亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        谷物糊粉層發(fā)育的調(diào)控機(jī)制及其育種應(yīng)用

        2023-12-21 07:55:45王騰蛟陳忱
        中國(guó)水稻科學(xué) 2023年5期
        關(guān)鍵詞:水稻

        王騰蛟 陳忱

        谷物糊粉層發(fā)育的調(diào)控機(jī)制及其育種應(yīng)用

        王騰蛟 陳忱*

        (揚(yáng)州大學(xué) 江蘇省作物基因組學(xué)和分子育種重點(diǎn)實(shí)驗(yàn)室/植物功能基因組學(xué)教育部重點(diǎn)實(shí)驗(yàn)室, 揚(yáng)州 225009;*通信聯(lián)系人, email: chenchen@yzu.edu.cn)

        植物最外層胚乳細(xì)胞在種子發(fā)育過程中分化為糊粉層細(xì)胞,其在形態(tài)和生理功能上均顯著區(qū)別于內(nèi)胚乳細(xì)胞。與淀粉胚乳不同,糊粉層富含蛋白質(zhì)、脂類、維生素、膳食纖維、礦質(zhì)元素和抗氧化物等多種營(yíng)養(yǎng)物質(zhì)。同時(shí),在種子萌發(fā)過程中,糊粉層細(xì)胞能夠分泌淀粉酶和蛋白酶分解種子內(nèi)積累的儲(chǔ)藏物質(zhì),為種子萌發(fā)提供能量。目前利用突變體材料,克隆了一些控制糊粉層細(xì)胞分化的關(guān)鍵基因,相關(guān)研究極大深化了我們對(duì)糊粉層細(xì)胞命運(yùn)決定的認(rèn)識(shí)。同時(shí),由于糊粉層富含各種營(yíng)養(yǎng)物質(zhì),增加糊粉層細(xì)胞層數(shù)可以作為改良谷物營(yíng)養(yǎng)品質(zhì)的一個(gè)重要手段。本文主要以水稻及其他谷類作物為例,系統(tǒng)介紹了糊粉層細(xì)胞分化和發(fā)育的過程,并對(duì)其遺傳調(diào)控機(jī)制進(jìn)行總結(jié)梳理,同時(shí)對(duì)利用糊粉層相關(guān)性狀進(jìn)行稻米品質(zhì)改良可能存在的問題及其對(duì)策進(jìn)行了探討。

        糊粉層;糊粉層細(xì)胞;分化;遺傳調(diào)控;營(yíng)養(yǎng)品質(zhì)改良

        糊粉層是位于種皮組織內(nèi)側(cè)、中央胚乳外側(cè),由一層或數(shù)層糊粉層細(xì)胞構(gòu)成的特殊結(jié)構(gòu),在儲(chǔ)藏物質(zhì)積累和種子萌發(fā)過程中發(fā)揮著重要生理生化功能[1]。糊粉層細(xì)胞由胚乳細(xì)胞分化而來,其在細(xì)胞結(jié)構(gòu)和功能上均與內(nèi)胚乳細(xì)胞存在顯著差異[2]。水稻等單子葉植物的胚乳和糊粉層細(xì)胞通常均保留在成熟種子中;擬南芥等雙子葉植物在胚胎發(fā)育過程中胚乳細(xì)胞通常被逐漸消耗,但糊粉層細(xì)胞并不降解[3]。由此可見,無論對(duì)單子葉還是雙子葉植物而言,糊粉層均是成熟種子的重要組成。糊粉層相關(guān)突變體通常會(huì)伴隨其他種子發(fā)育缺陷[4-8],表明糊粉層對(duì)種子發(fā)育及種子活力具有重要影響。

        在植物科學(xué)發(fā)展的歷程中,一些重要生物學(xué)現(xiàn)象及其作用機(jī)制是通過對(duì)糊粉層的研究發(fā)現(xiàn)的[9]。例如,一些玉米品種可以在糊粉層細(xì)胞中積累花青素,麥克林托克(Barbara McClintock)通過對(duì)這一現(xiàn)象的深入分析,開創(chuàng)性地提出了轉(zhuǎn)座子的概念,并對(duì)轉(zhuǎn)座機(jī)制進(jìn)行了深入研究[10],于1983年獲得諾貝爾生理學(xué)和醫(yī)學(xué)獎(jiǎng)。另外,一些重要的表觀遺傳學(xué)概念,如副突變(paramutation)、基因印記(imprinting)等,也是在對(duì)玉米糊粉層相關(guān)性狀遺傳機(jī)制的研究過程中提出的[11,12]。糊粉層還是研究植物響應(yīng)赤霉素(gibberellin,GA)信號(hào)的優(yōu)異材料,利用糊粉層進(jìn)行的一系列生理生化研究極大深化了我們對(duì)GA信號(hào)傳遞作用機(jī)制的認(rèn)識(shí)[13]。

        對(duì)糊粉層相關(guān)性狀的研究具有非常重要的應(yīng)用價(jià)值。在種子萌發(fā)過程中,糊粉層細(xì)胞分泌不同水解酶以降解種子中積累的儲(chǔ)藏物質(zhì),從而為胚胎萌發(fā)提供養(yǎng)分[14-15]。這一生理活動(dòng)是啤酒釀造過程中麥芽糖化的基礎(chǔ),糊粉層更厚的大麥品種具有更高的β淀粉酶活性[16],對(duì)其作用機(jī)制的研究可以直接轉(zhuǎn)化為工業(yè)應(yīng)用。同時(shí),由于糊粉層細(xì)胞富含蛋白質(zhì)、脂類、維生素、礦質(zhì)元素和膳食纖維等多種營(yíng)養(yǎng)物質(zhì)[17-18],增加谷物糊粉層厚度可以改良種子的營(yíng)養(yǎng)品質(zhì);而降低糊粉層厚度則可以提高谷物出精率。有研究表明糊粉層還能對(duì)水稻蒸煮食味品質(zhì)產(chǎn)生一定影響[19]。鑒于此,本文以水稻為例,同時(shí)兼顧其他物種(如玉米和擬南芥等)中所取得的最新研究成果,從不同層面系統(tǒng)梳理和介紹糊粉層細(xì)胞分化與發(fā)育的遺傳調(diào)控機(jī)制及其育種利用,以期為相關(guān)研究提供參考。

        1 糊粉層細(xì)胞分化與糊粉層的形成

        胚乳是高等植物雙受精產(chǎn)物之一,原初胚乳細(xì)胞在精細(xì)胞和中央細(xì)胞融合后幾個(gè)小時(shí)內(nèi)即開始分裂。對(duì)于絕大多數(shù)被子植物,胚乳細(xì)胞早期只進(jìn)行細(xì)胞核分裂,而不涉及細(xì)胞分裂與細(xì)胞壁形成,所以早期胚乳細(xì)胞實(shí)質(zhì)上是一個(gè)含有多個(gè)游離細(xì)胞核的多核體細(xì)胞(coencyte),又稱為合胞體(syncytium)[20]。對(duì)于水稻,合胞體大約在受精后3 d開始細(xì)胞化(cellularization),每個(gè)游離核形成一個(gè)獨(dú)立的胚乳細(xì)胞[1, 21]。由合胞體向細(xì)胞化過渡是胚乳發(fā)育過程中一個(gè)標(biāo)志性事件,對(duì)種子發(fā)育及種子大小具有重要影響[22]。水稻胚乳細(xì)胞化在受精后5 d左右完成,通過連續(xù)的平周與垂周分裂,胚乳細(xì)胞快速填滿整個(gè)胚囊腔。大約從受精后5~6 d開始,最外層胚乳細(xì)胞在形態(tài)上與內(nèi)部胚乳細(xì)胞發(fā)生分化:細(xì)胞質(zhì)變濃,富含小液泡,且細(xì)胞質(zhì)中出現(xiàn)染色性不同的顆粒[21, 23]。隨著內(nèi)胚乳細(xì)胞開始迅速積累淀粉等儲(chǔ)藏物質(zhì)(故又稱為淀粉胚乳細(xì)胞),最外層胚乳細(xì)胞在形態(tài)上愈發(fā)區(qū)別于內(nèi)胚乳細(xì)胞。這種在形態(tài)和結(jié)構(gòu)上明顯不同于淀粉胚乳的外層胚乳細(xì)胞即為糊粉層細(xì)胞。不同植物糊粉層細(xì)胞的層數(shù)存在差別,研究發(fā)現(xiàn)禾谷類植物(如玉米和小麥)通常只有1層糊粉層細(xì)胞,但少數(shù)物種具有多層細(xì)胞組成的糊粉層結(jié)構(gòu)[2]。例如大麥糊粉層通常由3層細(xì)胞組成[3];水稻在種子背側(cè)(近大微管束側(cè))有3~5層糊粉層細(xì)胞,腹側(cè)有1~2層,兩側(cè)通常只有1層糊粉層細(xì)胞[21]。通過對(duì)不同水稻種質(zhì)資源的分析,粳稻糊粉層細(xì)胞的層數(shù)多于秈稻,糊粉層厚度相應(yīng)增加[24-26]。類似自然變異在大麥和玉米中也有報(bào)道,但尚缺乏系統(tǒng)研究[16, 27]。

        通常認(rèn)為淀粉胚乳是胚乳細(xì)胞的原始狀態(tài),糊粉層細(xì)胞在發(fā)育過程中由最外側(cè)胚乳細(xì)胞分化產(chǎn)生[28]。這兩種不同類型胚乳細(xì)胞中積累的儲(chǔ)藏物質(zhì)存在很大差異,糊粉層細(xì)胞富含糊粉粒(儲(chǔ)藏蛋白質(zhì))和圓球體(儲(chǔ)藏脂肪),因而蛋白質(zhì)和脂肪含量顯著高于淀粉胚乳;同時(shí)糊粉層細(xì)胞壁較淀粉胚乳細(xì)胞厚,其纖維素(包括膳食纖維)含量更高。此外,糊粉層細(xì)胞具有更為豐富的維生素、抗氧化物(如葉酸、多酚化合物及花青素等)和礦質(zhì)營(yíng)養(yǎng)元素(如鈣、鋅、鐵等)[18, 23]。值得注意的是,糊粉層除了富含各種營(yíng)養(yǎng)物質(zhì),也有較高含量的植酸(六磷酸肌醇,一種抗?fàn)I養(yǎng)素),可以螯合鈣、鐵等礦物質(zhì)元素,使得這些營(yíng)養(yǎng)難以被腸道吸收[29]。目前已經(jīng)通過資源篩選、分子標(biāo)記輔助選擇以及生物工程等手段,培育出低植酸作物新種質(zhì)/新品種[30]。淀粉作為內(nèi)胚乳細(xì)胞主要儲(chǔ)藏物質(zhì),在成熟糊粉層細(xì)胞內(nèi)幾乎沒有積累。與內(nèi)胚乳不同,在種子成熟過程中糊粉層細(xì)胞并不發(fā)生程序化死亡或降解,因而糊粉層是成熟種子中唯一具有活性的胚乳組織,在種子休眠和萌發(fā)過程中發(fā)揮重要生理功能[31]。

        借助轉(zhuǎn)座子介導(dǎo)的玉米染色體斷裂遺傳系統(tǒng),發(fā)現(xiàn)對(duì)于由同一個(gè)糊粉層細(xì)胞經(jīng)有絲分裂形成且遺傳組成完全一致的多細(xì)胞模塊,只有最外層細(xì)胞具有糊粉層細(xì)胞屬性,而內(nèi)側(cè)細(xì)胞則分化成淀粉胚乳細(xì)胞,暗示糊粉層細(xì)胞的命運(yùn)是由其所處的位置決定的[32]。更直接的證據(jù)來自對(duì)玉米胚乳細(xì)胞的體外培養(yǎng)試驗(yàn),研究表明糊粉層細(xì)胞的分化完全取決于細(xì)胞所在位置,只有最外層細(xì)胞具有分化為糊粉層細(xì)胞的能力;而對(duì)于已經(jīng)發(fā)生分化的糊粉層細(xì)胞和淀粉胚乳細(xì)胞,其命運(yùn)也是可以相互轉(zhuǎn)化的[33]。遺傳證據(jù)也支持糊粉層細(xì)胞命運(yùn)決定的“位置假說”。擬南芥衰老誘導(dǎo)型啟動(dòng)子驅(qū)動(dòng)異戊烯基轉(zhuǎn)移酶(細(xì)胞分裂素合成的限速酶)編碼基因在玉米中表達(dá),能夠?qū)е聝闪7N子發(fā)生部分融合,在兩個(gè)種子高度融合處的細(xì)胞多表現(xiàn)出淀粉胚乳細(xì)胞屬性[34]。對(duì)于“位置信號(hào)”(positional cues,即能夠使胚乳細(xì)胞感知自身所處位置的物質(zhì)或分子)是什么,目前仍無定論。早期推測(cè)位置信號(hào)可能源于母體組織[35],但現(xiàn)有研究結(jié)果并不支持這一假說,因?yàn)轶w外培養(yǎng)的去除了母體組織的胚乳細(xì)胞仍能分化出糊粉層細(xì)胞和淀粉胚乳細(xì)胞[33],目前更傾向于認(rèn)為位置信號(hào)源自內(nèi)胚乳組織。國(guó)內(nèi)有學(xué)者提出糊粉層的分化是由細(xì)胞內(nèi)積累的礦質(zhì)和脂質(zhì)等“灌漿廢物”誘導(dǎo)產(chǎn)生的[36],即母體組織(如水稻背部維管束)轉(zhuǎn)運(yùn)而來的灌漿物質(zhì)經(jīng)過胚乳表層細(xì)胞后進(jìn)入內(nèi)胚乳,由于礦質(zhì)元素、脂類等不參與內(nèi)胚乳儲(chǔ)藏物質(zhì)積累,因而被滯留在外層胚乳細(xì)胞,誘導(dǎo)糊粉層細(xì)胞分化。本質(zhì)上該假說認(rèn)為母體組織決定糊粉層細(xì)胞命運(yùn),目前尚缺少直接證據(jù)支持。

        2 糊粉層細(xì)胞的生理功能

        糊粉層作為最外層胚乳組織,其功能主要包括儲(chǔ)藏、保護(hù)和水解等三方面[9]。如上文所述,糊粉層積累的脂肪和蛋白質(zhì)遠(yuǎn)高于內(nèi)胚乳組織[21]。研究發(fā)現(xiàn),擬南芥糊粉層在種子萌發(fā)過程中可以向幼苗提供糖分和脂肪,如果這一過程存在缺陷,會(huì)導(dǎo)致種子活力下降、幼苗生長(zhǎng)遲緩,表明糊粉層細(xì)胞積累的儲(chǔ)藏物質(zhì)對(duì)維持種子活性具有重要作用[37-39]。

        內(nèi)胚乳組織富含碳水化合物,易受病原菌侵染,而糊粉層覆蓋在內(nèi)胚乳細(xì)胞外側(cè),能夠通過激活防衛(wèi)反應(yīng),起到保護(hù)內(nèi)胚乳的作用[9]。例如,相比淀粉胚乳細(xì)胞,、和等抗病相關(guān)防衛(wèi)基因在水稻糊粉層細(xì)胞中特異高表達(dá)[40]。決定玉米糊粉層細(xì)胞分化的重要調(diào)控因子NKD可激活糊粉層中防衛(wèi)反應(yīng)相關(guān)基因的表達(dá)[41]。然而,關(guān)于糊粉層在植物種子抵御病原菌入侵方面的研究亟待深入,目前鮮見相關(guān)研究報(bào)道。

        對(duì)擬南芥的研究表明,糊粉層在調(diào)控種子休眠過程中發(fā)揮重要作用。當(dāng)同時(shí)去除擬南芥種子的種皮和糊粉層,種子休眠性顯著降低,而只去除種皮并不能破壞種子休眠,表明糊粉層是決定種子休眠的重要因素[42]。對(duì)糊粉層調(diào)控種子休眠的機(jī)制研究表明,基因組印記在這一過程中可能發(fā)揮重要影響?;蚪M印記是一種表觀遺傳現(xiàn)象,由于親本間的表觀修飾差異(如DNA甲基化、組蛋白甲基化修飾等),導(dǎo)致父母本等位基因只有一個(gè)處于激活狀態(tài),另一個(gè)被關(guān)閉[43-44]。擬南芥休眠種子中一些休眠相關(guān)基因只表達(dá)母本等位基因,而在種子休眠破除過程由于染色質(zhì)的修飾發(fā)生改變,導(dǎo)致父本等位基因激活,促進(jìn)種子萌發(fā)[45-48]。

        糊粉層在種子萌發(fā)過程中的生理功能研究得最為透徹。GA能夠誘導(dǎo)糊粉層細(xì)胞中α-淀粉酶和蛋白酶表達(dá),這些水解酶分泌到內(nèi)胚乳細(xì)胞降解淀粉和蛋白質(zhì)等儲(chǔ)藏物質(zhì),為種子萌發(fā)提供營(yíng)養(yǎng)[15]。研究顯示水稻種子萌發(fā)過程中GA可能來源于胚胎,因?yàn)樵谂呷橹袡z測(cè)不到GA合成關(guān)鍵酶基因(如s和s等)的表達(dá),但這些基因在胚胎盾片表皮細(xì)胞中高表達(dá)[49]。與GA可以誘導(dǎo)水解酶類的分泌相反,脫落酸ABA能夠抑制糊粉層里相關(guān)酶的表達(dá),從而抑制種子萌發(fā)[13]。近期研究發(fā)現(xiàn),油菜素內(nèi)酯BR也能誘導(dǎo)糊粉層細(xì)胞淀粉酶表達(dá),但是BR通過不同于GA的獨(dú)立通路調(diào)控下游α-淀粉酶基因的表達(dá),促進(jìn)水稻種子萌發(fā)[50]。

        3 糊粉層細(xì)胞分化和發(fā)育的分子調(diào)控機(jī)制

        目前已經(jīng)從水稻、玉米和大麥等作物中分離了一系列糊粉層缺陷突變體,相關(guān)基因的克隆極大深化了我們對(duì)糊粉層細(xì)胞分化和發(fā)育調(diào)控機(jī)制的認(rèn)識(shí)[51-52](圖1)。研究發(fā)現(xiàn)糊粉層細(xì)胞的分化調(diào)控機(jī)制在植物中可能是保守的,其中()和()是調(diào)控糊粉層細(xì)胞分化的正調(diào)控因子[4, 32, 35]。玉米作為第一個(gè)被克隆的糊粉層細(xì)胞命運(yùn)決定基因,編碼一個(gè)類受體激酶[4]。突變體籽粒部分區(qū)域不能合成花青素,表現(xiàn)出“花?!北硇?,進(jìn)一步研究發(fā)現(xiàn)缺少花青素積累的區(qū)域糊粉層細(xì)胞被淀粉胚乳細(xì)胞所取代[4]。玉米編碼一個(gè)具有半胱氨酸蛋白酶結(jié)構(gòu)域的跨膜蛋白,其突變體表型與類似[32, 35]。考慮到和都編碼膜蛋白,推測(cè)CR4與DEK1可以接受位置信號(hào)并促進(jìn)糊粉層細(xì)胞分化[2]。水稻和同源基因突變后出現(xiàn)類似的糊粉層分化缺陷[53-54]。此外,和突變體表現(xiàn)出類似的葉片表皮細(xì)胞分化障礙,暗示兩者可能對(duì)其他組織表層細(xì)胞的分化也有影響[4, 5]。大麥()突變后糊粉層數(shù)減少,并伴隨和表達(dá)下調(diào),暗示DES5可能通過影響位置信號(hào)感知基因的表達(dá)參與糊粉層細(xì)胞分化調(diào)控[52]。由于目前尚未被克隆,其具體作用機(jī)制仍有待深入研究。最近研究發(fā)現(xiàn)玉米籽粒皺縮突變體()最外層胚乳細(xì)胞能夠在成熟種子中積累淀粉,表現(xiàn)出內(nèi)胚乳細(xì)胞的部分特征,暗示其糊粉層細(xì)胞分化出現(xiàn)異常[55]。編碼YSL(YELLOW STRIPE-LIKE)家族金屬轉(zhuǎn)運(yùn)蛋白ZmYSL2,在突變體籽粒中Fe、Zn等金屬元素含量顯著降低[6,56]。盡管對(duì)該蛋白轉(zhuǎn)運(yùn)底物還存在爭(zhēng)論[57],ZmYSL2影響糊粉層分化可看作支持“灌漿廢物”假說的一個(gè)間接證據(jù)。

        Fig. 1. Schematic illustration of the molecular regulations of aleurone differentiation and development.

        除了上述糊粉層細(xì)胞分化障礙突變體外,還有一些遺傳材料糊粉層厚度與細(xì)胞層數(shù)顯著增加,例如玉米()突變體的糊粉層細(xì)胞可以多達(dá)7層[58]。編碼液泡分選蛋白,在體內(nèi)與DEK1和CR4共定位,推測(cè)SAL1通過囊泡運(yùn)輸維持DEK1和CR4在細(xì)胞膜上的穩(wěn)態(tài)平衡[59]。()是玉米中另一個(gè)決定糊粉層數(shù)的負(fù)調(diào)控因子,遺傳分析顯示和雙突變后出現(xiàn)與單突變類似的糊粉層增加表型,表明THK1作用于DEK1下游[60]。編碼CCR-NOT骨架蛋白,參與調(diào)控細(xì)胞分裂、分化和信號(hào)傳遞[61]。含有INDETERMINATE結(jié)構(gòu)域的轉(zhuǎn)錄因子NKD1(NAKED ENDOSPERM1)和NKD2可以形成異源二聚體,調(diào)控和等下游胚乳發(fā)育重要基因的表達(dá),抑制糊粉層數(shù)增加[41,62]。和的表達(dá)受DOF家族轉(zhuǎn)錄因子ZmDOF3的直接調(diào)控,因而抑制表達(dá)可以觀察到與玉米雙突變體類似的糊粉層細(xì)胞層數(shù)增加表型[63]。

        水稻DOF轉(zhuǎn)錄因子RPBF(RICE PROLAMIN- BOX BINDING FACTOR)也能抑制糊粉層分化,特別是利用RNA干擾技術(shù)(RNA interference, RNAi)同時(shí)敲降(knock-down)和()的表達(dá)能夠極顯著增加糊粉層數(shù),而單獨(dú)抑制并不影響糊粉層細(xì)胞分化[64]。值得注意的是,在水稻、和等糊粉層細(xì)胞分化關(guān)鍵基因的啟動(dòng)子區(qū)均存在RPBF識(shí)別元件,同時(shí)這些基因的表達(dá)在和的雙敲降材料中顯著降低,暗示、和可能是RPBF和RISBZ1的下游調(diào)控基因[64]。近來,我國(guó)學(xué)者通過化學(xué)誘變,成功篩選到23個(gè)潛在的糊粉層增厚水稻突變體,并成功克隆了()和等基因,

        極大拓展了我們對(duì)水稻糊粉層細(xì)胞分化的理解[7-8]。編碼定位于線粒體的單鏈DNA結(jié)合蛋白OsmtSSB1,可以與線粒體DNA重組酶RECA3以及DNA解旋酶TWINKLE相互作用,維持線粒體的正常功能;RECA3和TWINKLE突變后,也出現(xiàn)與類似的糊粉層數(shù)增加表型[7]。另一個(gè)水稻線粒體蛋白OsGCD1(GAMETE CELLS DEFECTIVE1)碼基因突變可以導(dǎo)致糊粉層分化延緩,且成熟種子中背、腹側(cè)糊粉層細(xì)胞層數(shù)差異消失[65]。這些發(fā)現(xiàn)表明維持正常的線粒體功能對(duì)于糊粉層分化發(fā)育具有重要作用。是水稻DNA去甲基化酶OsROS1a的一個(gè)弱突變,能以母性遺傳的方式影響糊粉層分化[8],表明表觀遺傳調(diào)控在糊粉層細(xì)胞命運(yùn)決定過程中也發(fā)揮重要影響。胚乳DNA甲基化水平增高,從而導(dǎo)致和等糊粉層發(fā)育相關(guān)基因的表達(dá)降低[8]。此外,一些儲(chǔ)藏物質(zhì)合成相關(guān)基因和粒型基因發(fā)生突變(如蛋白質(zhì)二硫鍵異構(gòu)酶基因、脂轉(zhuǎn)運(yùn)蛋白編碼基因和水稻粒型基因)也能導(dǎo)致水稻背側(cè)糊粉層變厚[66-68],但是這些基因調(diào)控糊粉層分化和發(fā)育的機(jī)制目前仍不明了。

        糊粉層細(xì)胞大小相近、形狀類似,整齊有序地緊密排列在內(nèi)胚乳組織外側(cè),但一些基因突變后,糊粉層細(xì)胞分裂和擴(kuò)展出現(xiàn)異常。例如玉米()和突變體糊粉層細(xì)胞排列松散無序,細(xì)胞形狀也表現(xiàn)較大變化,類似表型在大麥()突變體中也可以觀察到[69, 70],暗示這些基因不參與糊粉層細(xì)胞的命運(yùn)決定,但可影響細(xì)胞分裂。此外,玉米()突變體中出現(xiàn)糊粉層細(xì)胞排列異常甚至異位表達(dá)的現(xiàn)象,小部分內(nèi)胚乳細(xì)胞表現(xiàn)出糊粉層細(xì)胞特征[71]。玉米()突變體糊粉層細(xì)胞由垂周分裂變?yōu)槠街芊至?,產(chǎn)生兩層糊粉層細(xì)胞[72]。野生型的糊粉層細(xì)胞進(jìn)行平周分裂,但是內(nèi)層細(xì)胞會(huì)維持淀粉胚乳細(xì)胞屬性,因而推測(cè)可能同時(shí)影響糊粉層細(xì)胞的分化與分裂。又如玉米()突變后,糊粉層細(xì)胞在垂周方向上顯著變長(zhǎng),但平周方向并無改變,表明特異抑制糊粉層細(xì)胞垂周擴(kuò)展[73]。這些基因目前尚未被克隆,對(duì)糊粉層細(xì)胞分裂調(diào)控的機(jī)制研究亟待深入。

        4 糊粉層細(xì)胞分化和發(fā)育的激素調(diào)控

        植物激素在胚乳發(fā)育中發(fā)揮重要生理功能[1],例如生長(zhǎng)素在水稻和擬南芥胚乳細(xì)胞化過程中具有決定性作用,濃度過高可以抑制細(xì)胞化發(fā)生,濃度低則可導(dǎo)致細(xì)胞化提前;同時(shí),生長(zhǎng)素和脫落酸還是內(nèi)胚乳細(xì)胞儲(chǔ)藏物質(zhì)積累和灌漿的重要信號(hào)分子[74-77]。然而關(guān)于糊粉層細(xì)胞分化與發(fā)育的激素調(diào)控,目前了解較少。生長(zhǎng)素極性運(yùn)輸抑制劑NPA處理玉米種子能夠?qū)е律L(zhǎng)素轉(zhuǎn)運(yùn)蛋白ZmPIN1在外周胚乳細(xì)胞異常積累、生長(zhǎng)素濃度升高,同時(shí)出現(xiàn)糊粉層數(shù)增加的表型,由此推測(cè)生長(zhǎng)素可以促進(jìn)糊粉層細(xì)胞分化[78]。此外,一些生長(zhǎng)素合成和信號(hào)相關(guān)基因(如水稻和)特異地在糊粉層表達(dá)[79];對(duì)玉米突變體的轉(zhuǎn)錄組分析表明,61個(gè)在糊粉層高表達(dá)的生長(zhǎng)素響應(yīng)因子在突變體中表達(dá)上調(diào),同時(shí)糊粉層中積累更高濃度生長(zhǎng)素,由此推測(cè)NKD可能負(fù)調(diào)控糊粉層中的生長(zhǎng)素信號(hào)[80]。值得注意的是,生長(zhǎng)素缺陷突變體是否存在糊粉層分化缺陷目前尚無明確報(bào)道。

        利用擬南芥衰老誘導(dǎo)啟動(dòng)子驅(qū)動(dòng)細(xì)胞分裂素(CK)合成基因在玉米中表達(dá),發(fā)現(xiàn)轉(zhuǎn)基因籽粒糊粉層的分化被抑制,暗示CK可能作為糊粉層細(xì)胞分化的抑制信號(hào)發(fā)揮作用[34],但內(nèi)源CK信號(hào)是否參與糊粉層細(xì)胞分化仍有待深入研究。作為ABA下游信號(hào)分子,()主要在水稻和玉米籽粒糊粉層高表達(dá)[81-83];玉米籽粒中ABA積累減少,并伴隨糊粉層細(xì)胞形態(tài)異常,暗示脫落酸可能影響糊粉層細(xì)胞發(fā)育[73]。同時(shí),在種子成熟過程中,ABA可促進(jìn)胚胎發(fā)育晚期豐富蛋白(late embryogenesis abundant proteins, LEA)的積累,增強(qiáng)細(xì)胞對(duì)脫水環(huán)境的耐受性,維持糊粉層細(xì)胞的活力[84]。在種子萌發(fā)過程中,GA能夠誘導(dǎo)糊粉層細(xì)胞分泌蛋白酶和淀粉酶降解內(nèi)胚乳組織,為胚胎萌發(fā)提供營(yíng)養(yǎng)物質(zhì)和能量[13]。在這一過程中糊粉粒發(fā)生液泡化,釋放糊粉層中的儲(chǔ)藏物質(zhì),同時(shí)糊粉層細(xì)胞發(fā)生程序化死亡(PCD, programed cell death)[42, 85]。水稻OsVPE3(VACUOLAR PROCESSING ENZYMES3)參與介導(dǎo)了GA誘導(dǎo)水稻糊粉層細(xì)胞PCD的發(fā)生過程[86]。

        5 增加糊粉層厚度在谷物營(yíng)養(yǎng)品質(zhì)改良中的應(yīng)用

        人類攝入的70%~75%碳水化合物、6%~15%的蛋白質(zhì)由谷物提供,水稻、玉米和小麥等谷類作物作為主糧,為人類提供了50%的能量[17]。近期一項(xiàng)調(diào)查結(jié)果顯示,波蘭家庭每天攝入的20%~30%蛋白質(zhì)、維生素B1、磷和鋅;10%~20%多聚不飽和脂肪酸、鈉、鉀、鈣、核黃素、煙酸、維生素B6及其他微量礦質(zhì)元素來源于谷物[87]。上述這些營(yíng)養(yǎng)成分在糊粉層均有較高積累。此外,與淀粉胚乳相比,糊粉層還含有較高水平的抗氧化物和膳食纖維[18]。由于糊粉層、種胚和種皮在谷物加工過程中作為麩皮被去除,導(dǎo)致營(yíng)養(yǎng)物質(zhì)的極大流失。水稻麩皮中粗蛋白、總脂肪、礦質(zhì)元素和膳食纖維的含量分別是精米的2倍、50倍、20~100倍和20倍[88]。近年來隨著人們對(duì)健康生活的追求,全谷物(即未去麩皮的粗糧)越來越受消費(fèi)者重視。近期發(fā)布的《中國(guó)居民膳食指南(2022)》推薦我國(guó)居民每日攝入全谷物和雜豆50~150 g。研究表明保證粗糧攝入能量夠有效降低心腦血管疾病、肥胖癥、二型糖尿病以及某些腫瘤的發(fā)生風(fēng)險(xiǎn)[17, 89]。

        糊粉層是麩皮的主要組成。據(jù)估算,水稻糊粉層占麩皮總量的25%左右,小麥甚至高達(dá)50%[89-90]。由于糊粉層具有極高營(yíng)養(yǎng)價(jià)值,通過增加糊粉層細(xì)胞層數(shù)可以作為改良谷物營(yíng)養(yǎng)品質(zhì)的一個(gè)重要策略[17,89]。例如,某些玉米特異種質(zhì)具有3~4層糊粉層細(xì)胞,與普通玉米相比這些種質(zhì)籽粒中蛋白質(zhì)含量顯著增加[27]。我國(guó)學(xué)者通過回交選育結(jié)合分子標(biāo)記輔助選擇的方法,成功將基因?qū)肷酒贩N紫香糯1306[7]。改良品種的糙米中,蛋白質(zhì)、總脂肪、礦質(zhì)元素、維生素、膳食纖維和抗氧化物含量均顯著提升,同時(shí)株高、穗長(zhǎng)、千粒重和單株產(chǎn)量等重要農(nóng)藝性狀也有顯著改善[7],表明通過增加糊粉層厚度,可以有效提升谷物的營(yíng)養(yǎng)品質(zhì)。

        6 利用糊粉層性狀改良谷物營(yíng)養(yǎng)品質(zhì)潛在問題及對(duì)策

        雖然已有通過增加糊粉層細(xì)胞層數(shù)改良谷物營(yíng)養(yǎng)品質(zhì)的成功案例,但該策略仍存在諸多問題亟待解決,其中最為突出的問題在于目前具有應(yīng)用潛力的基因資源仍十分有限。雖然已經(jīng)克隆了多個(gè)影響糊粉層分化和發(fā)育的關(guān)鍵基因,但是這些基因突變后通常產(chǎn)生一系列不利性狀,包括(但不限于)植株矮小、發(fā)育異常、粉質(zhì)胚乳、籽粒變小和種子敗育等[4, 7, 8, 32, 35, 53–55, 58, 60, 64]。同時(shí),糊粉層增厚雖然可以提高營(yíng)養(yǎng)品質(zhì),但蛋白質(zhì)含量提高顯著降低稻米的食味品質(zhì)[91]。如何協(xié)調(diào)營(yíng)養(yǎng)品質(zhì)與外觀、食味和加工品質(zhì)以及與產(chǎn)量之間的矛盾,是亟待深入研究和解決的問題。

        從自然品種和群體中分離控制糊粉層相關(guān)性狀的調(diào)控基因,將是解決這一矛盾的重要手段。對(duì)種質(zhì)資源的篩選發(fā)現(xiàn),水稻、玉米和大麥等谷物中均存在糊粉層性狀的廣泛變異[25, 27, 92],通過連鎖分析和全基因組關(guān)聯(lián)分析等方法分離決定糊粉層數(shù)和厚度的數(shù)量性狀座位(QTL)和基因,將為谷物營(yíng)養(yǎng)品質(zhì)改良提供重要基因資源。但是目前相關(guān)工作還鮮有報(bào)道[26, 93, 94],其中最大的制約因素在于性狀的考查較為困難。一方面,糊粉層數(shù)、厚度等性狀即使在純系品種內(nèi)也存在較大變異,同時(shí)還易受環(huán)境的影響[24, 25, 95-97];另一方面,雖然可以通過制作切片、掃描電鏡等方法對(duì)糊粉層相關(guān)性狀進(jìn)行較為準(zhǔn)確的觀察和測(cè)定,但這些方法費(fèi)時(shí)費(fèi)力,不適合大規(guī)模篩選和分析[98]。目前,通過半粒種子法,已建立了一些徒手切片結(jié)合染色技術(shù)的方法,用于快速觀察糊粉層相關(guān)性狀[8, 98],但是其通量和準(zhǔn)確性仍有待提升。未來可能的解決方案在于結(jié)合基于無損檢測(cè)方法的開發(fā)(如近紅外成像和CT掃描成像技術(shù)等),并利用機(jī)器學(xué)習(xí)和人工智能等高通量圖像識(shí)別方法,提高糊粉層相關(guān)性狀表型分析的效率和準(zhǔn)確性。

        7 總結(jié)和展望

        目前,對(duì)糊粉層細(xì)胞分化和發(fā)育的研究已經(jīng)取得較大進(jìn)展,克隆了多個(gè)參與糊粉層細(xì)胞命運(yùn)決定的關(guān)鍵調(diào)控基因(圖1)。但是,影響糊粉層細(xì)胞分化和發(fā)育的機(jī)制十分復(fù)雜,這些基因間的調(diào)控途徑和作用網(wǎng)絡(luò)仍有待進(jìn)一步闡明。一些關(guān)鍵科學(xué)問題,如誘導(dǎo)糊粉層細(xì)胞分化的位置信號(hào)是什么目前還不清楚,該問題可以看作是相關(guān)研究領(lǐng)域的“圣杯”。又如,無論是水稻還是玉米籽粒中,一些關(guān)鍵基因突變,對(duì)種子不同部位糊粉層的影響是不同的。稻米腹部糊粉層數(shù)遠(yuǎn)少于背部,基因突變后主要影響背部糊粉發(fā)育,與此類似,玉米突變對(duì)近胚面糊粉層細(xì)胞分化的影響遠(yuǎn)小于遠(yuǎn)胚面[4, 64],這種影響是如何產(chǎn)生的目前仍缺少認(rèn)識(shí)。另外一個(gè)值得思考的問題是,目前已克隆的糊粉層分化發(fā)育關(guān)鍵基因都不在糊粉層特異表達(dá),而一些糊粉層細(xì)胞特異表達(dá)基因突變后并無明顯糊粉層發(fā)育缺陷。此外,糊粉層細(xì)胞命運(yùn)決定基因通常也參與其他組織表皮細(xì)胞的分化調(diào)控[4, 5, 52, 54, 60, 72],糊粉層細(xì)胞本質(zhì)上是否也是一種表皮細(xì)胞?決定糊粉層細(xì)胞命運(yùn)的位置信號(hào)是否也能誘導(dǎo)其他組織表皮細(xì)胞分化?此外,關(guān)于糊粉層細(xì)胞分化過程中,究竟哪些激素發(fā)揮決定性作用,目前雖有一些線索,但缺乏直接的遺傳證據(jù)。

        為解答上述問題,有必要進(jìn)一步系統(tǒng)地篩選糊粉層發(fā)育缺陷突變體。水稻作為一個(gè)優(yōu)異的模式作物,通過開發(fā)高通量篩選方法獲得更多遺傳材料,將為我們深刻理解植物糊粉層發(fā)育和分化的調(diào)控機(jī)制奠定基礎(chǔ)。另一方面,利用自然變異材料定位和克隆糊粉層相關(guān)性狀調(diào)控基因和QTL,將為谷物營(yíng)養(yǎng)品質(zhì)改良提供更為有效的基因資源。

        [1] 張娟, 牛百曉, 鄂志國(guó), 陳忱. 水稻胚乳發(fā)育遺傳調(diào)控的研究進(jìn)展[J]. 中國(guó)水稻科學(xué), 2021, 35(4): 326-341.

        Zhang J, Niu B, E Z, Chen C. Towards understanding the genetic regulations of endosperm development in rice[J]., 2021, 35(4): 326-341. (in Chinese with English abstract)

        [2] Becraft P W, Yi G. Regulation of aleurone development in cereal grains[J]., 2011, 62(5): 1669-1675.

        [3] Olsen O A. Nuclear endosperm development in cereals and[J]., 2004, 16 (Suppl): S214-S227.

        [4] Becraft P W, Stinard P S, McCarty D R. CRINKLY4: A TNFR-like receptor kinase involved in maize epidermal differentiation[J]., 1996, 273(5280): 1406-1409.

        [5] Becraft P W, Li K, Dey N, Asuncion-Crabb Y. The maize dek1 gene functions in embryonic pattern formation and cell fate specification[J].(Cambridge, England), 2002, 129(22): 5217-5225.

        [6] He Y, Yang Q, Yang J, Wang Y-F, Sun X, Wang S, Qi W, Ma Z, Song R.is a mutant allele ofthat affects aleurone development and starch synthesis in maize[J]., 2021, 218(2): iyab070.

        [7] Li D Q, Wu X B, Wang H F, Feng X, Yan S J, Wu S Y, Liu J X, Yao X F, Bai A N, Zhao H, Song X F, Guo L, Zhang S Y, Liu C M. Defective mitochondrial function by mutation in THICK ALEURONE 1 encoding a mitochondrion-targeted single-stranded DNA-binding protein leads to increased aleurone cell layers and improved nutrition in rice[J]., 2021, 14(8): 1343-1361.

        [8] Liu J, Wu X, Yao X, Yu R, Larkin P J, Liu C M. Mutations in the DNA demethylase OsROS1 result in a thickened aleurone and improved nutritional value in rice grains[J]., 2018, 115(44): 11327-11332.

        [9] Gontarek B C, Becraft P W. Aleurone[A]// Larkins B A. Maize Kernel Development[M]. CABI, 2017: 68-80.

        [10] McClintock B. The origin and behavior of mutable loci in maize[J]., 1950, 36(6): 344-355.

        [11] Brink R A. A genetic change associated with the r locus in maize which is directed and potentially reversible[J]., 1956, 41(6): 872-889.

        [12] Kermicle J L. Dependence of the R-mottled aleurone phenotype in maize on mode of sexual transmission[J]., 1970, 66(1): 69-85.

        [13] Bethke P C, Schuurink R, Jones R L. Hormonal signalling in cereal aleurone[J]., 1997, 48(312): 1337-1356.

        [14] Yamaguchi J, Itoh S, Saitoh T, Ikeda A, Tashiro T, Nagato Y. Characterization of β-amylase and its deficiency in various rice cultivars[J]., 1999, 98(1): 32-38.

        [15] Ritchie S, Swanson S J, Gilroy S. Physiology of the aleurone layer and starchy endosperm during grain development and early seedling growth: New insights from cell and molecular biology[J]., 2000, 10(3): 193-212.

        [16] Aubert M K, Coventry S, Shirley N J, Betts N S, Würschum T, Burton R A, Tucker M R. Differences in hydrolytic enzyme activity accompany natural variation in mature aleurone morphology in barley (Hordeum vulgare L.)[J]., 2018, 8(1): 1-14.

        [17] Meziani S, Nadaud I, Tasleem-Tahir A, Nurit E, Benguella R, Branlard G. Wheat aleurone layer: A site enriched with nutrients and bioactive molecules with potential nutritional opportunities for breeding[J]., 2021, 100: 103225.

        [18] Yu R, Wu X, Liu J, Howitt C A, Bird A R, Liu C M, Larkin P J. Rice with multilayer aleurone: A larger sink for multiple micronutrients[J]., 2021, 14(1): 102.

        [19] Wu J, Chen J, Liu W, Liu C, Zhong Y, Luo D, Li Z, Guo X. Effects of aleurone layer on rice cooking: A histological investigation[J]., 2016, 191: 28-35.

        [20] Olsen O A. ENDOSPERM DEVELOPMENT: Cellularization and cell fate specification[J]., 2001, 52(1): 233-267.

        [21] Wu X, Liu J, Li D, Liu C M. Rice caryopsis development. Ⅱ: Dynamic changes in the endosperm[J]., 2016, 58(9): 786-798.

        [22] Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B I, Onishi A, Miyagawa H, Katoh E. Loss of function of the IAA-glucose hydrolase geneenhances rice grain weight and increases yield[J]., 2013, 45(6): 707-711.

        [23] 王忠, 顧蘊(yùn)潔, 鄭彥坤, 王慧慧. 水稻胚乳細(xì)胞發(fā)育的結(jié)構(gòu)觀察及其礦質(zhì)元素[J]. 中國(guó)水稻科學(xué), 2012, 26(6): 693–705.

        Wang Z, Gu Y J, Zheng Y K, Wang H H. Structure observation of rice endosperm cell development and its mineral element analysis[J]., 2012, 26(6): 693-705. (in Chinese with English abstract)

        [24] Hoshikawa K. Studies on the development of endosperm in rice?: 4. Differentiation and development of the aleuron layer[J]., 1967, 36(3): 216-220.

        [25] Khin O M, Sato M, Li-Tao T, Matsue Y, Yoshimura A, Mochizuki T. Close association between aleurone traits and lipid contents of rice grains observed in widely different genetic resources of[J]., 2013, 16(1): 41-49.

        [26] Kim M S, Ko S R, Le V T, Jee M G, Jung Y J, Kang K K, Cho Y G. Development of snp markers from GWAS for selecting seed coat and aleurone layers in brown rice (L.)[J]., 2022, 13(10): 1805.

        [27] Wolf M J, Cutler H C, Zuber M S, Khoo U. Maize with multilayer aleurone of high protein content[J]., 1972, 12(4): 440-442.

        [28] Olsen O A. The Modular control of cereal endosperm development[J]., 2020, 25(3): 279-290.

        [29] Iwai T, Takahashi M, Oda K, Terada Y, Yoshida K T. Dynamic changes in the distribution of minerals in relation to phytic acid accumulation during rice seed development[J]., 2012, 160(4): 2007-2014.

        [30] Perera I, Seneweera S, Hirotsu N. Manipulating the phytic acid content of rice grain toward improving micronutrient bioavailability[J]., 2018, 11(1): 4.

        [31] 鄭巖, 李江, 楊鵬, 陳惠萍. 水稻糊粉層PCD過程細(xì)胞形態(tài)觀察[J]. 熱帶作物學(xué)報(bào), 2016, 37(2): 298-303.

        Zheng Y, Li J, Yang P, Chen H P. The cell morphology of rice aleurone layers during programmed cell death[J]., 2016, 37(2): 298-303. (in Chinese with English abstract)

        [32] Becraft P W, Asuncion-Crabb Y. Positional cues specify and maitain aleurone cell fate in maize endosperm development[J]., 2000, 127(18): 4039-4048.

        [33] Gruis D, Guo H, Selinger D, Tian Q, Olsen O A. Surface position, not signaling from surrounding maternal tissues, specifies aleurone epidermal cell fate in maize[J]., 2006, 141(3): 898-909.

        [34] Geisler-Lee J, Gallie D R. Aleurone cell identity is suppressed following connation in maize kernels[J]., 2005, 139(1): 204-212.

        [35] Lid S E, Gruis D, Jung R, Lorentzen J A, Ananiev E, Chamberlin M, Niu X, Meeley R, Nichols S, Olsen O A. The defective kernel 1 (dek1) gene required for aleurone cell development in the endosperm of maize grains encodes a membrane protein of the calpain gene superfamily[J]., 2002, 99(8): 5460-5465.

        [36] 王忠, 顧蘊(yùn)潔, 李衛(wèi)芳, 黃山, 李克武. 水稻糊粉層的形成及其在萌發(fā)過程中的變化[J]. 揚(yáng)州大學(xué)學(xué)報(bào), 1998, 1(1): 19-24.

        Wang Z, Gu Y J, Li W F, Huang S, Li K W. Formation of rice aleurone layer and its changes during germination[J]., 1998, 1(1): 19-24. (in Chinese with English abstract)

        [37] Penfield S, Rylott E L, Gilday A D, Graham S, Larson T R, Graham I A. Reserve mobilization in theendosperm fuels hypocotyl elongation in the dark, is independent of abscisic acid, and requires phosphoenolpyruvate carboxykinase1[J]., 2004, 16(10): 2705-2718.

        [38] Eastmond P J, Germain V, Lange P R, Bryce J H, Smith S M, Graham I A. Postgerminative growth and lipid catabolism in oilseeds lacking the glyoxylate cycle[J]., 2000, 97(10): 5669-5674.

        [39] Footitt S. Control of germination and lipid mobilization by COMATOSE, thehomologue of human ALDP[J]., 2002, 21(12): 2912-2922.

        [40] Takafuji Y, Shimizu-Sato S, Ta K N, Suzuki T, Nosaka-Takahashi M, Oiwa T, Kimura W, Katoh H, Fukai M, Takeda S, Sato Y, Hattori T. High-resolution spatiotemporal transcriptome analyses during cellularization of rice endosperm unveil the earliest gene regulation critical for aleurone and starchy endosperm cell fate specification[J]., 2021, 134(5): 1061-1081.

        [41] Gontarek B C, Neelakandan A K, Wu H, Becraft P W. NKD transcription factors are central regulators of maize endosperm development[J]., 2016, 28(12): 2916-2936.

        [42] Bethke P C, Libourel I G L, Aoyama N, Chung Y Y, Still D W, Jones R L. Thealeurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy[J]., 2007, 143(3): 1173-1188.

        [43] Gehring M. Genomic imprinting: insights from plants[J]., 2013, 47: 187-208.

        [44] K?hler C, Wolff P, Spillane C. Epigenetic mechanisms underlying genomic imprinting in plants[J]., 2012, 63(1): 331-352.

        [45] Piskurewicz U, Iwasaki M, Susaki D, Megies C, Kinoshita T, Lopez-Molina L. Dormancy-specific imprinting underlies maternal inheritance of seed dormancy in[J]., 2016, 5: 1-23.

        [46] Iwasaki M, Hyv?rinen L, Piskurewicz U, Lopez-Molina L. Non-canonical RNA-directed DNA methylation participates in maternal and environmental control of seed dormancy[J]., 2019, 8: 1-17.

        [47] Sato H, Santos-González J, K?hler C. Combinations of maternal-specific repressive epigenetic marks in the endosperm control seed dormancy[J]., 2021, 10: e64593.

        [48] Sato H, K?hler C. Genomic imprinting regulates establishment and release of seed dormancy[J]., 2022, 69: 102264.

        [49] Kaneko M, Itoh H, Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Ashikari M, Matsuoka M. Where do gibberellin biosynthesis and gibberellin signaling occur in rice plants?[J]., 2003, 35(1): 104-115.

        [50] Xiong M, Yu J, Wang J, Gao Q, Huang L, Chen C, Zhang C, Fan X, Zhao D, Liu Q Q, Li Q F. Brassinosteroids regulate rice seed germination through the BZR1-RAmy3D transcriptional module[J]., 2022, 189(1): 402-418.

        [51] Liu J, Wu M, Liu C. Cereal Endosperms: Development and storage product accumulation[J]., 2022, 73(1): 255-291.

        [52] Olsen L T, Divon H H, Al R, Fosnes K, Lid S E, Opsahl-Sorteberg H G. The() mutant: Effects on barley seed development and,, andgene regulation[J]., 2008, 59(13): 3753-3765.

        [53] Pu C X, Ma Y, Wang J, Zhang Y C, Jiao X W, Hu Y H, Wang L L, Zhu Z G, Sun D, Sun Y. Crinkly4 receptor-like kinase is required to maintain the interlocking of the palea and lemma, and fertility in rice, by promoting epidermal cell differentiation[J]., 2012, 70(6): 940-953.

        [54] Hibara K, Obara M, Hayashida E, Abe M, Ishimaru T, Satoh H, Itoh J, Nagato Y. Thegene functions in leaf and embryonic pattern formation in rice[J]., 2009, 334(2): 345-354.

        [55] He Y, Yang Q, Yang J, Wang Y F, Sun X, Wang S, Qi W, Ma Z, Song R. shrunken4 is a mutant allele of ZmYSL2 that affects aleurone development and starch synthesis in maize[J]., 2021, 218(2): iyab070.

        [56] Zang J, Huo Y, Liu J, Zhang H, Liu J, Chen H. Maize YSL2 is required for iron distribution and development in kernels[J]., 2020, 71(19): 5896-5910.

        [57] Chao Z, Chen Y, Ji C, Wang Y, Huang X, Zhang C, Yang J, Song T, Wu J, Guo L, Liu C, Han M, Wu Y, Yan J, Chao D. A genome-wide association study identifies a transporter for zinc uploading to maize kernels[J]., 2023, 24(1): 1-19.

        [58] Shen B, Li C, Min Z, Meeley R B, Tarczynski M C, Olsen O A. Sal1 determines the number of aleurone cell layers in maize endosperm and encodes a class E vacuolar sorting protein[J]., 2003, 100(11): 6552-6557.

        [59] Tian Q, Olsen L, Sun B, Lid S E, Brown R C, Lemmon B E, Fosnes K, Olsen O A. Subcellular localization and functional domain studies ofin maize andsuggest a model for aleurone cell fate specification involvingand[J]., 2007, 19(10): 3127-3145.

        [60] Yi G, Lauter A M, Paul Scott M, Becraft P W. The thick aleurone1 mutant defines a negative regulation of maize aleurone cell fate that functions downstream of defective kernel[J]., 2011, 156(4): 1826-1836.

        [61] Wu H, Gontarek B C, Yi G, Beall B D, Neelakandan A K, Adhikari B, Chen R, McCarty D R, Severin A J, Becraft P W. The thick aleurone1 gene encodes a NOT1 subunit of the CCR4-NOT complex and regulates cell patterning in endosperm[J]., 2020, 184(2): 960-972.

        [62] Yi G, Neelakandan A K, Gontarek B C, Vollbrecht E, Becraft P W. The naked endosperm genes encode duplicate INDETERMINATE domain transcription factors required for maize endosperm cell patterning and differentiation[J]., 2015, 167(2): 443-456.

        [63] Qi X, Li S, Zhu Y, Zhao Q, Zhu D, Yu J. ZmDof3, a maize endosperm-specific Dof protein gene, regulates starch accumulation and aleurone development in maize endosperm[J]., 2017, 93(1-2): 7-20.

        [64] Kawakatsu T, Yamamoto M P, Touno S M, Yasuda H, Takaiwa F. Compensation and interaction between RISBZ1 and RPBF during grain filling in rice[J]., 2009, 59(6): 908-920.

        [65] Huang X, Peng X, Sun M X. OsGCD1 is essential for rice fertility and required for embryo dorsal-ventral pattern formation and endosperm development[J]., 2017, 215(3): 1039-1058.

        [66] Wang X, Zhou W, Lu Z, Ouyang Y, Chol S O, Yao J. A lipid transfer protein, OsLTPL36, is essential for seed development and seed quality in rice[J]., 2015, 239: 200-208.

        [67] Kim Y J, Yeu S Y, Park B S, Koh H-J, Song J T, Seo H S. Protein disulfide isomerase-like protein 1-1 controls endosperm development through regulation of the amount and composition of seed proteins in rice[J]., 2012, 7(9): e44493.

        [68] Achary V M M, Reddy M K. CRISPR-Cas9 mediated mutation in GRAIN WIDTH and WEIGHT2 () locus improves aleurone layer and grain nutritional quality in rice[J]., 2021, 11(1): 21941.

        [69] Lid S E, Al R H, Krekling T, Meeley R B, Ranch J, Opsahl-Ferstad H G, Olsen O A. The maize disorganized aleurone layer 1 and 2 [dil1, dil2] mutants lack control of the mitotic division plane in the aleurone layer of developing endosperm[J]., 2004, 218(3): 370-378.

        [70] Lewis D, Bacic A, Chandler P M, Newbigin E J. Aberrant cell expansion in the elongation mutants of barley[J]., 2009, 50(3): 554-571.

        [71] Costa L M, Gutierrez-Marcos J F, Brutnell T P, Greenland A J, Dickinson H G. The() mutation disrupts nuclear and cell division in the developing maize seed causing alterations in endosperm cell fate and tissue differentiation[J]., 2003, 130(20): 5009-5017.

        [72] Kessler S, Seiki S, Sinha N. Xcl1 causes delayed oblique periclinal cell divisions in developing maize leaves, leading to cellular differentiation by lineage instead of position[J]., 2002, 129(8): 1859-1869.

        [73] Suzuki M, Latshaw S, Sato Y, Settles A M, Koch K E, Hannah L C, Kojima M, Sakakibara H, McCarty D R. The maizelocus, encoding a putative-Like peptidase, regulates abscisic acid accumulation and coordinates embryo and endosperm development[J]., 2008, 146(3): 1193-1206.

        [74] Qin P, Zhang G, Hu B, Wu J, Chen W, Ren Z, Liu Y, Xie J, Yuan H, Tu B, Ma B, Wang Y, Ye L, Li L, Xiang C, Li S. Leaf-derived ABA regulates rice seed development via a transporter-mediated and temperature-sensitive mechanism[J]., 2021, 7(3): eabc8873.

        [75] Xu X, E Z, Zhang D, Yun Q, Zhou Y, Niu B, Chen C. OsYUC11-mediated auxin biosynthesis is essential for endosperm development of rice[J]., 2021, 185(3): 934-950.

        [76] Batista R A, Figueiredo D D, Santos-González J, K?hler C. Auxin regulates endosperm cellularization in Arabidopsis[J]., 2019, 33(7-8): 466-476.

        [77] Figueiredo D D, Batista R A, Roszak P J, K?hler C. Auxin production couples endosperm development to fertilization[J]., 2015, 1: 15184.

        [78] Forestan C, Meda S, Varotto S. ZmPIN1-mediated auxin transport is related to cellular differentiation during maize embryogenesis and endosperm development[J]., 2010, 152(3): 1373-1390.

        [79] Basunia M A, Nonhebel H M, Backhouse D, McMillan M. Localised expression ofsuggests a key role for auxin in regulating development of the dorsal aleurone of early rice grains[J]., 2021, 254(2): 40.

        [80] Wu H, Becraft P W. Comparative transcriptomics and network analysis define gene coexpression modules that control maize aleurone development and auxin signaling[J]., 2021, 14(3): 1-14.

        [81] Chen W, Wang W, Lyu Y, Wu Y, Huang P, Hu S, Wei X, Jiao G, Shao G, Luo J. OsVP1 activates Sdr4 expression to control rice seed dormancy via the ABA signaling pathway[J]., 2021, 9(1): 68-78.

        [82] Miyoshi K, Kagaya Y, Ogawa Y, Nagato Y, Hattori T. Temporal and spatial expression pattern of theandgenes during seed development in rice[J].&, 2002, 43(3): 307-713.

        [83] Cao X, Costa L M, Biderre-Petit C, Kbhaya B, Dey N, Perez P, McCarty D R, Gutierrez-Marcos J F, Becraft P W. Abscisic acid and stress signals induce Viviparous1 expression in seed and vegetative tissues of maize[J]., 2007, 143(2): 720-731.

        [84] Wang X S, Zhu H B, Jin G L, Liu H L, Wu W R, Zhu J. Genome-scale identification and analysis ofgenes in rice (L.)[J]., 2007, 172(2): 414-420.

        [85] Zheng Y, Zhang H, Deng X, Liu J, Chen H. The relationship between vacuolation and initiation of PCD in rice () aleurone cells[J]., 2017, 7(1): 41245.

        [86] [86] Zhang H, Xiao Y, Deng X, Feng H, Li Z, Zhang L, Chen H. OsVPE3 mediates GA-induced programmed cell death in rice aleurone layers via interacting with actin microfilaments[J]., 2020, 13(1): 22.

        [87] Laskowski W, Górska-Warsewicz H, Rejman K, Czeczotko M, Zwolińska J. How Important are cereals and cereal products in the average polish diet?[J]., 2019, 11(3): 679.

        [88] Juliano B O, Tua?o A P P. Gross structure and composition of the rice grain[A]//Rice[M]. Elsevier, 2019(1): 31-53.

        [89] Lebert L, Buche F, Sorin A, Aussenac T. The Wheat Aleurone layer: Optimisation of its benefits and application to bakery products[J]., 2022, 11(22): 3552.

        [90] Bhattacharya S. Chemical and Nutritional Properties of Brown Rice[A] // Manickavasagan A, Santhakumar C, Venkatachalapathy N. Brown Rice[M]. Cham: Springer International Publishing, 2017: 93-110.

        [91] Yang Y, Guo M, Sun S, Zou Y, Yin S, Liu Y, Tang S, Gu M, Yang Z, Yan C. Natural variation ofis involved in grain protein content regulation in rice[J]., 2019, 10(1): 1949.

        [92] Hoshikawa K. Studies on the development of endosperm in rice?: 5. The number of aleuron cell layers, its varietal difference and the influence of environmental factors[J]., 1967, 36(3): 221-227.

        [93] Khin O M, Matsue Y, Matsuo R, Yamagata Y, Yoshimura A, Mochizuki T. Identification of QTL for aleurone traits contributing to lipid content of rice (L.)[J]., 2012, 234(Extra issue): 126-127.

        [94] Jestin L, Ravel C, Auroy S, Laubin B, Perretant M R, Pont C, Charmet G. Inheritance of the number and thickness of cell layers in barley aleurone tissue (L.): An approach using F2-F3progeny[J]., 2008, 116(7): 991-1002.

        [95] Nagato K, Ebata M. Effects of temperature in the ripening periods upon the development and qualities of lowland rice kernels[J]., 1960, 28(3): 275-278.

        [96] Nagato K, Ebata M. Effects of high temperature during ripening period on the development and the quality of rice kernels[J]., 1965, 34(1): 59-66.

        [97] Nagato K, Ebata M, Kishi Y. Effects of high temperature during ripening period on the qualities of indica rice[J]., 1966, 35(3-4): 239-244.

        [98] Nguyen T M P, Abiko T, Nakamura T, Mochizuki T. Development and application of a plate method for visualizing aleurone layers in mature rice grains[J]., 2022, 25(2): 260-267.

        Mechanisms Behind Aleurone Development in Cereals and Its Application in Breeding

        WANG Tengjiao, CHEN Chen*

        (Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China;*Corresponding author, email: chenchen@yzu.edu.cn)

        The outmost layer of endosperm cells differentiates into alleurone cells during seed development, which distinguish themselves from the inner endosperm cells morphologically and physiologically. For example, the aleurone layer is rich in proteins, lipids, vitamins, dietary fibers and mineral elements. The aleurone cells secrete amylase and protease for hydrolyzing reserves accumulated in the endosperm. Several key genes involved in the regulation of aleurone cell differentiation and development have been identified with the mutants showing aleurone defects, deepening our understanding of the aleurone cell fate determination. It has been proposed that increasing the number of aleurone layers may help improve nutritional quality of cereals. In this review, taking rice as an example, we summarized the differentiation and development regulations of aleurone in cereals. We also discussed the potentials, issues and possible solutions for breeding high-nutrition cereals by improving the aleurone-related traits.

        aleurone layer; aleurone cell; cell differentiation; genetic regulation; nutrition improvement

        10.16819/j.1001-7216.2023.230105

        2023-01-10;

        2023-04-07。

        國(guó)家自然科學(xué)基金資助項(xiàng)目(32170344);江蘇省杰出青年基金資助項(xiàng)目(BK20180047);江蘇省“六大人才高峰”高層次人才項(xiàng)目(NY-142)。

        猜你喜歡
        水稻
        水稻和菊花
        幼兒100(2023年39期)2023-10-23 11:36:32
        什么是海水稻
        機(jī)插秧育苗專用肥——機(jī)插水稻育苗基質(zhì)
        有了這種合成酶 水稻可以耐鹽了
        水稻種植60天就能收獲啦
        軍事文摘(2021年22期)2021-11-26 00:43:51
        油菜可以像水稻一樣實(shí)現(xiàn)機(jī)插
        中國(guó)“水稻之父”的別樣人生
        金橋(2021年7期)2021-07-22 01:55:38
        海水稻產(chǎn)量測(cè)評(píng)平均產(chǎn)量逐年遞增
        一季水稻
        文苑(2020年6期)2020-06-22 08:41:52
        水稻花
        文苑(2019年22期)2019-12-07 05:29:00
        国产无遮挡又爽又刺激的视频老师 | av中文字幕不卡无码| 人妖熟女少妇人妖少妇| 国产麻豆成人精品av| 精品粉嫩av一区二区三区| 被三个男人绑着躁我好爽视频| 精品一区二区三区免费播放| 久久亚洲国产精品成人av秋霞 | 一道之本加勒比热东京| 亚洲成av人片在线观看| 天天夜碰日日摸日日澡| 永久国产盗摄一区二区色欲| 日本老年人精品久久中文字幕| 久久最黄性生活又爽又黄特级片| 在线视频国产91自拍| 久久亚洲精品成人无码| 97se亚洲精品一区| 亚洲夜夜骑| 谁有在线观看av中文| 日本一二三区在线不卡| 超级乱淫片国语对白免费视频| 国产真实强被迫伦姧女在线观看 | 国产猛男猛女超爽免费av| 国产欧美精品aaaaaa片| 天堂新版在线资源| 99热成人精品热久久66| 久久亚洲精彩无码天堂 | 精品人妻人人做人人爽夜夜爽| 一区一级三级在线观看| 白色橄榄树在线阅读免费| 婷婷色精品一区二区激情| 无套中出丰满人妻无码| 国产99久久久久久免费看| 国产一区二区精品久久凹凸| 日本人妻高清免费v片| 亚洲综合极品美女av| 国产乱色精品成人免费视频| 亚洲综合伦理| 国产一区二区三区日韩在线观看| 影音先锋中文字幕无码资源站| 国产精品日韩欧美一区二区区|