstract: 【Objective】 In order to explore the physiological response of different lines in Nanfeng tangerine to high temperature and evaluate their heat resistance, the present experiment was undertaken. 【Methods】 With the main cultivars of Nanfeng tangerine, Yangxiao-26 and Nanfeng-28, as the experimental materials, the effects of 24 h and 48 h treatments at 42 ℃ on the leaf tissue structure, stomatal morphology, photosynthetic fluorescence parameters, energy transfer, reactive oxygen species and antioxidant enzyme activity of plants were studied. Based on the results, an entropy weighted TOPSIS heat tolerance model was established to determine the heat resistance degrees of Yangxiao-26 and Nanfeng-28. 【Results】 With the extension of high temperature and time, the thickness changes of the epidermis and palisade tissue of the leaves of Yangxiao-26 and Nanfeng-28 were not significant, but the values of Yangxiao-26 were greater than those of Nanfeng-28. After 48 h high-temperature treatment, the thicknesses of the epidermis and sponge tissue significantly decreased by 14.63% and 14.29% in Yangxiao-26, respectively, while they were 13.47% and 15.75% in Nanfeng-28, respectively. With 24 h high temperature treatment, there was no significant differences in the ratio of palisade tissue to spongy tissue between Yangxiao-26 and Nanfeng-28, compared to the untreated group, but the difference was significant with 48 h high temperature treatment. At room temperature, the stomatal areas of Yangxiao-26 and Nanfeng-28 were 62.71 μm and 54.17 μm, respectively. After 48 h high-temperature treatment, the stomatal area of both significantly decreased by 84% and 93%, respectively. High temperature had a significant impact on the length and width of stomata in Yangxiao-26 and Nanfeng-28, both of which significantly decreased with the duration of high temperature treatment. The stomatal density ranges of Yangxiao-26 and Nanfeng-28 were 62.27-69.41 and 61.31-64.06, respectively, which indicated that they were not affected by high temperature treatment. The stomatal closure percentage of Yangxiao-26 and Nanfeng-28 decreased significantly with the extension of high temperature time. After 48 h high temperature treatment, the stomatal closure percentage of both decreased by 58% and 81%, respectively. Before high-temperature treatment, the stomatal length, width, density and closure percentage of Yangxiao-26 were all greater than those of Nanfeng-28. At room temperature, there was no significant difference in leaf Pn between Yangxiao-26 and Nanfeng-28; With the extension of high temperature time, the Pn of both showed a decreasing trend. After 48 h high temperature treatment, the Pn rates of both decreased by 57% and 82% respectively, compared to those without high temperature treatment, and at this time, the Pn of Yangxiao-26 was significantly higher than that of Nanfeng-28. The variation pattern of Gs and Pn was almost consistent, and Gs in both Yangxiao-26 and Nanfeng-28 decreased with the extension of high temperature time. The variation pattern of Ci and Ls in Yangxiao-26 and Nanfeng-28 under different treatment durations under high temperature conditions was opposite. With 24 h high temperature treatment, the Ci of Yangxiao-26 and Nanfeng-28 decreased compared to that without high temperature treatment, while the value of Ls increased compared to that without high temperature treatment. With 48 h high-temperature treatment, the Ci values of Yangxiao-26 and Nanfeng-28 increased compared to those without high-temperature treatment, while the Ls value decreased compared to that without high-temperature treatment. However, there was no significant difference in Ci and Ls at both 24 h and 48 h between Yangxiao-26 and Nanfeng-28. During the entire high-temperature treatment period, the maximum photochemical quantum yield (Fv/Fm), energy absorbed per unit light cross-section (ABS/CSm), energy captured for reducing QA (TRo/CSm), energy captured for electron transfer (ETo/CSm), and dissipated energy (DIo/CSm) values in the leaves of Yangxiao-26 were consistently higher than those of Nanfeng-28; With the increase of high temperature duration, the contents of superoxide anion (O2-), hydrogen peroxide (H2O2) and Malondialdehyde (MDA) in the leaves of Yangxiao-26 and Nanfeng-28 increased continuously, and the contents of O2-, H2O2 and MDA in the leaves of Yangxiao-26 were always lower than those of Nanfeng-28. With the increase of high-temperature treatment time, the ascorbic acid peroxidase (APX) activity in the leaves of Yangxiao-26 and Nanfeng-28 significantly increased. The superoxide dismutase (SOD) activity in the leaves of Yangxiao-26 increased with the extension of high temperature treatment time, while the SOD enzyme activity in the leaves of Nanfeng-28 first increased and then decreased with the extension of high temperature treatment time. With 24 h of high temperature treatment, there was no significant difference in leaf SOD enzyme activity between Yangxiao-26 and Nanfeng-28, but after 48 hours of treatment, the SOD enzyme activity in Yangxiao-26 leaves was significantly lower than that of Nanfeng-28. The order of catalase (CAT) activity in the leaves of Yangxiao-26 was 48 h>24 h>0 h, while in the leaves of Nanfeng-28, the order of CAT enzyme activity was 24 h>0 h>48 h. Moreover, with high temperature treatment for 24 h, the CAT enzyme activity of Yangxiao-26 was significantly higher than that of Nanfeng-28, while with high temperature treatment for 48 h, the CAT enzyme activity of Yangxiao-26 was significantly lower than that of Nanfeng-28. Based on the above physiological parameters, a heat tolerance evaluation model based on entropy weighted TOPSIS was constructed, and it was found that the heat tolerance of Yangxiao-26 (0.678 4) was higher than that of Nanfeng-28 (0.412 9). 【Conclusion】 The main reasons for higher heat resistance of Yangxiao-26 under high temperature conditions are its more stable leaf tissue, high photosynthetic energy conversion efficiency, less damage to cell membrane and high activity of SOD and CAT enzymes.
Key words: Nanfeng tangerine; High temperature; Anatomy structure; Photosynthesis; Antioxidant enzyme activity; Heat resistance
隨著全球氣候變暖、夏季極端高溫天氣頻發(fā)和重發(fā),高溫?zé)岷σ呀?jīng)成為限制農(nóng)業(yè)生產(chǎn)最主要的氣象災(zāi)害之一。南豐蜜橘是江西省第二大特色柑橘品種,已有1300多年的歷史,栽培面積約3.3萬(wàn)hm2,當(dāng)前楊小-26是主栽品系,前期筆者研究團(tuán)隊(duì)已篩選其變異品系南豐-28,但兩者的耐熱性尚缺少數(shù)據(jù)支撐。近年來(lái),高溫?zé)岷σ呀?jīng)成為南豐蜜橘健康生產(chǎn)最主要的限制因素,據(jù)南豐縣地面國(guó)家氣象站數(shù)據(jù),2022年南豐縣監(jiān)測(cè)到38 ℃以上的高溫天數(shù)是67 d,導(dǎo)致90%以上的果園植株葉片發(fā)生卷曲干枯,果實(shí)發(fā)生日灼,更有甚者部分果園絕收或毀園。因此,研究楊小-26、南豐-28的高溫響應(yīng)機(jī)制并綜合評(píng)價(jià)兩者的耐熱性,對(duì)未來(lái)耐熱品系的篩選和推廣、保證夏季植株生長(zhǎng)和果實(shí)發(fā)育具有重要意義。
光合作用是植物細(xì)胞最主要的生理功能過(guò)程,對(duì)高溫脅迫非常敏感,通常在其他細(xì)胞功能受損之前受到抑制。高溫脅迫影響細(xì)胞功能的主要位點(diǎn)是光系統(tǒng)Ⅱ(PSⅡ)、核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco),而細(xì)胞色素b559(Cytb559)和質(zhì)體醌(PQ)也受到影響,與PSⅡ相比,PSⅠ在高溫下是相對(duì)穩(wěn)定的[1-2]。在高溫條件下,植物表現(xiàn)出短期的回避或馴化機(jī)制以響應(yīng)高溫?zé)岷Γ绺淖內(nèi)~向、蒸騰冷卻或改變膜脂組成。同時(shí),葉片氣孔關(guān)閉和水分損失減少、氣孔和毛狀體密度增加以及木質(zhì)部導(dǎo)管變大也是植物中常見的熱誘導(dǎo)特征[2]。在高溫脅迫下,植物體內(nèi)會(huì)產(chǎn)生大量對(duì)細(xì)胞有害的活性氧(reactive oxygen species,ROS),例如超氧陰離子(O2-)、過(guò)氧化氫(H2O2)、羥自由基(·OH)等。研究證實(shí),較低濃度的ROS有助于植物耐受性的增強(qiáng),但過(guò)量的ROS會(huì)導(dǎo)致植物細(xì)胞氧化損傷[3],使葉綠體和線粒體發(fā)生膨脹,破壞蛋白和核酸等高分子,抑制新的D1蛋白合成,阻礙PSⅡ的修復(fù)循環(huán),從而加劇光抑制[4]。植物體會(huì)產(chǎn)生氧化應(yīng)激反應(yīng),激活體內(nèi)抗氧化系統(tǒng),維持細(xì)胞內(nèi)ROS產(chǎn)生和清除的平衡,以降低ROS對(duì)細(xì)胞的傷害程度[5]。常見的抗氧化酶主要包括超氧化物歧化酶(superoxide dismutase,SOD)、過(guò)氧化氫酶(catalase,CAT)、過(guò)氧化物酶(peroxidase,POD)、抗壞血酸過(guò)氧化物酶(ascorbate peroxidase,APX)等。研究表明,高溫下植物體內(nèi)抗氧化酶的變化規(guī)律并不一致。通常情況下,適度的高溫脅迫會(huì)增強(qiáng)植物葉片中抗氧化酶的活性,當(dāng)溫度超過(guò)一定閾值時(shí),抗氧化酶的蛋白結(jié)構(gòu)受損,活性大幅降低[6]。高溫對(duì)抗氧化酶活性的影響在不同品種、器官、發(fā)育階段、處理溫度和持續(xù)時(shí)長(zhǎng)條件下有所差異[7]。高溫還會(huì)阻礙植物體內(nèi)的電子傳遞。胡美君等[8]研究證實(shí),高溫使PSⅡ受體側(cè)電子傳遞受到抑制,熱耗散增加,電子傳遞能量減少,PSⅡ供體側(cè)捕光復(fù)合物Ⅱ(light-harvasting complex Ⅱ,LHCⅡ)或者放氧復(fù)合體(oxygen-evolving complex,OEC)受損,捕獲光能減少,電子傳遞受阻,最終導(dǎo)致光能利用率降低。葉綠素?zé)晒庾鳛楣夂献饔醚芯康奶结?,不僅能反映光能吸收、激發(fā)能傳遞和光化學(xué)反應(yīng)等光合作用的原初反應(yīng)過(guò)程,而且與電子傳遞、質(zhì)子梯度的建立及ATP合成和CO2固定等過(guò)程有關(guān)[9]。幾乎所有光合作用過(guò)程的變化均可通過(guò)葉綠素?zé)晒夥从吵鰜?lái),因此通過(guò)研究葉綠素?zé)晒鈦?lái)間接研究光合作用的變化是一種簡(jiǎn)便、快捷、可靠的方法[10]。該技術(shù)也是筆者在本研究中使用的關(guān)鍵方法之一。
楊小-26是目前南豐蜜橘的主栽品種,筆者課題組前期已篩選出其變異優(yōu)株南豐-28,準(zhǔn)備在適種地區(qū)大范圍推廣。高溫一直以來(lái)是限制南豐蜜橘植株健康生長(zhǎng)發(fā)育的主要農(nóng)業(yè)氣象因素,因此,在大范圍推廣南豐-28前,了解其對(duì)高溫?zé)岷Φ纳眄憫?yīng),并綜合評(píng)價(jià)其與楊小-26的耐高溫強(qiáng)弱尤其關(guān)鍵。筆者在本研究中以南豐蜜橘主栽品系楊小-26及其變異品系南豐-28的3年生盆栽苗為試驗(yàn)材料,在42 ℃高溫下處理24 h和48 h,觀察葉片組織結(jié)構(gòu)及氣孔形態(tài)顯微結(jié)構(gòu),測(cè)定光合熒光參數(shù)、抗氧化酶等生理生化參數(shù),并基于以上指標(biāo)構(gòu)建耐熱性評(píng)價(jià)模型,綜合比較兩個(gè)品系的耐熱性,研究南豐蜜橘在高溫脅迫下的生理響應(yīng)機(jī)制,為耐熱品種的選育和耐熱機(jī)制的研究提供參考,為高溫?zé)岷Φ木C合防控提供理論支撐。
1 材料和方法
1.1 試驗(yàn)材料與處理
試驗(yàn)于2023年6月在江西省農(nóng)業(yè)科學(xué)院園藝研究所綜合實(shí)驗(yàn)大樓進(jìn)行,以3年生南豐蜜橘(主栽品系楊小-26及其變異品系南豐-28)盆栽苗為試驗(yàn)材料,盆的規(guī)格是高25 cm、直徑50 cm,里面營(yíng)養(yǎng)土與珍珠巖質(zhì)量比為4∶1,土壤pH約6.7,土壤濕度為70%~80%,按需澆水。
選取健康無(wú)病蟲害、長(zhǎng)勢(shì)一致的楊小-26和南豐-28盆栽苗各18盆,將楊小-26和南豐-28植株移至25 ℃的人工氣候室中適應(yīng)3 d,此過(guò)程中人工氣候室的濕度設(shè)定為65%~70%,光照度設(shè)定為800 μmol·m-2·s-1,光周期為16 h/8 h(白天/晚上),第3天將植株分別置于42 ℃人工氣候室中連續(xù)處理24 h和48 h,高溫處理過(guò)程中濕度、光照和光周期同上,以25 ℃培養(yǎng)的植株作為對(duì)照,每個(gè)處理3次重復(fù),每個(gè)重復(fù)3株盆栽苗,試驗(yàn)過(guò)程中植株按需澆水,確保盆中土壤濕度維持在70%~80%。指標(biāo)測(cè)定和取樣時(shí)間分別是高溫處理24 h和48 h后。
1.2 葉片細(xì)胞顯微結(jié)構(gòu)觀測(cè)
每個(gè)處理3個(gè)重復(fù),每個(gè)重復(fù)選取1枚葉片,剪取葉片中部主脈旁1.5 cm×1.5 cm的方塊放入2 mL的離心管中,用FAA固定液(70%乙醇90 mL+冰乙酸5 mL+甲醛5 mL)固定,于4 ℃冰箱中保存,然后葉片經(jīng)脫水、浸蠟、包埋、切片(切片厚度8 μm)、封片后制成永久裝片。用體式顯微鏡(SMZ25,Nikon)觀察并拍照,每個(gè)處理測(cè)定4個(gè)視野。使用ImageJ測(cè)量葉片上表皮、下表皮、柵欄組織和海綿組織等的結(jié)構(gòu)參數(shù)[11]。
1.3 葉片下表皮氣孔結(jié)構(gòu)觀測(cè)
每個(gè)處理3個(gè)重復(fù),每個(gè)重復(fù)選取1枚葉片,剪取葉片中部主脈旁1.5 cm×1.5 cm的方塊放入2 mL的離心管中,用pH為7.0~7.5的電鏡固定液(2.5%戊二醛+100 mmol·L-1磷酸鹽)中固定,于4 ℃冰箱中保存。用掃描電鏡(Regulus8100,日立)觀測(cè),每個(gè)處理觀測(cè)10個(gè)視野并拍照,用200倍鏡(200 μm)的照片統(tǒng)計(jì)氣孔數(shù)目和閉合氣孔的數(shù)目,計(jì)算氣孔密度(公式1)和氣孔閉合百分比(公式2);用3000倍鏡(10 μm)照片測(cè)量氣孔的長(zhǎng)度、寬度和面積,使用ImageJ軟件測(cè)量[11]。
氣孔密度/(個(gè)?mm-2)=氣孔數(shù)目/視野面積;? ? (1)
氣孔閉合百分比/%=(每個(gè)視野閉合氣孔數(shù)目/每個(gè)視野氣孔數(shù)目)×100。 ? ? ? ? ? ? ? (2)
1.4 光合參數(shù)的測(cè)定
在活體情況下,每組處理選取盆栽植株健康的功能葉3~5枚,使用便攜式光合儀LI-6400(LI-COR,美國(guó))于09:00—11:00測(cè)定葉片的凈光合速率(Pn)、胞間二氧化碳濃度(Ci)和氣孔導(dǎo)度(Gs)。測(cè)量期間葉室內(nèi)流速500 μmol·s-1,相對(duì)濕度60%,CO2濃度390 μmol·mol-1,葉室溫度25 ℃,光合有效輻射光強(qiáng)1000 μmol·m-2·s-1。氣孔限制值(Ls)根據(jù)公式3求得,其中Ca為空氣中二氧化碳值[12]。
1.5 葉綠素?zé)晒鈪?shù)的測(cè)定
在活體情況下,每組處理選取健康的功能葉3~5枚,用高速連續(xù)激發(fā)式熒光儀HandyPocket PEA(Hansatech,英國(guó))測(cè)定快速葉綠素?zé)晒庹T導(dǎo)曲線,用于研究植物光合機(jī)構(gòu)的光化學(xué)活性、光能的吸收和轉(zhuǎn)化效率。測(cè)定前用儀器自帶葉夾夾住葉片,暗適應(yīng)25 min,然后儀器自動(dòng)記錄Fo、Fm、Fv、Fv/Fm、Sm、Area、PIABS、ABS/CSm、TRo/CSm、ETo/CSm、DIo/CSm等參數(shù)[13]。
1.6 過(guò)氧化氫和超氧陰離子含量測(cè)定
采集植株健康的功能葉0.2 g在液氮中研磨至粉末,置于2 mL離心管中,在離心管中加入2 mL提取液,于4000×g 4 ℃離心20 min,取上清液,作為待測(cè)液。使用過(guò)氧化氫和超氧陰離子活性檢測(cè)試劑盒(南京建成生物工程研究所)進(jìn)行加樣和反應(yīng),用紫外分光光度計(jì)(UV-3600iPlus,Shimadzu)測(cè)定OD值,并以此計(jì)算H2O2和O2-含量,每個(gè)處理3次生物學(xué)重復(fù)[14]。
1.7 抗氧化酶活性和MDA含量的測(cè)定
采集植株健康的功能葉0.2 g在液氮中研磨至粉末,置于2 mL離心管中,在離心管中加入2 mL提取液,于4000×g 4 ℃離心25 min,取上清液,作為待測(cè)液。使用超氧化物歧化酶(SOD)、過(guò)氧化氫酶(CAT)、抗壞血酸過(guò)氧化物酶(APX)和丙二醛(MDA)活性檢測(cè)試劑盒(南京建成生物工程研究所)進(jìn)行加樣和反應(yīng),用紫外分光光度計(jì)(UV-3600iPlus,Shimadzu)測(cè)定OD值,并以此計(jì)算酶活性和MDA含量,每個(gè)處理3次生物學(xué)重復(fù)[15]。
1.8 基于熵權(quán)TOPSIS的耐熱性評(píng)價(jià)模型
1.8.1 評(píng)價(jià)矩陣構(gòu)建 (1)原始耐熱性評(píng)價(jià)矩陣為:
(2)標(biāo)準(zhǔn)化矩陣的構(gòu)建。為了克服評(píng)價(jià)尺度的不統(tǒng)一,需要對(duì)原始數(shù)據(jù)V進(jìn)行歸一化處理,最終得到標(biāo)準(zhǔn)化矩陣R。具體見公式(5)~(7):
式中,V是原始評(píng)價(jià)矩陣;vij是第i個(gè)指標(biāo)在第j個(gè)處理的初始值;R是標(biāo)準(zhǔn)化后的矩陣;rij第i個(gè)指標(biāo)在第j個(gè)處理的標(biāo)準(zhǔn)化值;i=1,2,3,…,m,m是評(píng)價(jià)指標(biāo)數(shù)量;j=1,2,3,…,n,n是品系的數(shù)量。公式(6)和(7)分別為正向、負(fù)向指標(biāo)算法。
1.8.2 評(píng)價(jià)指標(biāo)權(quán)重的確定 利用熵權(quán)法計(jì)算各指標(biāo)的權(quán)重,計(jì)算公式如(8)~(10):
式中,wi為權(quán)重值;Hi為信息熵;fij為指標(biāo)的特征比重;ln0=0。
1.8.3 綜合評(píng)判結(jié)果 (1)基于熵權(quán)TOPSIS的耐熱性評(píng)價(jià)模型構(gòu)建。使用熵權(quán)wi構(gòu)建加權(quán)規(guī)范化耐熱性評(píng)價(jià)矩陣,具體計(jì)算公式如(11):
(2)耐熱性評(píng)價(jià)。本文中以貼近度Tj表示耐熱性的大小,范圍在0~1之間,數(shù)值越貼近1,表明耐熱性越強(qiáng),計(jì)算公式如(12)~(16):
式中,[Y+]和[Y-]分別代表正負(fù)理想解;yi+和yi-分別為最優(yōu)數(shù)據(jù),其中yi+由每列中最大值構(gòu)成,yi-由每列中最小值構(gòu)成,yij代表第i個(gè)指標(biāo)在第j個(gè)處理中的值。Dj+和Dj-分別代表第i個(gè)指標(biāo)與yi+和yi-的距離,其中Dj+為最優(yōu)方案,Dj-為最劣方案。
1.9 數(shù)據(jù)分析
采用Excel 2013軟件對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行整理,利用Origin 2022和Excel軟件繪圖,采用Duncan多重比較法分析多個(gè)樣本之間的顯著性水平,用t檢驗(yàn)分析兩個(gè)獨(dú)立樣本之間的顯著性水平,顯著水準(zhǔn)選擇p<0.05,極顯著水平選擇p<0.01。文中數(shù)據(jù)結(jié)果以“平均值±標(biāo)準(zhǔn)誤差”表示。
2 結(jié)果和分析
2.1 高溫?zé)岷?duì)楊小-26與南豐-28葉片組織顯微結(jié)構(gòu)的影響
高溫?zé)岷ζ陂g楊小-26與南豐-28葉片解剖結(jié)構(gòu)清晰,可明顯區(qū)分下表皮、海綿組織和柵欄組織,楊小-26和南豐-28均有雙柵欄組織(圖1)。由表1可知,隨著高溫?zé)岷r(shí)間的延長(zhǎng),楊小-26和南豐-28葉片上表皮和柵欄組織的厚度變化不顯著,但楊小-26葉片上表皮和柵欄組織的厚度均大于南豐-28。與對(duì)照相比,在高溫處理48 h時(shí),楊小-26和南豐28葉片下表皮和海綿組織厚度均顯著降低,楊小-26分別降低了14.63%和14.29%,南豐-28分別降低了13.47%和15.75%。在高溫處理24 h時(shí)楊小-26和南豐-28的柵海比與未處理組相比差異不顯著,而在高溫處理48 h時(shí)差異顯著。
2.2 高溫?zé)岷?duì)楊小-26與南豐-28葉片下表皮氣孔形態(tài)和特征值的影響
從圖2可看出,在3000倍鏡(10 μm)下可以清晰地看出,楊小-26與南豐-28葉片下表皮氣孔形態(tài)均隨著高溫?zé)岷r(shí)間的延長(zhǎng)而逐漸變小,且相同處理時(shí)長(zhǎng),楊小-26氣孔開張大于南豐-28,尤其在高溫處理48 h時(shí)更為明顯。高溫?zé)岷?duì)楊小-26與南豐-28葉片下表皮氣孔特征值的影響見表2。未進(jìn)行高溫處理時(shí),楊小-26與南豐-28氣孔面積分別為62.71 μm2和54.17 μm2,在高溫處理48 h后,二者氣孔面積均顯著降低,分別降低了84%和93%。高溫對(duì)楊小-26與南豐-28氣孔長(zhǎng)度和寬度有顯著影響,均隨著高溫處理時(shí)長(zhǎng)的增加而顯著減少。氣孔密度不受高溫處理的影響,楊小-26與南豐-28的氣孔密度范圍分別是62.27~69.41個(gè)?mm-2和61.31~64.06個(gè)?mm-2。氣孔閉合百分比顯著受高溫影響,楊小-26與南豐-28的氣孔閉合百分比隨著高溫時(shí)間的延長(zhǎng)而顯著升高,與對(duì)照相比,在高溫處理48 h后,二者氣孔閉合百分比分別增加了4.14倍和1.38倍。未進(jìn)行高溫處理前,楊小-26的氣孔長(zhǎng)度、氣孔寬度、氣孔密度均大于南豐-28。
2.3 高溫?zé)岷?duì)楊小-26與南豐-28葉片光合參數(shù)的影響
高溫?zé)岷ο聴钚?26與南豐-28葉片的Pn、Gs、Ci和Ls的變化規(guī)律如圖3所示。未進(jìn)行高溫處理時(shí),楊小-26與南豐-28葉片的Pn無(wú)顯著差異;隨著高溫時(shí)間的延長(zhǎng),兩者Pn呈現(xiàn)下降趨勢(shì),高溫處理48 h,兩者的Pn較未進(jìn)行高溫處理時(shí)分別降低了57%和82%,且此時(shí)楊小-26的Pn顯著大于南豐-28。Gs與Pn的變化規(guī)律幾乎一致,楊小-26與南豐-28的Gs均隨著高溫時(shí)間的延長(zhǎng)而減少。高溫下不同處理時(shí)長(zhǎng)楊小-26與南豐-28的Ci和Ls變化規(guī)律相反,在高溫處理24 h時(shí),楊小-26與南豐-28的Ci較未進(jìn)行高溫處理時(shí)下降,而Ls值較未進(jìn)行高溫處理時(shí)上升。高溫處理48 h時(shí),楊小-26與南豐-28的Ci較未進(jìn)行高溫處理時(shí)上升,而Ls值較未進(jìn)行高溫處理時(shí)下降。但無(wú)論是24 h還是48 h下,楊小-26與南豐-28的Ci和Ls差異均不顯著。
2.4 高溫?zé)岷?duì)楊小-26與南豐-28葉片葉綠素?zé)晒鈪?shù)的影響
高溫?zé)岷?duì)楊小-26與南豐-28葉片熒光動(dòng)力參數(shù)(Fo、Fm、Fv、Fv/Fm、Sm、Area和PIABS)的影響如圖4所示。隨著高溫?zé)岷μ幚頃r(shí)間的延長(zhǎng),楊小-26與南豐-28的Fm、Fv、Fv/Fm、Sm、Area和PIABS呈現(xiàn)下降趨勢(shì),F(xiàn)o則呈上升趨勢(shì)。在高溫處理48 h時(shí),楊小-26的Fm、Fv、Fv/Fm、Sm、Area和PIABS值相對(duì)于未經(jīng)過(guò)高溫處理分別降低了46%、72%、53%、47%、78%和60%,南豐-28分別降低了57%、81%、66%、53%、87%和65%,而楊小-26和南豐-28的Fo則分別上升31%和41%。
2.5 高溫?zé)岷?duì)楊小-26與南豐-28葉片能量分配的影響
高溫?zé)岷?duì)楊小-26與南豐-28葉片能量分配[單位受光截面吸收的能量(ABS/CSm)、單位受光截面捕獲用于電子傳遞的能量(ETo/CSm)、單位受光截面捕獲用于還原QA的能量(TRo/CSm)、單位受光截面耗散的能量(DIo/CSm)]的影響如圖5所示。未進(jìn)行高溫處理時(shí),楊小-26與南豐-28葉片的ABS/CSm、TRo/CSm、ETo/CSm、DIo/CSm無(wú)顯著差異;隨著高溫時(shí)間的延長(zhǎng),兩者ABS/CSm、TRo/CSm、ETo/CSm、DIo/CSm呈現(xiàn)下降趨勢(shì),無(wú)論是高溫處理24 h或48 h,楊小-26的ABS/CSm、TRo/CSm、ETo/CSm和DIo/CSm值均始終高于南豐-28。
2.6 高溫?zé)岷?duì)楊小-26與南豐-28葉片H2O2和O2-含量的影響
高溫?zé)岷?duì)楊小-26與南豐-28葉片H2O2和O2-含量的影響如圖6所示。隨著高溫?zé)岷μ幚頃r(shí)長(zhǎng)的增加,楊小-26與南豐-28葉片上H2O2和O2-含量一直呈現(xiàn)增多趨勢(shì)。在高溫處理24 h后,南豐-28的H2O2和O2-含量均顯著高于楊小-26。在高溫處理48 h后,楊小-26的H2O2和O2-含量較高溫處理24 h分別增加11%和15%,而南豐-28的H2O2和O2-含量分別增加了11%和10%,且南豐-28的H2O2和O2-含量均顯著高于楊小-26。
2.7 高溫?zé)岷?duì)楊小-26與南豐-28葉片抗氧化酶活性和MDA含量的影響
高溫對(duì)楊小-26與南豐-28葉片MDA含量及APX、SOD和CAT活性的影響如圖7所示。隨著高溫處理時(shí)間的延長(zhǎng),楊小-26和南豐-28葉片中MDA含量和APX活性顯著上升,且高溫處理后,南豐-28葉片中MDA含量和APX活性高于楊小-26。楊小-26葉片中SOD活性隨著高溫處理時(shí)間的延長(zhǎng)而升高,南豐-28葉片中SOD活性隨著高溫處理時(shí)間的延長(zhǎng)先升高后下降,在高溫處理24 h時(shí),楊小-26和南豐-28葉片中SOD活性差異不顯著,但在處理48 h后楊小-26葉片中SOD活性顯著低于南豐-28。楊小-26葉片中CAT活性的高低順序?yàn)?8 h>24 h>0 h,南豐-28葉片中CAT活性高低順序?yàn)?4 h>0 h>48 h,且高溫處理24 h時(shí)楊小-26 CAT活性顯著高于南豐-28,而高溫處理48 h時(shí)楊小-26 CAT活性顯著低于南豐-28。
2.8 基于熵權(quán)TOPSIS的楊小-26與南豐-28耐熱性評(píng)價(jià)
通過(guò)相關(guān)性分析和主成分分析,兼顧數(shù)據(jù)易取性,篩選出氣孔面積、凈光合速率、MDA含量、Fv/Fm和SOD活性這5個(gè)參數(shù)來(lái)計(jì)算楊小-26與南豐-28的耐熱性。
(1)加權(quán)規(guī)范化耐熱性評(píng)價(jià)矩陣。通過(guò)計(jì)算不同處理下氣孔面積(As)、凈光合速率(Pn)、丙二醛(MDA)含量、最大光化學(xué)效率(Fv/Fm)和超氧化物歧化酶(SOD)活性等5個(gè)指標(biāo)的權(quán)重分別是0.16、0.21、0.25、0.23和0.15,構(gòu)建基于熵權(quán)TOPSIS的耐熱性評(píng)價(jià)模型Y,具體矩陣如下。
(2)耐熱性評(píng)價(jià)。貼近度的范圍是0到1,楊小-26的貼近度為0.678 4,南豐-28的貼近度為0.412 9,耐熱性越強(qiáng),貼近度越接近1,可以得出楊小-26的耐熱性強(qiáng)于南豐-28。
3 討 論
葉片是植物對(duì)環(huán)境變化比較敏感且可塑性較強(qiáng)的器官,其形態(tài)解剖結(jié)構(gòu)的變化能較好地反映植物的生長(zhǎng)狀況和對(duì)外界的適應(yīng)性[16]。發(fā)達(dá)的柵欄組織不僅可以保護(hù)葉肉細(xì)胞免受灼傷,還可以利用衍射光進(jìn)行光合作用。在本研究中,高溫處理下楊小-26和南豐-28葉片上表皮和柵欄組織的厚度變化不顯著。與未處理相比,在高溫48 h時(shí),楊小-26和南豐28葉片下表皮和海綿組織厚度均顯著降低,柵海比顯著升高,表明長(zhǎng)期高溫破壞兩者葉片內(nèi)部結(jié)構(gòu)。氣孔是植物表皮上的特殊結(jié)構(gòu),是植物與外界環(huán)境進(jìn)行CO2和H2O等氣體交換的重要通道和器官[17]。植物葉片通過(guò)改變氣孔面積、密度、長(zhǎng)(寬)度以及空間分布格局來(lái)迅速響應(yīng)短期內(nèi)環(huán)境變化,從而提高葉片的氣孔交換速率[18]。目前,關(guān)于高溫對(duì)氣孔密度的影響還存在一定分歧,有研究表明,高溫處理對(duì)植物葉片的氣孔密度無(wú)顯著影響[11];然而,另一些研究卻發(fā)現(xiàn)高溫能夠減少或增加植物葉片表皮的氣孔密度[19-20]。出現(xiàn)截然相反結(jié)果的原因可能與植物的種類、遺傳特性、溫度和處理方式等因素密切相關(guān)。本研究表明,高溫處理24 h和48 h對(duì)楊小-26和南豐-28的氣孔密度影響不顯著。氣孔密度是評(píng)價(jià)植物耐熱性強(qiáng)弱的一個(gè)重要指標(biāo),通常耐熱品種比不耐熱品種氣孔密度大,這有利于植物蒸騰作用的加強(qiáng),顯著降低葉片表面的溫度,從而保護(hù)葉片組織免受高溫?zé)岷21]。在本研究中,楊小-26葉片下表皮的氣孔密度大于南豐-28,這可能是楊小-26耐熱性強(qiáng)的原因之一。此外高溫還會(huì)影響植物葉片的氣孔開張度,氣孔開張度是反映植物耐熱性的另一個(gè)重要指標(biāo)[22]。在高溫逆境條件下,植物葉片通過(guò)氣孔開閉對(duì)高溫做出反饋,維持葉片細(xì)胞水分散失和光合效率間的平衡。筆者在本研究中發(fā)現(xiàn),隨著高溫時(shí)間的延長(zhǎng),楊小-26和南豐-28葉片下表皮氣孔的面積、長(zhǎng)寬度和閉合比都有所下降,但是不管是24 h還是48 h,楊小-26氣孔的面積和長(zhǎng)寬度均大于南豐-28,而氣孔閉合比則小于南豐-28,這表明楊小-26的耐熱性強(qiáng)于南豐-28。
光合作用是植物響應(yīng)外界溫度變化最為敏感的生理過(guò)程之一[23]。植物光合作用受到抑制有氣孔因素和非氣孔因素[24]。早期的研究把Gs與Pn之間的高度正相關(guān)當(dāng)作光合作用受氣孔限制的依據(jù),把Ci的降低幅度遠(yuǎn)小于Pn降低的幅度和接近恒定的Ci當(dāng)作Pn降低的非氣孔原因的判斷依據(jù)。而許大全[25]認(rèn)為判斷葉片光合速率降低的主要原因是氣孔因素還是非氣孔因素依據(jù)的是Ci和Ls的變化方向,即Ci降低和Ls升高表明主要原因是氣孔因素,而Ci增高和Ls降低則表明主要原因是非氣孔因素。筆者在本研究中發(fā)現(xiàn)楊小-26和南豐-28在高溫處理24 h時(shí)二者Pn的下降伴隨著Ci降低和Ls升高,這表明此時(shí)Pn的降低是氣孔因素占主導(dǎo)原因。而在高溫處理48 h時(shí),楊小-26和南豐-28的Pn下降伴隨著Ci增高和Ls降低,這表明此時(shí)非氣孔因素是二者Pn降低的主要原因。在本研究中同時(shí)還可以間接證明將Gs與Pn之間的高度正相關(guān)當(dāng)作光合作用受氣孔限制的原因有一定的片面性。葉綠素?zé)晒鈪?shù)Fv/Fm是環(huán)境脅迫程度的指標(biāo)和探針,反映的是植物潛在最大的光合能力,是評(píng)估光合作用效率的一種快捷有效的方法[9]。在非脅迫條件下其值變化很小,穩(wěn)定在0.78~0.84之間,表明能很好地吸收并利用光能[26]。本研究表明楊小-26和南豐-28的Fv/Fm值均隨著高溫時(shí)間的延長(zhǎng)而降低,且相同的高溫處理時(shí)長(zhǎng),楊小-26的Fv/Fm值均大于南豐-28,這表明高溫抑制了兩者對(duì)光能的吸收利用,且楊小-26的光合作用效率要大于南豐-28。Fo和Fm可以評(píng)估植物光合作用受到抑制的程度,當(dāng)光合作用受到抑制時(shí),F(xiàn)m值會(huì)降低,而Fo值會(huì)升高。高溫下Fo的升高,與光捕獲復(fù)合體Ⅱ(LHCⅡ)解離和PSⅡ還原側(cè)電子轉(zhuǎn)移受阻有關(guān)[27],而Fm的降低可能與PSⅡ活性的效率較低有關(guān),這是由于D1蛋白的構(gòu)象變化,導(dǎo)致PSⅡ電子受體的特性改變[28]。同時(shí),F(xiàn)o、Fm和Fv/Fm也是評(píng)估逆境傷害是否可逆的重要參數(shù),本文僅僅涉及特定高溫以及持續(xù)時(shí)間對(duì)楊小-26和南豐-28葉片的傷害,并未涉及災(zāi)后的恢復(fù),這也是接下來(lái)實(shí)驗(yàn)需要完善的方面,為未來(lái)高溫?zé)岷Φ姆揽卮胧┲贫ㄌ峁├碚撝巍?/p>
Sm可評(píng)估PSⅡ和PSⅠ之間質(zhì)體醌庫(kù)(PQ pool)的大小[29],該值變大表明PSⅡ和PSⅠ之間的電子傳遞較少。本研究表明,楊小-26和南豐-28隨著高溫時(shí)間的延長(zhǎng),Sm值逐漸變大,表明高溫對(duì)兩者的電子傳遞均有影響,相同處理時(shí)間,南豐-28的Sm大于楊小-26,表明高溫對(duì)南豐-28的影響大于楊小-26。Area是相對(duì)于PSII還原側(cè)的電子受體QA的池大小,該值的降低是由于從PSⅡ反應(yīng)中心到醌池的電子轉(zhuǎn)移被阻斷[10]。因此,高溫下楊小-26和南豐-28的Area降低可能是減少?gòu)腞C到醌池的電子轉(zhuǎn)移的結(jié)果。這一結(jié)果同樣從光合性能指數(shù)PIABS值的變化得到驗(yàn)證。筆者在本研究中還發(fā)現(xiàn),隨高溫時(shí)間的延長(zhǎng),楊小-26和南豐-28的ABS/CSm、ETo/CSm、TRo/CSm、DIo/CSm均顯著下降,高溫導(dǎo)致兩者PSⅡ活性反應(yīng)中心的密度下降,單位面積吸收的光能降低,捕獲用于還原QA的光能減少,捕獲用于電子傳遞光能的能力減弱,從而導(dǎo)致PSⅡ的光化學(xué)活性受到抑制,進(jìn)而影響植株光合作用,抑制植株的生長(zhǎng)。上述參數(shù)值也證實(shí),在相同高溫且處理時(shí)間一致的情況下,對(duì)南豐-28光合能量傳遞的影響要顯著大于楊小-26。
在非生物脅迫條件下,過(guò)量ROS的產(chǎn)生會(huì)超過(guò)細(xì)胞的清除能力,破壞細(xì)胞膜的功能和結(jié)構(gòu),導(dǎo)致細(xì)胞死亡[4]。MDA是植物細(xì)胞膜脂過(guò)氧化的最終產(chǎn)物,是衡量細(xì)胞膜破壞的關(guān)鍵指標(biāo)[12]。為了克服氧化應(yīng)激,植物體會(huì)誘導(dǎo)抗氧化防御機(jī)制,SOD、POD和CAT是存在于植物體中抵御ROS過(guò)量產(chǎn)生的抗氧化酶,SOD可以將超氧化物陰離子轉(zhuǎn)化為H2O2和O2,而APX和CAT可以進(jìn)一步將H2O2分解為H2O和O2[30],以降低ROS的毒害作用。這3種酶可在一定程度上清除體內(nèi)過(guò)剩的ROS,維持ROS產(chǎn)生和清除之間的動(dòng)態(tài)平衡,維持細(xì)胞膜結(jié)構(gòu)和功能的完整,但是當(dāng)脅迫超過(guò)植物的承受閾值時(shí),SOD、APX和CAT活性則會(huì)下降甚至結(jié)構(gòu)受到破壞,導(dǎo)致細(xì)胞內(nèi)ROS過(guò)度積累,MDA含量增加,膜脂過(guò)氧化嚴(yán)重,導(dǎo)致細(xì)胞的代謝失衡,植物體的生長(zhǎng)受到抑制。在本研究中,隨著高溫時(shí)間的延長(zhǎng),楊小-26和南豐-28葉片內(nèi)的MDA、H2O2和O2-含量呈現(xiàn)逐漸上升趨勢(shì),表明高溫破壞了兩者細(xì)胞膜結(jié)構(gòu),并且隨著高溫?zé)岷r(shí)間的延長(zhǎng),對(duì)葉片細(xì)胞膜傷害越嚴(yán)重。同時(shí),筆者在本研究中還發(fā)現(xiàn)楊小-26葉片內(nèi)SOD和CAT活性最高值在高溫處理48 h,而南豐-28葉片內(nèi)SOD和CAT活性最高值在高溫處理24 h,可能是由于南豐-28在高溫處理24 h就達(dá)到細(xì)胞膜損傷的極限,在高溫48 h時(shí),SOD和CAT酶結(jié)構(gòu)和功能受到破壞,因此SOD和CAT活性變化趨勢(shì)是先升高后降低。
4 結(jié) 論
通過(guò)觀測(cè)高溫(42 ℃)處理24 h和48 h楊小-26和南豐-28的葉片組織解剖結(jié)構(gòu)、氣孔形態(tài)特征以及測(cè)定光合熒光參數(shù)、葉片能量分配、活性氧物質(zhì)和抗氧化酶活性等生理生化指標(biāo),依據(jù)以上參數(shù),構(gòu)建基于熵權(quán)TOPSIS的耐熱性評(píng)價(jià)模型,計(jì)算出楊小-26和南豐-28的貼近度分別是0.678 4和0.412 9,確定楊小-26的耐熱性強(qiáng)于南豐-28。高溫處理下(24 h或48 h),楊小-26葉片電子傳遞效率均高于南豐-28,而PSⅡ活性中心的損傷程度則小于南豐-28。高溫處理24 h時(shí),楊小-26和南豐-28葉片Pn下降的原因是氣孔因素,而高溫處理48 h時(shí),Pn下降的原因是非氣孔因素。高溫下楊小-26葉肉組織緊實(shí)、氣孔密度大以及超氧化物歧化酶(SOD)、過(guò)氧化氫酶(CAT)和抗壞血酸過(guò)氧化物酶(APX)活性的升高是其耐熱性相對(duì)于南豐-28較強(qiáng)的主要原因。
參考文獻(xiàn) References:
[1] RATH J R,PANDEY J,YADAV R M,ZAMAL M Y,RAMACHANDRAN P,MEKALA N R,ALLAKHVERDIEV S I,SUBRAMANYAM R. Temperature-induced reversible changes in photosynthesis efficiency and organization of thylakoid membranes from pea (Pisum sativum)[J]. Plant Physiology and Biochemistry,2022,185:144-154.
[2] MATHUR S,AGRAWAL D,JAJOO A. Photosynthesis:Response to high temperature stress[J]. Journal of Photochemistry and Photobiology B:Biology,2014,137:116-126.
[3] APEL K,HIRT H. Reactive oxygen species:metabolism,oxidative stress,and signal transduction[J]. Annual Review of Plant Biology,2004,55:373-399.
[4] PITZSCHKE A,F(xiàn)ORZANI C,HIRT H. Reactive oxygen species signaling in plants[J]. Antioxidants & Redox Signaling,2006,8(9/10):1757-1764.
[5] POSP??IL P. Production of reactive oxygen species by photosystem Ⅱ as a response to light and temperature stress[J]. Frontiers in Plant Science,2016,7:1950.
[6] GARC?A-CAPARR?S P,F(xiàn)ILIPPIS L,GUL A,HASANUZZAMAN M,OZTURK M,ALTAY V,LAO M T. Oxidative stress and antioxidant metabolism under adverse environmental conditions:A review[J]. The Botanical Review,2021,87(4):421-466.
[7] HASANUZZAMAN M,BHUYAN M H M B,ZULFIQAR F,RAZA A,MOHSIN S M,MAHMUD J A,F(xiàn)UJITA M,F(xiàn)OTOPOULOS V. Reactive oxygen species and antioxidant defense in plants under abiotic stress:Revisiting the crucial role of a universal defense regulator[J]. Antioxidants,2020,9(8):681.
[8] 胡美君,郭延平,沈允鋼,張良誠(chéng). 柑橘屬光合作用的環(huán)境調(diào)節(jié)[J]. 應(yīng)用生態(tài)學(xué)報(bào),2006,17(3):3535-3540.
HU Meijun,GUO Yanping,SHEN Yungang,ZHANG Liangcheng. Environmental regulation of Citrus photosynthesis[J]. Chinese Journal of Applied Ecology,2006,17(3):3535-3540.
[9] MAXWELL K,JOHNSON G N. Chlorophyll fluorescence:A practical guide[J]. Journal of Experimental Botany,2000,51(345):659-668.
[10] KALAJI H M,JAJOO A,OUKARROUM A,BRESTIC M,ZIVCAK M,SAMBORSKA I A,CETNER M D,?UKASIK I,GOLTSEV V,LADLE R J. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions[J]. Acta Physiologiae Plantarum,2016,38(4):102.
[11] 劉敏,房玉林. 高溫脅迫對(duì)葡萄幼樹生理指標(biāo)和超顯微結(jié)構(gòu)的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),2020,53(7):1444-1458.
LIU Min,F(xiàn)ANG Yulin. Effects of heat stress on physiological indexes and ultrastructure of grapevines[J]. Scientia Agricultura Sinica,2020,53(7):1444-1458.
[12] XU C,YANG Z Q,YANG S Q,WANG L,WANG M T. High humidity alleviates photosynthetic inhibition and oxidative damage of tomato seedlings under heat stress[J]. Photosynthetica,2020,58(1):146-155.
[13] 耿慶偉,邢浩,翟衡,蔣恩順,杜遠(yuǎn)鵬. 臭氧脅迫下不同光強(qiáng)與溫度處理對(duì)‘赤霞珠葡萄葉片PSⅡ光化學(xué)活性的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),2019,52(7):1183-1191.
GENG Qingwei,XING Hao,ZHAI Heng,JIANG Enshun,DU Yuanpeng. Effects of different light intensity and temperature on PSⅡ photochemical activity in ‘Cabernet Sauvignon grape leaves under ozone stress[J]. Scientia Agricultura Sinica,2019,52(7):1183-1191.
[14] IQBAL N,F(xiàn)ATMA M,GAUTAM H,UMAR S,SOFO A,D'IPPOLITO I,KHAN N A. The crosstalk of melatonin and hydrogen sulfide determines photosynthetic performance by regulation of carbohydrate metabolism in wheat under heat stress[J]. Plants,2021,10(9):1778.
[15] XIAO F,YANG Z Q,LEE K W. Photosynthetic and physiological responses to high temperature in grapevine (Vitis vinifera L.) leaves during the seedling stage[J]. The Journal of Horticultural Science and Biotechnology,2017,92(1):2-10.
[16] WANG Y,ZHANG L M,CHEN J,F(xiàn)ENG L,LI F B,YU L F. Study on the relationship between functional characteristics and environmental factors in Karst plant communities[J]. Ecology and Evolution,2022,12(9):e9335.
[17] HETHERINGTON A M,WOODWARD F I. The role of stomata in sensing and driving environmental change[J]. Nature,2003,424(6951):901-908.
[18] 朱玉,黃磊,鄭云普,郝立華,姜國(guó)斌,王賀新,李根柱,張自川,弓曉杰. 高溫對(duì)高叢越橘葉片氣孔特征和氣體交換參數(shù)的影響[J]. 果樹學(xué)報(bào),2016,33(4):444-456.
ZHU Yu,HUANG Lei,ZHENG Yunpu,HAO Lihua,JIANG Guobin,WANG Hexin,LI Genzhu,ZHANG Zichuan,GONG Xiaojie. Effects of high temperatures on leaf stomatal traits and gas exchanges of highbush blueberries[J]. Journal of Fruit Science,2016,33(4):444-456.
[19] 劉亮,張運(yùn)鑫,郝立華,馬保國(guó),常志杰,殷嘉偉,劉媛媛,鄭云普. 大氣CO2濃度倍增和高溫對(duì)玉米氣孔特征及氣體交換參數(shù)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(22):73-80.
LIU Liang,ZHANG Yunxin,HAO Lihua,MA Baoguo,CHANG Zhijie,YIN Jiawei,LIU Yuanyuan,ZHENG Yunpu. Effects of double atmospheric CO2 concentration and high temperature on the stomatal traits and leaf gas exchange of maize plants[J]. Transactions of the Chinese Society of Agricultural Engineering,2022,38(22):73-80.
[20] JUMRANI K,BHATIA V S,PANDEY G P. Impact of elevated temperatures on specific leaf weight,stomatal density,photosynthesis and chlorophyll fluorescence in soybean[J]. Photosynthesis Research,2017,131(3):333-350.
[21] 申惠翡,趙冰,徐靜靜. 15個(gè)杜鵑花品種葉片解剖結(jié)構(gòu)與植株耐熱性的關(guān)系[J]. 應(yīng)用生態(tài)學(xué)報(bào),2016,27(12):3895-3904.
SHEN Huifei,ZHAO Bing,XU Jingjing. Relationship between leaf anatomical structure and heat resistance of 15 Rhododendron cultivars[J]. Chinese Journal of Applied Ecology,2016,27(12):3895-3904.
[22] DRIESEN E,VAN DEN ENDE W,DE PROFT M,SAEYS W. Influence of environmental factors light,CO2,temperature,and relative humidity on stomatal opening and development:a review[J]. Agronomy,2020,10(12):1975.
[23] HUSSAIN S,ULHASSAN Z,BRESTIC M,ZIVCAK M,ZHOU W J,ALLAKHVERDIEV S I,YANG X H,SAFDAR M E,YANG W Y,LIU W G. Photosynthesis research under climate change[J]. Photosynthesis Research,2021,150(1/2/3):5-19.
[24] FARQUHAR G D,SHARKEY T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology,1982,33:317-345.
[25] 許大全. 光合作用氣孔限制分析中的一些問題[J]. 植物生理學(xué)通訊,1997,33(4):241-244.
XU Daquan. Some problems in stomatal limitation analysis of photosynthesis[J]. Plant Physiology Communications,1997,33(4):241-244.
[26] EL-HENDAWY S,AL-SUHAIBANI N,ELSAYED S,ALOTAIBI M,HASSAN W,SCHMIDHALTER U. Performance of optimized hyperspectral reflectance indices and partial least squares regression for estimating the chlorophyll fluorescence and grain yield of wheat grown in simulated saline field conditions[J]. Plant Physiology and Biochemistry,2019,144:300-311.
[27] GOLTSEV V N,KALAJI H M,PAUNOV M,B?BA W,HORACZEK T,MOJSKI J,KOCIEL H,ALLAKHVERDIEV S I. Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus[J]. Russian Journal of Plant Physiology,2016,63(6):869-893.
[28] KALAJI H M,SCHANSKER G,LADLE R J,GOLTSEV V,BOSA K,ALLAKHVERDIEV S I,BRESTIC M,BUSSOTTI F,CALATAYUD A,D?BROWSKI P,ELSHEERY N I,F(xiàn)ERRONI L,GUIDI L,HOGEWONING S W,JAJOO A,MISRA A N,NEBAUER S G,PANCALDI S,PENELLA C,POLI D,POLLASTRINI M,ROMANOWSKA-DUDA Z B,RUTKOWSKA B,SER?DIO J,SURESH K,SZULC W,TAMBUSSI E,YANNICCARI M,ZIVCAK M. Frequently asked questions about in vivo chlorophyll fluorescence:Practical issues[J]. Photosynthesis Research,2014,122(2):121-158.
[29] STRASSER R J,TSIMILLI-MICHAEL M,SRIVASTAVA A. Analysis of the chlorophyll a fluorescence transient[M]//PAPAGEORGIOU G C,GOVINDJEE. Chlorophyll a Fluorescence. Dordrecht:Springer,2004:321-362.
[30] KUMARI A,SINGH B M,SHARMA S,KUMAR C M,DEBNATH A,MAHARANA C,PARIHAR M,SHARMA B. ROS regulation mechanism for mitigation of abiotic stress in plants[M]. London,UK:IntechOpen,2022.