亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Interfacial photoconductivity effect of type-I and type-II Sb2Se3/Si heterojunctions for THz wave modulation

        2023-12-02 09:37:36XueQinCao曹雪芹YuanYuanHuang黃媛媛YaYanXi席亞妍ZhenLei雷珍JingWang王靜HaoNanLiu劉昊楠MingJianShi史明堅(jiān)TaoTaoHan韓濤濤MengEnZhang張蒙恩andXinLongXu徐新龍
        Chinese Physics B 2023年11期
        關(guān)鍵詞:王靜曹雪芹

        Xue-Qin Cao(曹雪芹), Yuan-Yuan Huang(黃媛媛), Ya-Yan Xi(席亞妍), Zhen Lei(雷珍), Jing Wang(王靜),Hao-Nan Liu(劉昊楠), Ming-Jian Shi(史明堅(jiān)), Tao-Tao Han(韓濤濤),Meng-En Zhang(張蒙恩), and Xin-Long Xu(徐新龍)

        Shaanxi Joint Laboratory of Graphene,State Key Laboratory Incubation Base of Photoelectric Technology and Functional Materials,

        International Collaborative Center on Photoelectric Technology,and Nano Functional Materials,Institute of Photonics&Photon-Technology,Northwest University,Xi’an 710069,China

        Keywords: photoconductivity,Sb2Se3/Si heterojunctions,THz-TDS,Drude model

        1.Introduction

        Nobel Prize laureate H.Kroemer once said‘the interface is the device’,since the interface controls the charge transfer,the distribution of quasi-particles and so forth.[1,2]Currently,most studies of interfacial effects and applications usually concentrate on electrical conductivity at interfaces.[3]However,photovoltaic devices and optoelectronic devices are generally utilized under light irradiation, which can be described by the photoconductivity.[4]Hence,a deep comprehensive understanding of the photoconductivity at the interface is necessary to improve the performance of optoelectronic devices.Semiconductor interfaces include three types of heterojunctions according to semiconductor band alignment:[1]type-I,straddling gap; type-II, staggered gap; type-III, broken gap.Transfer and separation of electron–hole pairs between materials are allowed to occur in type-I and type-II heterojunctions, while these processes are hindered in type-III heterojunctions due to the absence of overlapping band gaps.[5,6]Therefore,the study of type-I and type-II heterojunctions currently occupies a key position in the field of optoelectronics.

        The photoconductivity can be reflected by the photocurrent density, but this method introduces surface impurities and a parasitic effect on the measurement due to the external electrodes.[7,8]Terahertz(THz)time-domain spectroscopy(THz-TDS)provides a non-contact, sensitive and direct measurement of the carrier dynamics,refractive index,carrier conductivity, carrier density and, especially, the interface photoconductivity of semiconductors.[9–11]Since the photoconductivity of materials affects the transmission of THz waves, the THz wave modulation performance is proportional to the photoconductivity at the interface.As such, the photoconductivity of BiFeO3/Si is calculated to be 1.2×104S·m-1and BiFeO3/Si demonstrates a modulation depth of 91.13%.[12]Under 1 W·cm-2illumination,the photoconductivity and photogenerated carrier density of TaS2/Si can reach 380 S·m-1and 5.77×1028cm-3, respectively.[13]However, the mechanism of the influence of type-I and type-II heterojunctions on the photoconductivity and photocarrier density is still unknown.

        Antimony selenide(Sb2Se3)possesses a wide adjustable bandgap spanning the range 1.12 eV–1.98 eV,[14,15]allowing for the formation of type-I and type-II heterojunctions with Si.Sb2Se3is nontoxic and inexpensive,[16]and exhibits excellent physical properties such as intrinsic p-type conductivity,[17]a high absorption coefficient(~105cm-1),[18]an excellent carrier density (~1015cm-3)[19]and fast electron trapping.[20]These characteristics make Sb2Se3a promising material for use in solar cells[21–23]and photodetectors.[24,25]In particular,Sb2Se3presents an intriguing interface photoresponse,such as a rise time of 86μs and a fall time of 96μs in type-II Sb2Se3/Si heterojunctions.[25]However, it is still unclear of the interfacial photoconductivity effect between the type-I and type-II Sb2Se3/Si heterojunctions to the THz wave modulation.

        Herein,we have prepared 173 nm Sb2Se3/Si(type-I heterojunction)and 90 nm Sb2Se3/Si(type-II heterojunction)and investigated their photoconductivity and photocarrier density via THz-TDS and the Drude model.For THz wave modulation, 173 nm Sb2Se3/Si and 90 nm Sb2Se3/Si demonstrate modulation depths of 49.4% and 62.0%, respectively.Moreover, the type-II heterojunction exhibits a higher photoconductivity and photocarrier density at the interface than the type-I heterojunction.This is because carrier separation is enhanced at the type-II heterojunction interface whereas carrier recombination is enhanced at the type-I heterojunction interface.This work proposes THz-TDS as an effective tool for studying photoconductivity and provides a potential interfacial engineering method to enhance the THz modulation performance.

        2.Results and discussion

        We prepared the Sb2Se3/Si heterojunctions by the physical vapor deposition method.The bandgaps of the 173 nm Sb2Se3and 90 nm Sb2Se3are 1.5 eV and 1.17 eV, respectively.This finding was also reported by Mamtaet al.[14]and Ghoshet al.,[15]indicating that the bandgap decreases as the thickness of Sb2Se3decreases.Detailed descriptions of the sample characterization and experimental setup are given in the supplementary material.Figure 1(a)shows the THz timedomain transmission of the bare Si under continuous wave(CW) laser excitation from 0 mW to 500 mW.It is obvious that the THz amplitudes decrease after passing through the bare Si with increase in CW laser power.This is caused by the change in photoconductivity of the Si under CW laser excitation,[26,27]which further increases the absorption and reflection of the THz wave.The amplitude of THz transmission begins to saturate with CW laser power after exceeding 300 mW.Figures 1(b)and 1(c)present the THz wave transmission of 173 nm Sb2Se3/Si and 90 nm-Sb2Se3/Si under tunable CW laser power.Both heterojunctions present obvious THz wave modulation under CW laser excitation.On the contrary,the THz wave transmission of the bare sapphire substrate and the Sb2Se3/sapphire are both invariable with increasing CW laser power from 0 mW to 500 mW, indicating no effect on THz amplitude modulation,as shown in Figs.S3(a)and S3(b).These results suggest that the photocarriers are not generated in the insulating sapphire substrate under 405 nm CW laser excitation,[28]and the THz absorption of the Sb2Se3film is negligible.As for pure Sb2Se3, photocarriers are generated under above-band-gap(405 nm, 3.06 eV)CW excitation, but the carrier lifetime in Sb2Se3is very short (~35 ps), which further results in negligible photoconductivity change in pure Sb2Se3.[29]Based on above analysis,the THz amplitude modulation is ascribed to the interface response of the Sb2Se3/Si heterojunctions.

        In order to further compare the modulation performance of the bare Si, 173 nm Sb2Se3/Si and 90 nm Sb2Se3/Si, we extracted the peak-to-valley values of the THz time-domain amplitude to calculate the modulation depth of the THz wave transmission.We define modulation depth aswhere theTpumpandT0are the THz transmission with and without the CW optical pump, respectively.As can be seen in Figs.2(a)and 2(b),the peak-to-valley values and the modulation depths of the 173 nm Sb2Se3/Si and 90 nm Sb2Se3/Si both show linear dependences on the CW pump power,while the peak-to-valley value and the modulation depth of the bare Si show a saturation dependence on the CW laser power and saturate at 300 mW.For bare Si, this saturation is due to the electrostatic field screening formed by the accumulation of holes on the surface.[30,31]According to the surface band bending of bare Si shown in Fig.S4, under CW illumination the electrons and holes are separated by a surface built-in electric field, then the electrons move into the Si and the holes move towards the surface.This movement consequently enhances the photocarrier density and THz absorption.The bare Si, 173 nm Sb2Se3/Si and 90 nm Sb2Se3/Si present modulation depths of 49.3%, 49.4% and 62.0%, respectively.The 90 nm Sb2Se3/Si heterojunction has a larger modulation depth than bare Si.This can be explained by the transport of photogenerated carriers at the Sb2Se3/Si interface,which leads to the enhanced modulation of THz amplitude in the Sb2Se3/Si heterojunction.Since the Sb2Se3layer will absorb the incident light when passing through Sb2Se3,the transmitted optical power at the Sb2Se3/Si interface is low and the small number of photocarriers are unable to form a large built-in interfacial field under a low excitation power.When the excitation power increases to 500 mW, according to the Beer–Lambert law,I=I0e-α0l[whereI0, e,α0andlare intensity of laser excitation, the natural index, absorption coefficient (~0.3 @405 nm[32])and sample thickness,respectively],the transmitted optical power at the Sb2Se3/Si interface is calculated to be as high as~450 mW.Hence,a large built-in electric field can be formed at the interface,which accelerates the separation of photocarriers and prolongs the photocarrier lifetime,resulting in a significant enhancement of THz modulation.

        Fig.2.Transmitted THz time-domain amplitudes of (a) peak-to-valley value and (b) modulation depth of bare Si (purple), 173 nm Sb2Se3/Si(green), and 90 nm Sb2Se3/Si (orange) with CW laser power ranging from 0 mW to 500 mW.Band alignment of (c) 173 nm Sb2Se3/Si and(d)90 nm Sb2Se3/Si under CW light illumination.

        Based on the above analysis, the THz amplitude modulation is ascribed to the interface response of the Sb2Se3/Si heterojunctions according to their band alignments,as we will now discuss.Based on the bandgap of Sb2Se3with different thicknesses (Figs.S2(b) and S2(d)), 173 nm Sb2Se3/Si and 90 nm Sb2Se3/Si form type-I and type-II heterojunctions, respectively.[14,15]As shown in Fig.2(c), for 173 nm Sb2Se3/Si,the electrons and holes would both transport to the Si due to the band alignment of the type-I heterojunction.[1]On the one hand, the simultaneous transfer of electrons and holes to Si will enhance the recombination of photocarriers and reduce the concentration of photogenerated carriers.[33]This property presents promising potential in light-emitting devices.[1]On the other hand, the photoconductivity of Si is described as[13,34]σ=e(neμe+nhμh),where thenh(ne)andμh (μe) represent the carrier density and mobility of holes(electrons), respectively.Since Si is an n-type semiconductor, its photoconductivity is mainly determined by the electrons.For 173 nm Sb2Se3/Si, the mobility of the photocarrier in Si (1400 cm2·V-1·S-1) is larger than that in Sb2Se3(14.2 cm2·V-1·S-1),[35] and the effect of Sb2Se3 on the photoconductivity of the Sb2Se3/Si heterojunction is negligible.This is the reason why the THz wave modulation depth of 173 nm Sb2Se3/Si is comparable to that of bare Si under 500 mW excitation.For 90 nm Sb2Se3/Si, due to the band alignment of the type-II heterojunction,[1]the electrons would transport to the Si and the holes would transport to the Sb2Se3.This consequently forms a large internal electric field (Ed) at the 90 nm Sb2Se3/Si interface, which reduces the recombination of photogenerated carriers,thereby prolonging the carrier lifetime and increasing the carrier concentration.Hence,90 nm Sb2Se3/Si has a greater modulation depth than bare Si and 173 nm Sb2Se3/Si.

        Since the plasmon model[39]and quantum plasmon model[40]are suitable for micro/nanostructural materials with sizes smaller than the THz wavelength the damped harmonic oscillator and scattering rates should be considered.However, the size of continuous multilayer Sb2Se3films is larger than the THz wavelength,which makes the samples similar to bulk materials (e.g., bulk Si).The photoconductivity of bulk Si (above 0.4 THz) is also consistent with the Drude model.Thus, herein, we have utilized the Drude model to describe the photoconductivity as[12]σ(?ω)=(γω2p

        )/(π(ω2+γ2)),whereis the plasma frequency (N,e,ε0andmrepresent the photocarrier density, electronic charge,free-space permittivity and carrier effective mass, respectively)andγis the damping coefficient.Hence,the photocarrier density is described asN=σ(?ω)(ω2+γ2)ε0mπ/(γe2).Based on the Drude model and Figs.4(a)–4(c), the extracted photocarrier densities of bare Si,173 nm Sb2Se3/Si,and 90 nm Sb2Se3/Si increase significantly with increasing CW power,as shown in Figs.4(d)–4(f).Herein, the photoconductivity and photocarrier density are directly correlated,thus THz wave absorption will be enhanced under a high photocarrier density,resulting in a high modulation depth.According to the values at 1.8 THz,the photocarrier density of 173 nm Sb2Se3/Si(0.8×1015cm-3) is~1.1 times larger than that of bare Si(0.7×1015cm-3), while the photocarrier density of 90 nm Sb2Se3/Si(1.5×1015cm-3)is about twice that of bare Si under 500 mW excitation(see detailed comparison in Fig.S6(b)).These results demonstrate that a type-II heterojunction is better than a type-I heterojunction for THz modulation performance.The recombination between electrons and holes causes a slight change in photoconductivity for the type-I Sb2Se3/Si heterojunction, while the separation of electrons and holes leads to a great change in photoconductivity for the type-II Sb2Se3/Si heterojunction.[41]

        3.Conclusion

        In summary, we have prepared 173 nm Sb2Se3/Si (type-I)and 90 nm Sb2Se3/Si(type-II)heterojunctions based on the thickness-dependent-bandgap properties of Sb2Se3.Concerning their THz modulation performance,the modulation depths of bare Si,173 nm Sb2Se3/Si and 90 nm Sb2Se3/Si are 49.3%,49.4% and 62.0%, respectively.The photocarrier density of 90 nm Sb2Se3/Si (1.5×1015cm-3) is about twice that of bare Si, while the photocarrier density of 173 nm Sb2Se3/Si(0.8×1015cm-3) is~1.1 times higher than that of bare Si(0.7×1015cm-3).These results are ascribed to the interfacial photoconductivity effect, since the type-I heterojunction accelerates carrier recombination and the type-II heterojunction accelerates carrier separation.Our work deepens our understanding of interface physics that is beneficial for improving the photoelectronic response at the interface of photoelectronic devices,such as solar cells and photodetectors.We have also unveiled the interfacial photoconductivity effect, including the photocarrier lifetime, the separation of electrons and holes and the interfacial electric field,which could provide the physical basis for highly effective THz modulators.

        Acknowledgment

        Project supported by the National Natural Science Foundation of China (Grant Nos.12261141662, 12074311, and 12004310).

        猜你喜歡
        王靜曹雪芹
        The Management Methods And Thinking Of Personnel Files
        客聯(lián)(2021年9期)2021-11-07 19:21:33
        曹雪芹與史鐵生的生命哲學(xué)比較
        曹雪芹著《紅樓》醫(yī)藥百科
        曹雪芹南游金陵說再考辨
        The Development of Contemporary Oil Painting Art
        青年生活(2019年16期)2019-10-21 01:46:49
        敦誠的西園與曹雪芹
        王靜博士簡(jiǎn)介
        Income Inequality in Developing Countries
        商情(2017年17期)2017-06-10 12:27:58
        Let it Go隨它吧
        RIGIDITY OF COMPACT SURFACES IN HOMOGENEOUS 3-MANIFOLDS WITH CONSTANT MEAN CURVATURE?
        精品国产一区二区三区久久狼| 无码人妻一区二区三区在线视频| 99久热re在线精品99 6热视频| 亚洲av乱码专区国产乱码| 久久久亚洲一区二区三区| 五月开心婷婷六月综合| 国产美女在线精品免费观看| 久久天天躁狠狠躁夜夜av浪潮| 少妇私密会所按摩到高潮呻吟| 国产91成人精品亚洲精品| 亚洲成av人片在线天堂无| 丝袜美腿高清在线观看| 国产免费av片无码永久免费| 四虎影视亚洲精品| 在线亚洲免费精品视频| 国产精品黑丝美女啪啪啪| 在线不卡av片免费观看| 91产精品无码无套在线| 美女射精视频在线观看| 亚洲色偷偷偷综合网| 久久不见久久见免费视频7| 国产自精品在线| 亚洲日本中文字幕高清在线| 婷婷五月婷婷五月| 国产一区二区精品在线观看| 手机在线看片在线日韩av| 最新国产精品拍自在线观看| 好男人日本社区www| 国产精品国三级国产av| 三级日本理论在线观看| 人妻体体内射精一区二区| 四虎精品成人免费观看| 亚洲天堂av中文字幕| 97一期涩涩97片久久久久久久 | 曰批免费视频播放免费直播| 久久亚洲日本免费高清一区| 久久精品国产自产对白一区| 99久久精品免费观看国产| 高清国产日韩欧美| 精品无码人妻久久久一区二区三区| 午夜理论片日本中文在线|