魏冰陽 古德萬 曹雪梅 楊建軍
摘要:針對高減比準雙曲面(HRH)齒輪空間曲面極端扭轉、曲率修正難度大的問題,提出了刀具雙向修形點接觸齒面修正方法。利用ease-off曲面綜合法、齒面微分修形、拓撲結構精益化設計,實現(xiàn)了點接觸齒面嚙合質量的精確控制。建立了曲面綜合法齒面微分精益化設計計算流程,給出了輕修形、內對角重修形、內對角輕修形三種拓撲結構設計形式;利用齒面承載接觸分析(LTCA)方法,對比了上述三種形式的齒面嚙合剛度、傳動誤差及載荷分布特性,其中內對角輕修形方式的接觸性能最好。進行了HRH齒輪動態(tài)嚙合性能試驗,齒面接觸斑點檢驗了點接觸齒面ease-off梯度特征。研究結果表明,實測振動特性變化規(guī)律與嚙合剛度、承載傳動誤差(LTE)理論仿真分析一致。齒輪在較寬轉速與載荷范圍運轉平穩(wěn),驗證了所設計HRH齒輪的齒形關系正確,微分精益化修形控制良好。
關鍵詞:高減比準雙曲面齒輪;微分幾何;拓撲修形;齒面承載接觸分析
中圖分類號:TH132
DOI:10.3969/j.issn.1004132X.2023.11.001
Differential Modification and Topological Structure Design of Complex Tooth
Surfaces by Surface Synthesis Method
WEI Bingyang1 GU Dewan1 CAO Xuemei1,2 YANG Jianjun1,2
1.School of Mechatronics Engineering,Henan University of Science and Technology,Luoyang,
Henan,471000
2.Collaborative Innovation Center of Machinery Equipment Advanced Manufacturing of Henan
Province,Luoyang,Henan,471000
Abstract: Aiming at the problems that the space surfaces of HRH gears were extremely torsional and it was difficult to correct the curvature, a tooth surface correction method of tool bidirectional trimming point contact was proposed. By using ease-off surface synthesis method, differential modification of tooth surfaces and lean topological structure design, precise control of meshing quality for point contact tooth surfaces was realized. The calculation flow of tooth surface differential lean design for surface synthesis method was established, and three topological structure design forms of light modification, inner diagonal heavy modification and inner diagonal light modification were given. The tooth surfaces meshing stiffnesses, transmission errors and load distribution characteristics of the three forms were compared by LTCA method, and the contact performance of the inner diagonal light modification was the best. The dynamic meshing performance tests of HRH gears were carried out, and ease-off gradient characteristics of point contact tooth surfaces were tested by tooth surface contact spots. The results show that the measured vibration characteristics are consistent with the mesh stiffness and loaded transmission error(LTE) theoretical simulation analysis. The gears run smoothly in a wide range of rotational speed and load, which proves that the tooth shape relation of the designed HRH gears is correct and the differential lean modification is well controlled.
Key words: high reduction hypoid(HRH) gear; differential geometry; topological modification; loaded tooth contact analysis(LTCA)
0 引言
高減比準雙曲面(high reduction hypoid,HRH)齒輪具有質量小、效率高的優(yōu)勢[1],在機電高密度集成動力傳輸領域具有廣闊的應用前景。但HRH齒輪齒面設計與性能控制涉及空間嚙合理論,曲面拓撲結構復雜,齒面加工設計與數(shù)值仿真難度極大。文獻[2-3]通過嚙合仿真研究了HRH齒輪的幾何演變規(guī)律,設計了三齒HRH齒輪,進行了初步的試驗驗證。但大多數(shù)研究目前尚局限于一般的螺旋錐齒輪(弧齒錐齒輪與準雙曲面齒輪)加工。文獻[4]通過引入數(shù)字化合成誤差概念,建立了含有齒形誤差和安裝誤差的螺旋錐齒輪的數(shù)字化真實齒面模型,給出了高精度數(shù)字化真實齒面的螺旋錐齒輪齒面接觸分析方法。文獻[5-6]研究了機械式銑齒機加工參數(shù)轉化為數(shù)控磨齒機運動參數(shù)的原理,給出了相應轉換關系表達式,進一步研究了齒形誤差的測量與補償方法。文獻[7]基于機床坐標高階萬能運動原理給出了齒面高階誤差的修形方法。文獻[8-9]給出了一種直接面向六軸CNC機床的齒面加工與誤差修正方法,通過運動軸的高階控制可以完成對齒面的高階修正。文獻[10]基于共軛齒廓修形原理,研究了弧齒錐齒輪高階傳動誤差的齒面修正與設計方法。文獻[11]通過對齒輪嚙合第三定律進行修正,提出了準雙曲面齒輪共軛齒面相對曲率的計算方法,利用ease-off拓撲和空載傳動誤差評價齒面間的共軛嚙合特性。文獻[12]研究了高階傳動誤差修形的弧齒錐齒輪與準雙曲面齒輪的齒面動態(tài)嚙合性能。文獻[13]研究了雙螺旋法雙面切削準雙曲面齒輪的加工方法,驗證了Levenberg-Marquard算法的齒面誤差修正精度。文獻[14]研究了五軸機床加工錐齒輪的方法,建立了機床參數(shù)與齒面誤差的靈敏度矩陣。文獻[15]分析了不同刀具截形對齒面誤差和嚙合性能的影響。文獻[16]針對端面銑削螺旋錐齒輪和準雙曲面齒輪的全工序法,提出了一種新的錐度收縮設計方法。文獻[17]建立了三面刃刀具滾切準雙曲面齒輪的數(shù)學模型,分析了刀具誤差對齒面嚙合特性的影響。
上述研究較好地解決了高性能螺旋錐齒輪齒面加工與嚙合質量控制問題。但針對HRH齒輪齒面高度扭轉、微分結構復雜的問題,上述方法難以適應。鑒于此,本課題組在文獻[18-19]中提出了曲面綜合法,通過全齒面的綜合來控制齒面拓撲修形的精度,本文將以此為基礎并綜合曲面分析、刀具修形的方法來解決HRH齒輪齒面高度扭轉、曲率修正難度大的問題,同時構建了精益化閉環(huán)設計流程,最后進行了嚙合質量檢驗、動態(tài)性能測試。
1 齒面拓撲結構設計
準雙曲面齒輪的大輪在多數(shù)情況下采用成形法加工,該方法導致大輪的齒廓曲率小,為彌補這一缺陷,與此相配的小輪必需采用刀傾或變性方法加工,以滿足齒面接觸點對綜合曲率的要求。但上述兩種方法對模數(shù)較小、齒面高度扭轉的HRH齒輪并不適用,因此,本文提出一種大輪刀具修形、小輪一般滾切法,在簡化加工計算的同時,達到點接觸齒面修正的目的。
1.1 刀具廓形
大輪刀具(刀盤或砂輪)采用二次拋物線修形(圖1)。設刀具曲紋坐標(θ,u),中點M0為修形基點,α0為壓力角。刀廓拋物線及其微分方程為
式中,a1為曲率參數(shù);u0為位置參數(shù)。
修形后,刀具壓力角α為參數(shù)u的函數(shù),可表示為
α(u)=α0+arctan w′(2)
大輪刀具曲面為圖1所示的旋轉曲面,其齒面坐標和法向量分別為
rt=(rucos θ,rusin θ,ucos α)T(3)
nt=(-cos αcos θ,cos αsin θ,sin α)T (4)
ru=r0-usin α
式中, r0為刀尖成形半徑。
將式(2)代入式(3)可得到修形后的刀具方程。成形法加工時,大輪廓形與刀具廓形一致,只是所表達的坐標系不同,通過坐標變換即可得到大輪方程。上述僅給出了工作面(左齒面)的方程,右齒面可由對稱性得到。
1.2 齒面設計
齒廓方向yH通過圖1所示的方式修形, 齒面縱向xL方向(圖2)依據(jù)大小輪刀具的不同成形曲率半徑來修正,這樣在齒面兩個方向上都會產生一定的曲率差,從而形成點接觸齒面。共軛齒面與修形齒面相當于兩個密切曲面(圖2a),其法線方向的誤差代表齒面修形后的失配量Zd,齒面失配量呈橢圓梯度擴展(圖2b),圖中,a、b分別 為接觸橢圓的長軸和短軸,q為齒面之間嚙合時的漸進方向夾角,λ為接觸橢圓的傾斜角。將修形量表示為失配ease-off曲面[19],對其解析可獲得齒面的差曲線(AA′方向)、接觸路徑(ks方向曲率)與承載傳動誤差(loaded transmission error, LTE)等嚙合特性。
利用ease-off曲面綜合法,可計算出小輪加工參數(shù)[18],從而對齒面的嚙合性能實現(xiàn)控制。
2 曲面綜合法的計算流程
由前面分析可知大輪修形參數(shù)有2個:曲率參數(shù)a1、位置參數(shù)u0。大輪加工參數(shù)有4個:輪坯安裝角δm2、軸向輪位Xg2、徑向刀位Sr2、角向刀位Q2。小輪一般滾切加工有7個參數(shù):輪坯安裝角δm1、軸向輪位Xg1、徑向刀位Sr1、角向刀位
Q1、床位Xb1、垂直輪位Em1、滾比im1。曲面綜合法的加工參數(shù)比刀傾、變性法加工參數(shù)少2個,可使編程計算、機床調整大為簡化。這些參數(shù)的求解計算流程如下:
(1)預置刀具修形量(a1,u0)(圖1)、梯度橢圓參數(shù)(a,b,λ,q )(圖2);
(2)建立曲面綜合法方程[18],求解小輪齒面加工參數(shù)(表1);
(3)依據(jù)加工參數(shù)建立齒面三維模型,求解ease-off曲面;
(4)解析ease-off曲面,獲得齒面的接觸特性:差曲線、接觸路徑、LTE;
(5)返回步驟(1)修正預置參數(shù),迭代步驟(2)~步驟(4),直至接觸特性參數(shù)滿足設計要求為止。
根據(jù)上述計算流程,設計了三種拓撲結構齒面,如圖3所示,其中X、Y為齒面位置參數(shù)(單位:mm),Z為失配量(單位:μm);各分圖中上圖為ease-off曲面,下圖為差曲線和接觸路徑。
由圖3可知,輕修形形式(a形式)齒面失配量小,接觸路徑傾斜小,僅齒面中部接觸路徑沿齒面邊緣延伸,嚙入端與嚙出端失配量分別為29.11 μm、36.59 μm。內對角重修形形式(b形式)傾斜角度大,修形量大,接觸路徑呈內對角穿過齒面,嚙入端與嚙出端失配量分別為33.95 μm、43.32 μm。考慮到載荷分布向大輪齒根、小輪齒頂傾斜,在齒面拓撲結構設計上,嚙出失配量應大于嚙出段失配量,因此內對角輕修形形式(c形式)接觸路徑保持了大的內對角,同時增大了嚙出端的失配量(40.74 μm),減小了嚙入端失配量(27.27 μm),傳動誤差向嚙入段傾斜。
3 嚙合性能分析
建立HRH齒輪齒面承載接觸分析(loaded tooth contact analysis, LTCA)模型,嚙合剛度、變形協(xié)調方程的求解方法見文獻[20]。對上述3種設計選取5種大輪負載T2=20,100,200,300,400 N·m進行LTCA計算,所得嚙合剛度與LTE如圖4所示,各分圖中右圖中的點狀拋物線表示當前齒,其兩側拋物線表示前齒和后齒。由圖4可以看出,HRH齒輪的嚙合剛度和LTE的平穩(wěn)性較好。與圖4b對比,圖4c的拋物線向右延伸。為實現(xiàn)齒面微分結構的精益化設計,對3種剛度和LTE數(shù)據(jù)作進一步對比分析,分別見表2和表3。
由嚙合剛度數(shù)據(jù)(表2)可知,在宏觀幾何參數(shù)相同的條件下,修形量是影響輪齒嚙合剛度的主要因素,因齒面失配直接導致了接觸剛度降低。在三種結構里,a形式的平均嚙合剛度最大,但過早出現(xiàn)了邊緣接觸,在載荷較大時其波動量(極差)大于c形式的波動量;從波動量看c形式最好,說明c形式的拓撲結構設計最為合理。
由LTE數(shù)據(jù)(表3)可知,LTE與剛度密切相關,但它們的變化規(guī)律不完全一致。在齒面拓撲結構設計上應優(yōu)先考慮邊緣接觸情況,再綜合考慮LTE、剛度激勵情況。如當T2=200,300 N·m時,c形式的剛度、LTE變化相對較小,同時邊緣無載荷集中。對于b形式,由于失配量大,其剛度與LTE波動均較大。
對上述3種設計選取3種大輪負載T2=100,200,300 N·m進行載荷與接觸應力分布的分析,如圖5所示,各分圖中上圖為齒面嚙合時載荷分布,下圖為接觸應力云圖。
由載荷分布(圖5)可知,a形式在T2=100 N·m時齒面邊緣出現(xiàn)了嚴重的載荷集中,最大接觸應力為713.5 MPa;隨著載荷的增大,b形式與c形式的優(yōu)勢更加明顯,在T2=300 N·m時,由于邊緣接觸,a形式的邊緣應力達到了1424 MPa,b形式與c形式的載荷峰值仍分布于齒面中部,其中c形式的載荷峰值最小,最大接觸應力也最?。?267.5 MPa)。由最大接觸應力對比(圖5和表3)可知,c形式的受載情況最好,說明采用非對稱修形起到了調節(jié)載荷分布的作用。
4 動態(tài)嚙合性能試驗
以c形式設計為例,其加工參數(shù)計算如表1所示,本研究在磨齒機上完成HRH齒輪的最終加工,保證齒面精度達到5級后進行動態(tài)嚙合性能試驗。
4.1 齒面接觸質量檢驗
齒面接觸斑點檢驗能夠反映齒面嚙合質量。如圖6所示,所設計HRH齒輪上滾檢接觸斑點的橢圓梯度控制良好,符合局部共軛點接觸齒面的失配特征。
4.2 振動頻譜分析
振動頻譜分析可以反映齒面動態(tài)嚙合狀況。為保證HRH齒輪副的安裝精度,專門制造了齒輪箱,搭建了圖7所示的試驗臺。利用m+p振動測試系統(tǒng)進行振動信號的采集和處理。將加速度傳感器安裝在輸入端軸向(3號通道)、徑向(2號通道)與垂直(1號通道)3個正交方向上。分析試驗數(shù)據(jù)發(fā)現(xiàn)3個方向上的振動諧波頻譜一致,且徑向振動信號最強,所以重點觀察2號通道的振動信號,并分析齒輪的動態(tài)嚙合性能。
圖8所示為小輪輸入轉速n1=1590 r/min,大輪負載T2=20,100,200,300 N·m四種載荷下的頻譜信號,可以看出,嚙合振動主要為齒輪嚙合基頻與軸頻信號,各次諧波信號明顯,齒頻為3倍軸頻,諧波成分上容易發(fā)生調制。依據(jù)前6階諧波振動能量,T2=100 N·m時振動最為劇烈,T2=200,300 N·m時相對較為平穩(wěn)。說明隨著載荷的增大,實際承載齒數(shù)增加,嚙合剛度與傳動誤差激勵減弱,這一特性與表2和表3中的分析結果基本相符。從圖8和表2中可以看出,振動加速度與剛度極差所反映的激勵特性一致,在T2=200 N·m時齒輪嚙合最為平穩(wěn)。
圖9所示為n1=2040 r/min時四種載荷下的振動特性分析結果,可以看出,T2=300 N·m時的平穩(wěn)性優(yōu)于T2=200 N·m時的平穩(wěn)性,與表3中LTE極差所反映結果一致。
由上述試驗結果可知,嚙合剛度與LTE仿真能夠較為準確地反映齒面嚙合動力學特性;在較寬轉速與載荷范圍內齒輪副運轉平穩(wěn)。說明所設計HRH齒輪的齒形關系正確,齒面微分結構控制良好。
5 結論
(1)針對高減比準雙曲面 (HRH)齒輪加工難度高、嚙合質量難以控制的問題,提出了刀具雙向修形曲面綜合法設計思路,解決了HRH齒輪點接觸齒面曲率修正的難題。給出了三種不同對角修形方式,對ease-off曲面、差曲線、接觸路徑進行了分析。通過齒面承載接觸分析(LTCA),對比了不同修形方式的嚙合剛度、承載傳動誤差(LTE)及載荷分布規(guī)律。研究結果表明,內對角輕修形方式的綜合性能最好,具有嚙合剛度小、LTE波動小、載荷分布合理、接觸應力小的特點。
(2)齒面接觸斑點檢驗符合點接觸ease-off梯度特征;齒輪振動特性試驗與嚙合剛度、LTE理論仿真分析一致。在較寬轉速與載荷范圍內齒輪運轉平穩(wěn),說明齒面微分結構設計良好。本研究為高性能復雜齒面精益化設計提供了思路。
參考文獻:
[1] HERMANN S. Tribology Aspects in Angular Transmission Systems Part Ⅷ:Super-reduction Hypoid Gears[J]. Gear Technology, 2011,28(5):42-48.
[2] 魏冰陽,張輝,仝昂鑫,等. 少齒數(shù)大速比準雙曲面齒輪的三維仿真與試驗[J].機械傳動, 2014,38(10): 155-157.
WEI Bingyang, ZHANG Hui, TONG Angxin, et al. 3D Simulation and Experiment of Hypoid Gear with Few Teeth and Large Speed[J]. Journal of Mechanical Transmission, 2014, 38(10):155-157.
[3] 魏冰陽,周偉光,楊建軍. 高減速比準雙曲面齒輪的幾何演變[J].河南科技大學學報(自然科學版), 2017, 38(3):19-24.
WEI Bingyang, ZHOU Weiguang, YANG Jianjun. Geometric Evolution of High Ratio Hypoid Gear[J]. Journal of Henan University of Science and Technology(Natural Science), 2017, 38(3):19-24.
[4] 汪中厚,李剛,久保愛三. 基于數(shù)字化真實齒面的螺旋錐齒輪齒面接觸分析[J].機械工程學報, 2014,50(15): 1-11.
WANG Zhonmghou, LI Gang, KUBO Aizoh. Tooth Contact Analysis of Spiral Bevel Gears Based on Digital Real Tooth Surfaces[J]. Journal of Mechanical Engineering,2014,50(15): 1-11.
[5] 唐進元,聶金安,王智泉. 螺旋錐齒輪機床五軸聯(lián)動數(shù)學模型創(chuàng)成算法[J].中南大學學報(自然科學版), 2011,42(10):3033-3039.
TANG Jinyuan, NIE Jinan, WANG Zhiquan. Mathematical Model of Kinematics Transformation for Five-axis Linkage CNC Hypoid Generator[J]. Journal of Central South University(Natural Science), 2011, 42(10):3033-3039.
[6] DING Han, TANG Jinyuan, SHAO Wen, et al. Optimal Modification of Tooth Flank Form Error Considering Measurement and Compensation of Cutter Geometric Errors for Spiral Bevel and Hypoid Gears[J]. Mechanism and Machine Theory, 2017, 118:14-31.
[7] FAN Qi. Tooth Surface Error Correction for Face-hobbed Hypoid Gears[J]. Journal of Mechanical Design, 2010, 132(1):1-8.
[8] SHIH Y P, FONG Z H. Flank Correction for Spiral Bevel and Hypoid Gears on a Six-axis CNC Hypoid Generator[J]. Journal of Mechanical Design, 2008, 130(6):062604.
[9] ZHOU Y, CHEN Z C, TANG J, et al. An Innovative Approach to NC Programming for Accurate Five-axis Flank Milling of Spiral Bevel or Hypoid Gears[J]. Computer-Aided Design, 2017, 84:15-24.
[10] 曹雪梅,鄧效忠,聶少武. 基于共軛齒面修正的航空弧齒錐齒輪高階傳動誤差齒面拓撲結構設計[J].航空動力學報, 2015,30(1):195-200.
CAO Xuemei, DENG Xiaozhong, NIE Shaowu. Ease-off Flank Topography Design for Aviation Spiral Bevel Gears with Higher-order Transmission Errors by Modification of Conjugate[J]. Journal of Aerospace Power,2015, 30(1):195-200.
[11] YANG J J, SHI Z H, ZHANG H, et al. Dynamic Analysis of Spiral Bevel and Hypoid Gears with High-order Transmission Errors[J]. Journal of Sound and Vibration. 2018, 417:149-164.
[12] DOONER D B. On the Third Law of Gearing:a Study on Hypoid Gear Tooth Contact[J]. Mechanism and Machine Theory, 2019, 134 :224-248.
[13] WU Shunxing, YAN Hongzhi, WANG Zhiyong, et al. Tooth Surface Error Correction of Hypoid Gears Machined by Duplex Helical Method[J].Journal Central South University of Technology, 2021,28,(5):1402-1411.
[14] SHIH Y P, SUN Z H, LAI K L. A Flank Correction Face-milling Method For Bevel Gears Using a Five-axis CNC Machine[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(9/12):3635-3652.
[15] LIANG Chengcheng, ZHU Caichao, LIU Siyuan, et al. Investigation of the Effects with Linear, Circular and Polynomial Blades on Contact Characteristics for Face-hobbed Hypoid Gears[J]. Mechanism and Machine Theory, 2020, 146:215001.
[16] YANG Yu, MAO Shimin, CAO Wei, et al. A Novel Taper Design Method for Face-milled Spiral Bevel and Hypoid Gears by Completing Process Method[J]. International Journal of Precision Engineering and Manufacturing, 2022,23(1):1-13.
[17] SONG Chaosheng, LIANG Chengcheng, ZHU Caichao, et al. Computational Investigation of Three-faced Blade Errors on Contact Behaviors for Face-hobbed Hypoid Gears[J]. Journal of Mechanical Science and Technology, 2020, 34(7):2913-2921.
[18] 魏冰陽,鄧效忠,仝昂鑫,等. 曲面綜合法弧齒錐齒輪加工參數(shù)計算[J].機械工程學報, 2016,52(1): 20-25.
WEI Bingyang, DENG Xiaozhong, TONG Ang-xin, et al. Surface Synthesis Method on Generating Parameters Computation of Spiral Bevel Gears[J]. Journal of Mechanical Engineering, 2016, 52(1):20-25.
[19] 魏冰陽,楊建軍,全昂鑫,等. 基于等距Ease-off曲面的輪齒嚙合仿真分析[J].航空動力學報, 2017, 32(5):1259-1265.
WEI Bingyang, YANG Jianjun, TONG Angxin, et al. Tooth Meshing Simulation and Analysis Based on Isometric Mapping Ease-off Surface[J]. Journal of Aerospace Power, 2017, 32(5):1259-1265.
[20] 魏冰陽,李家琦,王文勝. 基于差齒面拓撲的輪齒承載擬赫茲接觸分析[J].中國機械工程, 2021,32(18):2174-2180.
WEI Bingyang, LI Jiaqi, WANG Wensheng. Quasi-Hertz Loaded Tooth Contact Analysis of Gears Based on Ease-off Surface Topology[J]. China Mechanical Engineering, 2021,32(18):2174-2180.