孫文泰 董鐵 王萍 馬明
摘? ? 要:【目的】對(duì)蘋(píng)果與梨遠(yuǎn)緣雜交的優(yōu)良品種甘金和優(yōu)系甘紅進(jìn)行果實(shí)品質(zhì)特性評(píng)價(jià),并用特異性分子標(biāo)記鑒定雜交種的真實(shí)性,為后期真雜種在抗逆育種研究領(lǐng)域應(yīng)用提供理論支撐。【方法】對(duì)甘金和甘紅樹(shù)體的生長(zhǎng)勢(shì)和果實(shí)經(jīng)濟(jì)性狀進(jìn)行評(píng)價(jià),將蘋(píng)果金冠和西洋梨巴梨的基因組進(jìn)行比對(duì),分別篩選蘋(píng)果和梨中特有的序列,通過(guò)設(shè)計(jì)屬間特異性引物對(duì)甘金、甘紅和親本的DNA進(jìn)行擴(kuò)增。【結(jié)果】甘金和甘紅樹(shù)勢(shì)生長(zhǎng)健壯、抗逆性強(qiáng)和果實(shí)品質(zhì)優(yōu)。特異性引物M1、M2和M3在母本蘋(píng)果品種中擴(kuò)增出條帶;P1、P2、P3這3對(duì)引物只能在父本梨品種中擴(kuò)增出條帶;2對(duì)通用引物U1和U2在蘋(píng)果和梨雜交種中均能擴(kuò)增出條帶。此外,蘋(píng)果M1、M2、M3和梨P1、P2、P3對(duì)雜交后代甘紅、甘金進(jìn)行擴(kuò)增時(shí),均出現(xiàn)條帶,說(shuō)明雜交后代既有蘋(píng)果的基因,又有梨的基因?!窘Y(jié)論】采用基因特異性分子標(biāo)記開(kāi)發(fā)的梨和蘋(píng)果屬間的特異性引物,鑒定遠(yuǎn)緣雜種的真實(shí)性,為蘋(píng)果和梨以及其他果樹(shù)的屬間遠(yuǎn)緣雜交種的鑒定提供有價(jià)值的參考。
關(guān)鍵詞:蘋(píng)果;梨;甘金;甘紅;遠(yuǎn)緣雜交;基因特異性分子標(biāo)記
中圖分類(lèi)號(hào):S661.1 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2023)12-2505-08
收稿日期:2023-08-07 接受日期:2023-10-18
基金項(xiàng)目:甘肅省農(nóng)業(yè)科學(xué)院生物育種項(xiàng)目(2023GAAS11);甘肅省科技計(jì)劃項(xiàng)目(21YF1NA366);國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(GARS-27)
作者簡(jiǎn)介:孫文泰,女,副研究員,碩士,主要從事果樹(shù)栽培研究工作。E-mail:swt830312@126.com
Evaluation on fruit quality characteristics and identification at molecular level of distant hybrids Ganjin and Ganhong
SUN Wentai1, DONG Tie1, WANG Ping2, MA Ming1
(1Institute of Forestry, Fruits and Floriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China; 2College of Horticulture, Gansu Agricultural University, Lanzhou 730070, Gansu, China)
Abstract: 【Objective】 Based on the measurement of physiological indexes in the field and InDel molecular markers, the fruit quality characteristics of the superior variety Ganjin and excellent line Ganhong from the distant hybridization between apple and pear were evaluated and the authenticity of the hybrids was determined by specific molecular markers, which could provide a theoretical basis for the research on the resistance breeding of the late true hybrid. 【Methods】 The growth potential and fruit economic traits of hybrids Ganjin and Ganhong were analyzed. The Ganjin apple was bred between Red Delicious as the female and the Apple pear as the male. In May 1974, conventional hybridization was carried out, 131 flowers were hybridized, 5 fruits set, 5 fruits were picked and 16 full seeds were obtained. In 1975, 12 seeds were sown, 8 seeds germinated and 5 seedlings were survived finally. In 1979, the spring branch was top-grafted on the mature Ralls apple tree. In 1981, the fruit tree blossomed and bore fruit. In 1987, the best line (originally coded as 7403-03) was selected. In 1990, it was identified and formally named as Ganjin. Ganhong apple was bred between Golden Delicious as the female and Clapps Favorite as the male. In May 1975, conventional hybridization was carried out, 120 flowers were hybridized, 7 fruits set, 6 fruits were picked, and 20 full seeds were obtained. In 1975, 16 seeds were sown, 10 seeds germinated and 8 seedlings survived finally. In the spring of 1979, the branch was top-grafted on the Ralls apple tree. In 1981, the fruit tree blossomed and bore fruit, and in 1987, the best line (originally coded as 7504-01) was selected. In 1990, it was tentatively named Ganhong. The longitudinal and transverse diameters of fruit were measured with a vernier caliper. The single fruit weight was weighed with an electronic balance, the fruit firmness was measured with the GY-1 firmness tester, and the soluble solids content was measured with the WYT-A handheld sugar meter. The genome sequence of Golden Delicious apple was compared with that of European pear (Pyrus communis L.) Bartlett pear. The genome sequence of extracted apple could not be compared with that of European pear and the genome sequence of European pear could not be compared with that of apple. The specific sequences extracted were filtered and the specific sequences with a length of 100-500 bp were selected. The specific sequences were compared again in the apple and pear genomes to verify their specificity. Specific sequences of apple and pear genomes were obtained, specific fragments of 100-250 bp size were selected, and the DNA of the hybrid and parent was amplified by designing intergeneric specific primers through Primer 5.0. 【Results】 The growth potential of Ganjin and Ganhong was vigorous, with strong stress resistance and good fruit quality. The internode length of Ganjin branches was 2.3 cm, and the bud break rate was 79.1%. The axillary flower buds accounted for 12.5%, the flower buds had strong cold resistance, and the fruit set rate per cluster was 80%. The average fruit weight was 220 g, the fruit shape index was 0.88, the fruit firmness was 8.5 kg·cm-2, and the soluble solids content was 15.8%. The internode length of Ganhong was 2.6 cm, and the bud break rate was 5.1%. The axillary flower buds reached 16.5%, the flower buds also had strong cold resistance, the fruit set rate per cluster reached 76%. The average fruit weight was 200 g, the fruit shape index was 0.85, the fruit firmness was 8.2 kg·cm-2, the soluble solids content was 15.2%. The Ganhong fruit has delicious sweet and sour flavor and strong fragrance. Primers were designed from specific fragments of pear and apple, and specific primers that could amplify specific bands only in pear or apple were screened. Due to the specificity of some primers in the trial or the discomfort of the reaction system, 6 pairs of specific primers were finally selected: M1, M2, M3, P1, P2 and P3. The specific primers M1, M2 and M3 only amplified bands in maternal apple variety, but not in male pear. The three primers consisting of P1, P2 and P3 could only amplify bands in male pear variety, but could not amplify bands in apple. Two pairs of universal primers U1 and U2 can amplify bands in both apple and pear, which can repeat 3 times, that is, apple and pear can be clearly distinguished. In addition, when apple M1, M2 and M3 and pear P1, P2 and P3 primers amplified the hybrid progenies Ganjin and Ganhong, they all showed bands, indicating that the hybrid progeny had both apple and pear genes. 【Conclusion】 In this study, the specific primers between pear and apple developed by gene specific molecular markers were used to identify the authenticity of distant hybrids, which could provide a valuable reference for the identification of distant hybrids between apples and pears as well as other fruit crops.
Key words: Apple; Pear; Ganjin; Ganhong; Distant hybridization; Gene specific molecular markers
蘋(píng)果(Malus domestica Borkh.)屬于薔薇科(Rosaceae)蘋(píng)果亞科(Maloideae)蘋(píng)果屬(Malus Mill.),原產(chǎn)于歐洲、中亞和新疆一帶,至今已有4000余年的栽培史[1-2]。在古代文獻(xiàn)中,中國(guó)蘋(píng)果被稱(chēng)為“柰”,最早見(jiàn)之于西漢武帝時(shí)期的《上林賦》:“亭、柰、厚樸”,在我國(guó)的種植栽培有2200多年的歷史。
長(zhǎng)期以來(lái),育種學(xué)家通過(guò)實(shí)生選種[3]、芽變選種[4]、種內(nèi)雜交[5]和誘變育種[6]等手段,選育出一大批蘋(píng)果新種質(zhì)、新品種,在生產(chǎn)上發(fā)揮重要作用。目前我國(guó)生產(chǎn)栽培的蘋(píng)果品種主要是富士系,占70%左右,其次為元帥系、秦冠、嘎拉等品種,在豐富蘋(píng)果品種結(jié)構(gòu)的同時(shí)可初步滿(mǎn)足常規(guī)育種的需求[7]。雖然富士蘋(píng)果和元帥蘋(píng)果在長(zhǎng)期生產(chǎn)栽培過(guò)程中產(chǎn)生大量芽變類(lèi)型[8],但隨著育種工作的深入,植物種內(nèi)的遺傳資源利用渠道日益狹窄,導(dǎo)致生產(chǎn)上蘋(píng)果果實(shí)成熟期、風(fēng)味、外觀(guān)品質(zhì)的豐富性較單一,不能滿(mǎn)足市場(chǎng)對(duì)蘋(píng)果品種、品質(zhì)多樣性的需求,因此亟須通過(guò)遠(yuǎn)緣雜交的途徑為后期育成品質(zhì)優(yōu)良、品種豐富和抗逆性強(qiáng)的蘋(píng)果新種質(zhì)打好堅(jiān)實(shí)的根基。
果樹(shù)遠(yuǎn)緣雜交是指種間或?qū)匍g及親緣關(guān)系更遠(yuǎn)的分類(lèi)單位間進(jìn)行的雜交,是豐富物種與遺傳多樣性的有效途徑之一[9]。雖然在少數(shù)果樹(shù)的種、屬間通過(guò)遠(yuǎn)緣雜交獲得真雜種,但是生物種間的繁殖隔離機(jī)制導(dǎo)致果樹(shù)遠(yuǎn)緣雜交很難獲得成功[10]。梨起源于我國(guó)西部山區(qū),具有非常悠久的栽培歷史和豐富的遺傳多樣性[11]。梨和蘋(píng)果同屬仁果類(lèi)果樹(shù),生物學(xué)特性相似,但梨較蘋(píng)果氣味清香、酥脆多汁、耐貯藏且抗寒性強(qiáng)[12],因此生產(chǎn)上常選用梨與蘋(píng)果進(jìn)行雜交獲得創(chuàng)新種質(zhì)。梨和蘋(píng)果中最常見(jiàn)的是屬內(nèi)的種間雜交,屬間的遠(yuǎn)緣雜交對(duì)新種質(zhì)的創(chuàng)制難度較大。梨和蘋(píng)果的首次遠(yuǎn)緣雜交在1952年開(kāi)展,雜交種的成活率較低[13]。此后,研究學(xué)者將日本梨(Pyrus serotina var. culta)與蘋(píng)果(Malus domestica)進(jìn)行雜交,發(fā)現(xiàn)雜交種子在萌芽后的6個(gè)月內(nèi)全部死亡[14]。因此雜交不親和性和雜種不育性是遠(yuǎn)緣雜交的根本問(wèn)題,同時(shí)也是育種學(xué)家面臨的一大技術(shù)難題。
甘金、甘紅分別由甘肅省農(nóng)業(yè)科學(xué)院張掖試驗(yàn)站在1974年、1975年通過(guò)雜交選育而成,甘金在1990年已通過(guò)品種審定,用于生產(chǎn)推廣與育種工作進(jìn)展較為緩慢;而甘紅作為優(yōu)異種質(zhì)資源進(jìn)行保存和應(yīng)用,但一直未對(duì)其進(jìn)行品種審定。對(duì)遠(yuǎn)緣雜交后代進(jìn)行早期鑒定與選擇也是遠(yuǎn)緣雜交育種的一個(gè)關(guān)鍵環(huán)節(jié)。蘋(píng)果基因組高度雜合,早前采用的形態(tài)解剖、生理生化等方法限制了對(duì)蘋(píng)果品種、雜種分析的準(zhǔn)確性,延緩蘋(píng)果育種效率[15]。當(dāng)前分子標(biāo)記技術(shù)解決了這些難題,常用的主要有4類(lèi)分子標(biāo)記類(lèi)型,分別為限制性片段長(zhǎng)度多態(tài)性(RFLP)、擴(kuò)增片段長(zhǎng)度多態(tài)性(AFLP)、簡(jiǎn)單序列重復(fù)(SSR)和隨機(jī)擴(kuò)增多態(tài)性(RAPD)[16-17]。將耐鹽性穩(wěn)定的突變體進(jìn)行RAPD分析,證明基因在突變體上發(fā)生變化,為耐鹽突變體的真實(shí)性提供證據(jù)[18]。劉暢等[19]采用SSR分子標(biāo)記技術(shù)對(duì)49份寒地蘋(píng)果資源進(jìn)行不同群體的遺傳多樣性分析,通過(guò)20對(duì)SSR引物共檢測(cè)出278個(gè)多態(tài)性等位基因,表明具有較高的遺傳多樣性。聶佩顯等[20]以國(guó)光及其芽變材料為試材,利用AFLP技術(shù),采用4對(duì)引物對(duì)其進(jìn)行初步鑒定,比較了對(duì)照和芽變材料的多態(tài)性條帶數(shù)并計(jì)算遺傳相似系數(shù)??喙现械腄NA分子標(biāo)記,如RAPD、AFLP和SSR等,多應(yīng)用在苦瓜品種鑒定、雜交種純度鑒定、遺傳相似性分析等方面[21]。盡管這些分子標(biāo)記已在果樹(shù)、蔬菜育種上廣泛使用,但是其與目的基因間的連鎖關(guān)系隨基因重組而被破壞,影響分子標(biāo)記在應(yīng)用方面的可靠性[17]。而基于全基因組重測(cè)序發(fā)展的插入和刪除位點(diǎn)(InDel)標(biāo)記[22],由于在基因組中分布廣泛、密度大、標(biāo)記準(zhǔn)確和變異穩(wěn)定,已被廣泛應(yīng)用于種質(zhì)資源分析和分子育種等領(lǐng)域。
筆者在本研究中將梨和蘋(píng)果遠(yuǎn)緣雜交育種獲得的優(yōu)良品種甘金和優(yōu)系甘紅,在前人采用同工酶鑒定的基礎(chǔ)上,突破以往傳統(tǒng)方法鑒定雜交種的瓶頸,從DNA分子水平出發(fā)使用特異性分子標(biāo)記驗(yàn)證雜交種的真實(shí)性,為后期遠(yuǎn)緣雜交真雜種在蘋(píng)果生物育種與傳統(tǒng)育種相結(jié)合的研究進(jìn)程中對(duì)蘋(píng)果、梨的優(yōu)異基因加以充分利用奠定堅(jiān)實(shí)的基礎(chǔ)。
1 材料和方法
1.1 材料
試驗(yàn)材料為甘肅省農(nóng)業(yè)科學(xué)院張掖試驗(yàn)站分別在1974年和1975年通過(guò)雜交選育的2個(gè)品種(系)甘金和甘紅。甘金蘋(píng)果是以元帥蘋(píng)果(Malus domestica ‘Red Delicious)為母本、蘋(píng)果梨(Pyrus bretschneideri Rehd. ‘Ping-guoli)為父本雜交選育的品種,1990年通過(guò)品種審定。甘紅蘋(píng)果是以金冠蘋(píng)果(Malus domestica ‘Golden Delicious)為母本、茄梨(Clapps Favorite)為父本雜交選育的優(yōu)系。
試驗(yàn)于2018—2022年在甘肅省平?jīng)鍪徐o寧縣國(guó)家蘋(píng)果產(chǎn)業(yè)體系平?jīng)鼍C合試驗(yàn)站內(nèi)(35°24′N(xiāo),105°43′E)進(jìn)行。甘金和甘紅各取12株樹(shù)進(jìn)行觀(guān)察,每4株為一個(gè)重復(fù)。生長(zhǎng)季采集無(wú)病蟲(chóng)害的甘金、甘紅及父母本的幼嫩綠葉,經(jīng)液氮速凍后在-80 ℃冰箱儲(chǔ)藏備用。待果實(shí)成熟后,每個(gè)單株在果樹(shù)東、西、南、北4個(gè)方向,隨機(jī)選取樹(shù)冠中部外圍中等大小的20個(gè)果實(shí),用于果實(shí)品質(zhì)測(cè)定。樹(shù)體長(zhǎng)勢(shì)與果實(shí)品質(zhì)觀(guān)測(cè)取5 a(年)的平均值。
1.2 方法
1.2.1 蘋(píng)果樹(shù)體樹(shù)勢(shì)評(píng)價(jià)方法 以成熟新梢的年生長(zhǎng)量為標(biāo)準(zhǔn),秋季9—10月份,在每株樹(shù)的上下四周測(cè)量20個(gè)新梢,計(jì)算新梢的平均長(zhǎng)度。根據(jù)新梢平均長(zhǎng)度與葉片色澤,確定種質(zhì)的樹(shù)勢(shì),分為弱(平均長(zhǎng)度小于15 cm,枝葉不正常)、中(平均長(zhǎng)度15~30 cm,新梢粗度與葉片大小、顏色均正常)和強(qiáng)(平均長(zhǎng)度大于30 cm,新梢粗壯,葉片大小、顏色均正常)[23]。
1.2.2 蘋(píng)果果實(shí)指標(biāo)的測(cè)定 果實(shí)縱橫徑(mm):利用游標(biāo)卡尺分別測(cè)定果實(shí)的縱徑和橫徑,測(cè)量3次取平均值;
果形指數(shù)=果實(shí)的縱徑/果實(shí)的橫徑;
果實(shí)單果質(zhì)量/g:用電子天平稱(chēng)重;
果實(shí)硬度/(kg·cm-2):用GY-1型硬度計(jì)測(cè)定,將果實(shí)胴部去皮后,測(cè)量3次取平均值;
果實(shí)可溶性固形物含量/%:利用WYT-A型手持糖度計(jì),測(cè)量3次取平均值。
1.2.3 基因組DNA的提取 采用CTAB植物基因組DNA快速提取試劑盒(TIANGEN,北京)提取葉片基因組DNA。提取的DNA經(jīng)1%瓊脂糖凝膠電泳及分光光度計(jì)(QuawellQ5000,伯恩供應(yīng))檢測(cè)DNA的濃度和純度。
1.2.4 蘋(píng)果和梨基因組序列的比對(duì) 對(duì)金冠蘋(píng)果基因組序列與西洋梨巴梨基因組序列進(jìn)行全局比對(duì),提取蘋(píng)果基因組序列無(wú)法比對(duì)上西洋梨的序列以及西洋梨基因組序列無(wú)法比對(duì)上蘋(píng)果的序列,對(duì)各自提取出的特異序列進(jìn)行過(guò)濾,選取長(zhǎng)度為100~500 bp的特異序列,將特異序列分別在蘋(píng)果和梨基因組中再次進(jìn)行比對(duì),驗(yàn)證其特異性。
1.2.5 引物序列的設(shè)計(jì) 在獲得的蘋(píng)果與梨基因組的特異序列中,選取100~250 bp的特異片段,使用Primer 5.0設(shè)計(jì)特異引物(表1),隨后進(jìn)行PCR擴(kuò)增,同時(shí)擴(kuò)增雜交父母本,并設(shè)置對(duì)照組。
1.2.6 PCR擴(kuò)增反應(yīng) PCR反應(yīng)體系:總體積20 μL。PCR反應(yīng)程序:95 ℃預(yù)變性5 min,95 ℃變性30 s,58 ℃退火45 s,72 ℃延伸,40個(gè)循環(huán),72 ℃延伸10 min,4 ℃保存。
2 結(jié)果與分析
2.1 甘金蘋(píng)果與優(yōu)系甘紅蘋(píng)果樹(shù)體特征
甘金樹(shù)勢(shì)強(qiáng)健,枝條節(jié)間長(zhǎng)2.3 cm,新梢平均長(zhǎng)度為38 cm,粗度4.85 mm,萌芽率79.1%。葉片卵圓形,葉色濃綠。腋花芽率12.5%,花芽抗寒性強(qiáng),在甘肅省平?jīng)鍪徐o寧蘋(píng)果產(chǎn)區(qū)始花期為4月26日左右,花序坐果率80%,以短果枝結(jié)果為主,進(jìn)入結(jié)果期后樹(shù)勢(shì)中庸。
甘紅樹(shù)勢(shì)強(qiáng)壯,枝條節(jié)間長(zhǎng)2.6 cm,新梢平均長(zhǎng)度為43 cm,粗度5.08 mm,萌芽率75.1%。葉片卵圓形,葉色濃綠。腋花芽率達(dá)16.5%,花芽抗寒性強(qiáng),在甘肅省平?jīng)鍪徐o寧蘋(píng)果產(chǎn)區(qū)始花期為4月28日左右,花序坐果率76%,以短果枝結(jié)果為主。
2.2 甘金蘋(píng)果與優(yōu)系甘紅蘋(píng)果果實(shí)品質(zhì)特征
甘金果實(shí)平均單果質(zhì)量160 g,果形指數(shù)0.82,呈短圓錐形,果面為橙紅色條紋狀著色,著色率大于60%,有蠟質(zhì),果面光澤,果實(shí)底部呈五棱狀,香味濃郁,與其親本元帥蘋(píng)果、蘋(píng)果梨相似。果實(shí)肉質(zhì)緊密,硬脆,果實(shí)硬度達(dá)10.5 kg·cm-2,汁液多,可溶性固形物含量15.56%,酸甜可口,耐貯性強(qiáng),與其親本蘋(píng)果梨相似(圖1-A)。
甘紅果實(shí)平均單果質(zhì)量為185 g,果形指數(shù)0.85,呈短圓錐形,果面著色為鮮紅片狀,著色率大于95%,果面有蠟質(zhì),較少果粉。肉質(zhì)較松脆,果實(shí)硬度達(dá)11.7 kg·cm-2,香味濃郁,與其親本金冠蘋(píng)果相似。果實(shí)可溶性固形物含量16.24%,酸甜適口,與其親本茄梨相似(圖1-B,表2)。
2.3 InDel分子標(biāo)記驗(yàn)證甘金、甘紅雜交種
從梨和蘋(píng)果的特異片段上設(shè)計(jì)引物,篩選出只在梨或只在蘋(píng)果中能擴(kuò)增出特異條帶的特異性引物,由于實(shí)驗(yàn)中一些引物的不特異或反應(yīng)體系的不適等,最終篩選出6對(duì)特異引物(M1、M2、M3、P1、P2和P3),其中,M1、M2、M3這3對(duì)引物只能在母本蘋(píng)果品種中擴(kuò)增出條帶,而在父本梨品種中無(wú)法擴(kuò)增出條帶;P1、P2、P3這3對(duì)引物只能在父本梨品種中擴(kuò)增出條帶,而在蘋(píng)果中無(wú)法擴(kuò)增出條帶;2對(duì)通用引物U1和U2在蘋(píng)果和梨中均能擴(kuò)增出條帶,3次重復(fù),即能明顯區(qū)分出蘋(píng)果屬和梨屬(圖2-A)。
此外,分別用M1、M2和M3三對(duì)引物對(duì)梨的親本進(jìn)行擴(kuò)增,無(wú)條帶;P1、P2和P3三對(duì)引物對(duì)蘋(píng)果的親本進(jìn)行擴(kuò)增,無(wú)條帶;并分別用蘋(píng)果M1、M2、M3和梨P1、P2、P3對(duì)雜交后代甘紅和甘金進(jìn)行擴(kuò)增,出現(xiàn)條帶,進(jìn)一步說(shuō)明雜交后代既有蘋(píng)果基因又有梨的基因,與預(yù)期相符,同時(shí),擴(kuò)增目的片段大小均與預(yù)期相符,條帶清晰,可區(qū)分真實(shí)和假的遠(yuǎn)緣雜交單株,適用于雜交種鑒定(圖2-B)。
3 討 論
遠(yuǎn)緣雜交是創(chuàng)造新種質(zhì)、改良品種的重要途徑。通過(guò)遠(yuǎn)緣雜交將不同種、屬親本的優(yōu)良性狀(抗病、抗蟲(chóng)、抗逆性強(qiáng),果實(shí)品質(zhì)與產(chǎn)量?jī)?yōu)良等)遺傳到雜種一代,在豐富生物物種遺傳多樣性的同時(shí)提高生物對(duì)環(huán)境的適應(yīng)性,進(jìn)而擴(kuò)大基因庫(kù)更好地開(kāi)發(fā)利用果樹(shù)各性狀資源[24]。近年來(lái),隨著育種研究人員對(duì)雜交技術(shù)的不斷探索、創(chuàng)新,各果樹(shù)栽培種間的遠(yuǎn)緣雜交成果收獲頗豐。隴緣紅是以大石早生李為母本,張公園杏為父本進(jìn)行雜交,獲得的F1代李杏新品種[25]。Sedov[26]將梨(Pyrus spp.)和蘋(píng)果(Malus pumila Mill.)進(jìn)行種間雜交,獲得高產(chǎn)、優(yōu)質(zhì)和抗逆性強(qiáng)的3個(gè)梨新品種和蘋(píng)果新品種。姚青菊等[27]以夏蠟梅為母本,美國(guó)蠟梅為父本,通過(guò)人工雜交選育成屬間雜種紅運(yùn)。但這些選育的新品種在后期品質(zhì)評(píng)價(jià)與抗逆選擇利用方面進(jìn)展較為緩慢。本研究中,為了進(jìn)一步探究遠(yuǎn)緣雜交育種在改良果實(shí)品質(zhì)、優(yōu)化抗逆特性方面的作用,選用張修仁等[28]選育的蘋(píng)果和梨屬間雜交新品種甘金和張掖試驗(yàn)場(chǎng)選育的優(yōu)系甘紅,通過(guò)傳統(tǒng)的田間形態(tài)觀(guān)察,發(fā)現(xiàn)其樹(shù)勢(shì)健壯且豐產(chǎn)優(yōu)質(zhì),抗逆適應(yīng)性強(qiáng),果實(shí)色澤艷麗且口感爽脆多汁、香氣濃郁、貯藏性強(qiáng),優(yōu)于其母本元帥和金冠蘋(píng)果。表明通過(guò)遠(yuǎn)緣雜交育種在創(chuàng)造植物新類(lèi)型和獲得有價(jià)值的新品種方面具有重大的意義。
隨著分子生物學(xué)在果樹(shù)育種方面的不斷研究和發(fā)展,傳統(tǒng)的雜種后代鑒別方法已不能滿(mǎn)足現(xiàn)階段的果樹(shù)育種需求,為加速果樹(shù)遠(yuǎn)緣雜交后代的育種進(jìn)程和提高雜種后代鑒定的可靠度,DNA水平的分子標(biāo)記育種已逐步運(yùn)用于雜交后代的鑒定。其中通過(guò)全基因測(cè)序得到的InDel分子標(biāo)記目前廣泛應(yīng)用于分子育種和種質(zhì)資源分析領(lǐng)域[29]。李勝男等[17]通過(guò)設(shè)計(jì)InDel特異性分子標(biāo)記并結(jié)合PCR篩選出6對(duì)特異性引物,可有效檢測(cè)鑒定蘋(píng)果(Malus)和梨(Pyrus)屬間雜交后代。此外,對(duì)11個(gè)蘋(píng)果品種中MdTAC1a基因的啟動(dòng)子ATG上游2000 bp序列測(cè)序,開(kāi)發(fā)了分辨蘋(píng)果品種和F1代的MdTAC1a啟動(dòng)子特異InDel標(biāo)記[30]。Lee等[31]將金冠蘋(píng)果基因組序列作為參考序列對(duì)富士及芽變品種進(jìn)行重測(cè)序,開(kāi)發(fā)每個(gè)蘋(píng)果品種特有的InDel標(biāo)記。本研究中,結(jié)合前人對(duì)甘金田間形態(tài)和同工酶的鑒定,將蘋(píng)果和梨全基因組進(jìn)行比對(duì),通過(guò)構(gòu)建InDel分子標(biāo)記設(shè)計(jì)特異性引物,在DNA分子水平上進(jìn)一步鑒定遠(yuǎn)緣雜交后代甘金和甘紅的真實(shí)性,不僅對(duì)蘋(píng)果和梨進(jìn)行了基因分型,而且也為后期蘋(píng)果和梨屬間雜交種更為完善的鑒定方法提供可靠的依據(jù)。
甘肅省作為黃土高原蘋(píng)果的主產(chǎn)區(qū),有著優(yōu)越的地理位置和自然條件,海拔高、日照強(qiáng)、晝夜溫差大,可滿(mǎn)足蘋(píng)果樹(shù)的正常生長(zhǎng)和優(yōu)質(zhì)果品的形成[32]。但是,近年來(lái)越冬低溫、花期晚霜凍等極端天氣頻發(fā),造成蘋(píng)果優(yōu)質(zhì)豐產(chǎn)性大幅下降,亟須選育出高產(chǎn)、優(yōu)質(zhì)和抗逆性好的優(yōu)良新品種。甘金和甘紅作為蘋(píng)果和梨的雜交種,綜合性狀均優(yōu)于母本元帥和金冠蘋(píng)果,并具有抗逆、產(chǎn)量高和品質(zhì)好等優(yōu)良性狀,這些優(yōu)異的特性可提高甘肅省蘋(píng)果產(chǎn)區(qū)果農(nóng)的收益,對(duì)其所具有的梨與蘋(píng)果優(yōu)異基因的挖掘與遺傳規(guī)律的研究可為后期育種工作提供新思路,開(kāi)拓新視野。
4 結(jié) 論
筆者在本研究中對(duì)蘋(píng)果和梨遠(yuǎn)緣雜交優(yōu)良品種甘金和優(yōu)系甘紅的樹(shù)體生長(zhǎng)勢(shì)和果實(shí)經(jīng)濟(jì)性狀進(jìn)行評(píng)價(jià),發(fā)現(xiàn)甘金和甘紅樹(shù)勢(shì)生長(zhǎng)健壯、抗逆性強(qiáng),果實(shí)品質(zhì)優(yōu)。通過(guò)比對(duì)公開(kāi)的蘋(píng)果金冠和西洋梨巴梨的基因組序列,共篩選出6對(duì)特異性引物(M1、M2、M3、P1、P2、P3),蘋(píng)果(M1、M2、M3)和梨(P1、P2、P3)引物對(duì)甘金和甘紅均能擴(kuò)增出相應(yīng)大小的條帶,進(jìn)一步在DNA分子水平鑒定遠(yuǎn)緣雜交種的真實(shí)性,不僅為后期遠(yuǎn)緣雜交真雜種的鑒定提供思路,而且為通過(guò)生物育種與傳統(tǒng)育種相結(jié)合挖掘關(guān)鍵基因來(lái)提高果實(shí)品質(zhì)奠定扎實(shí)的基礎(chǔ)。
參考文獻(xiàn) References:
[1] 樊紅科. 蘋(píng)果雜交后代果實(shí)性狀選擇及抗斑點(diǎn)落葉病MdWRKY基因功能研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2011. FAN Hongke. Studies on selection of fruit traits in hybrid progeny and function of MdWRKY gene with resistance to apple alternaira leaf spot[D]. Yangling:Northwest A & F University,2011.
[2] 丁志杰,包金波,柔鮮古麗,朱甜甜,李雪麗,苗浩宇,田新民. 新疆野蘋(píng)果與‘元帥 ‘金冠的葉綠體基因組比對(duì)研究[J]. 園藝學(xué)報(bào),2022,49(9):1977-1990.
DING Zhijie,BAO Jinbo,ROUXIAN Guli,ZHU Tiantian,LI Xueli,MIAO Haoyu,TIAN Xinmin. Comparative chloroplast genome study of Mallus servisii ‘Red Delicious and ‘Golden Delicious[J]. Acta Horticulturae Sinica,2022,49(9):1977-1990.
[3] 馮健君,王學(xué)德,劉權(quán),張偉,葉建國(guó). 優(yōu)質(zhì)枇杷新品種‘寧海白[J]. 園藝學(xué)報(bào),2004,31(2):279.
FENG Jianjun,WANG Xuede,LIU Quan,ZHANG Wei,YE Jianguo. A new special middle-ripening loquat variety ‘Ninghai Bai[J]. Acta Horticulturae Sinica,2004,31(2):279.
[4] 王秋萍,葛玉梅. 蘋(píng)果新品種紅錦富的選育[J]. 中國(guó)果樹(shù),2009(3):74.
WANG Qiuping,GE Yumei. A new bud variation apple cultivar Hongjinfu[J]. China Fruits,2009(3):74.
[5] 陳東玫,楊鳳秋,趙同生,李春敏,張新生,趙永波,付友. 蘋(píng)果新品種‘蘋(píng)帥[J]. 園藝學(xué)報(bào),2010,37(10):1697-1698.
CHEN Dongmei,YANG Fengqiu,ZHAO Tongsheng,LI Chunmin,ZHANG Xinsheng,ZHAO Yongbo,F(xiàn)U You. A new apple cultivar ‘Pingshuai[J].? Acta Horticulturae Sinica,2010,37(10):1697-1698.
[6] WANG Y Q,LUO N,LI J Q,DENG Q X,LIANG H Y. Morphology,pod isozyme and rapd analyses of plants regenerated from ems-treated shoot tips in ‘Dawuxing loquat[J]. Acta Horticulturae,2007,750:149-154.
[7] CHEN J,STAUB J,QIAN C,JIANG J,LUO X,ZHUANG F. Reproduction and cytogenetic characterization of interspecific hybrids derived from Cucumis hystrix Chakr. × Cucumis sativus L.[J]. Theoretical and Applied Genetics,2003,106(4):688-695.
[8] 王洋洋. 富士蘋(píng)果芽變品種比較分析及芽變優(yōu)系的鑒定[D]. 楊凌:西北農(nóng)林科技大學(xué),2017.
WANG Yangyang. Analysis and comparision of fuji bud mutation varieties and identification of Fuji bud mutaion strains[D]. Yangling:Northwest A & F University,2017.
[9] 王永清,杜奎,楊志武,陶煉,楊芩,范建新,鄧仁菊. 果樹(shù)遠(yuǎn)緣雜交育種研究進(jìn)展[J]. 果樹(shù)學(xué)報(bào),2012,29(3):440-446.
WANG Yongqing,DU Kui,YANG Zhiwu,TAO Lian,YANG Qin,F(xiàn)AN Jianxin,DENG Renju. Advances in the studies of distant hybridization in fruit crops[J]. Journal of Fruit Science,2012,29(3):440-446.
[10] 戴華軍,朱正斌,沈雪林,周建明,何建華. 作物遠(yuǎn)緣雜交育種的途徑及其實(shí)質(zhì)[J]. 基因組學(xué)與應(yīng)用生物學(xué),2010,29(1):144-149.
DAI Huajun,ZHU Zhengbin,SHEN Xuelin,ZHOU Jianming,HE Jianhua. Essences and approaches of distant hybridization in crops breeding[J]. Genomics and Applied Biology,2010,29(1):144-149.
[11] 仵菲. 梨果實(shí)發(fā)育過(guò)程中酚類(lèi)物質(zhì)、抗氧化能力及其相關(guān)酶活性的研究[D]. 阿拉爾:塔里木大學(xué),2022.
WU Fei. Studies on phenolics,antioxidant capacity and related enzyme activities in pear during fruit development[D]. Alar:Tarim University,2022.
[12] 韓春紅. 套袋和噴施外源物(MeJA、PDJ)對(duì)紅皮梨果實(shí)品質(zhì)的影響[D]. 洛陽(yáng):河南科技大學(xué),2022.
HAN Chunhong. Effects of bagging and spraying of exogenous substances (MeJA,PDJ) on fruit quality of red-skinned pear[D]. Luoyang:Henan University of Science and Technology,2022.
[13] CRANE M B,MARKS E. Pear-apple hybrids[J]. Nature,1952,170(4337):1017.
[14] ISHIMIZU T,SHINKAWA T,SAKIYAMA F,NORIOKA S. Primary structural features of rosaceous S-RNases associated with gametophytic self-incompatibility[J]. Plant Molecular Biology,1998,37(6):931-941.
[15] 阮穎,周樸華,劉春林. 九種李屬植物的RAPD親緣關(guān)系分析[J]. 園藝學(xué)報(bào),2002,29(3):218-223.
RUAN Ying,ZHOU Puhua,LIU Chunlin. Phylogenetic relationship among nine Prunus species based on random amplified polymorphic DNA[J]. Acta Horticulturae Sinica,2002,29(3):218-223.
[16] 彭?xiàng)鳎瑥埇?,陳珂,戴雨柔,李亞兵,蔡曉鋒. DNA分子標(biāo)記技術(shù)在菠菜遺傳育種中的應(yīng)用研究進(jìn)展[J]. 上海師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2021,50(2):237-242.
PENG Feng,ZHANG Ying,CHEN Ke,DAI Yurou,LI Yabing,CAI Xiaofeng. Research progress of DNA molecular markers in spinach genetic breeding[J]. Journal of Shanghai Normal University (Natural Sciences),2021,50(2):237-242.
[17] 李勝男,張明月,李曉龍,齊開(kāi)杰,張紹鈴,薛蕾,李甲明,吳俊. 蘋(píng)果和梨遠(yuǎn)緣雜種后代的鑒定[J]. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào),2021,29(2):393-401.
LI Shengnan,ZHANG Mingyue,LI Xiaolong,QI Kaijie,ZHANG Shaoling,XUE Lei,LI Jiaming,WU Jun. Identification of progenies of distant hybrids of apple (Malus) and pear (Pyrus)[J]. Journal of Agricultural Biotechnology,2021,29(2):393-401.
[18] 孫寧,孫建設(shè),李增裕. 蘋(píng)果砧木耐鹽突變體的篩選鑒定及RAPD分析[J]. 河北農(nóng)業(yè)大學(xué)學(xué)報(bào),2004,27(5):37-40.
SUN Ning,SUN Jianshe,LI Zengyu. Salt tolerant mutant screening and RAPD analysis studies on apple rootstock[J]. Journal of Agricultural University of Hebei,2004,27(5):37-40.
[19] 劉暢,郭勁鵬,高源,胡穎慧,楊?lèi)?,宋宏偉,卜海東,于文全,王昆,顧廣軍. 寒地蘋(píng)果資源遺傳多樣性及群體結(jié)構(gòu)的SSR標(biāo)記分析[J]. 中國(guó)果樹(shù),2023(5):15-22.
LIU Chang,GUO Jinpeng,GAO Yuan,HU Yinghui,YANG Yue,SONG Hongwei,BU Haidong,YU Wenquan,WANG Kun,GU Guangjun. Genetic diversity and population structure analysis of apple resources in cold region based on SSR markers[J]. China Fruits,2023(5):15-22.
[20] 聶佩顯,于樹(shù)增,陳浪波,薛曉敏,王金政. 國(guó)光蘋(píng)果及其芽變材料的果實(shí)品質(zhì)和AFLP分析[J]. 山東農(nóng)業(yè)科學(xué),2019,51(10):21-24.
NIE Peixian,YU Shuzeng,CHEN Langbo,XUE Xiaomin,WANG Jinzheng. Fruit quality and AFLP analysis of Ralls and its bud mutation[J]. Shandong Agricultural Sciences,2019,51(10):21-24.
[21] 蘇國(guó)釗,李嬡嬡,陳宇華,韓貝貝,武星廷,鄧超,徐振江. 苦瓜DNA分子標(biāo)記研究進(jìn)展[J]. 中國(guó)瓜菜,2023,36(6):10-15.
SU Guozhao,LI Aiai,CHEN Yuhua,HAN Beibei,WU Xingting,DENG Chao,XU Zhenjiang. Research progress on DNA molecular marker of bitter melon[J]. China Cucurbits and Vegetables,2023,36(6):10-15.
[22] 普天磊,金杰,何璐,瞿文林,廖承飛,袁建民,羅會(huì)英,趙瓊玲. 基于SNP和InDel標(biāo)記的余甘子群體遺傳分析[J]. 果樹(shù)學(xué)報(bào),2023,40(5):875-883.
PU Tianlei,JIN Jie,HE Lu,QU Wenlin,LIAO Chengfei,YUAN Jianmin,LUO Huiying,ZHAO Qiongling. Population and genetic analysis of Phyllanthus emblica by SNP and InDel markers[J]. Journal of Fruit Science,2023,40(5):875-883.
[23] 王昆,劉鳳之,曹玉芬. 蘋(píng)果種質(zhì)資源描述規(guī)范和數(shù)據(jù)標(biāo)準(zhǔn)[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2005:50.
WANG Kun,LIU Fengzhi,CAO Yufen. Descriptors and data standard for apple[M]. Beijing:China Agriculture Press,2005:50.
[24] FISCHER T C,MALNOY M,HOFMANN T,SCHWAB W,PALMIERI L,WEHRENS R,SCHUCH L A,M?LLER M,SCHIMMELPFENG H,VELASCO R,MARTENS S. F1 hybrid of cultivated apple (Malus × domestica) and European pear (Pyrus communis) with fertile F2 offspring[J]. Molecular Breeding,2014,34(3):817-828.
[25] 趙秀梅,李紅旭,王發(fā)林,牛茹萱,王晨冰,李寬瑩. 杏李遠(yuǎn)緣雜交新品種‘隴緣紅的選育[J]. 果樹(shù)學(xué)報(bào),2021,38(3):447-450.
ZHAO Xiumei,LI Hongxu,WANG Falin,NIU Ruxuan,WANG Chenbing,LI Kuanying. A new very early-ripening of distant hybridization between plum and apricot cultivar ‘Longyuanhong[J]. Journal of Fruit Science,2021,38(3):447-450.
[26] SEDOV E N. Practical realization of I. V. Michurins ideas in breeding work with apples and pears[J]. Vestnik Selskokhozyaistvennoi Nauki,1983,10:61-67.
[27] 姚青菊,朱洪武,任全進(jìn),楊軍,顧永華. 夏蠟梅與美國(guó)蠟梅屬間雜交新品種‘紅運(yùn)[J]. 園藝學(xué)報(bào),2014,41(8):1755-1756.
YAO Qingju,ZHU Hongwu,REN Quanjin,YANG Jun,GU Yonghua. ‘Hongyun,a new intergeneric hybrid between Sinocalycanthus chinensis and Calycanthus floridus[J]. Acta Horticulturae Sinica,2014,41(8):1755-1756.
[28] 張修仁,張居里,張世明. 蘋(píng)果×梨屬間雜交新品種‘甘金的選育[J]. 果樹(shù)科學(xué),1991,8(2):65-70.
ZHANG Xiuren,ZHANG Juli,ZHANG Shiming. Breeding of apple pear generic hybrid variety ‘Ganjin[J]. Journal of Fruit Science,1991,8(2):65-70.
[29] 楊紅花. 李、杏屬間遠(yuǎn)緣雜交及種質(zhì)創(chuàng)新的研究[D]. 泰安:山東農(nóng)業(yè)大學(xué),2004.
YANG Honghua. Study on intergeneric distant hybridization between Prunus and Armeniaca and new germplasm creation[D]. Taian:Shandong Agricultural University,2004.
[30] LI Y Z,TAN X,GUO J,HU E Y,PAN Q,ZHAO Y A,CHU Y,ZHU Y D. Functional characterization of MdTAC1a gene related to branch angle in apple (Malus × domestica Borkh. )[J]. International Journal of Molecular Sciences,2022,23(3):1870.
[31] LEE H S,KIM G H,KWON S I,KIM J H,KWON Y S,CHOI C. Analysis of ‘Fuji apple somatic variants from next-generation sequencing[J]. Genetics and Molecular Research,2016,15(3):15038185.
[32] 強(qiáng)艷玉. 甘肅省蘋(píng)果產(chǎn)業(yè)生產(chǎn)效率及影響因素分析[D]. 蘭州:甘肅農(nóng)業(yè)大學(xué),2018.
QIANG Yanyu. Analysis on production efficiency and influencing factors of apple industry in Gansu Province[D]. Lanzhou:Gansu Agricultural University,2018.