王晶晶 朱 晟
(1.河海大學(xué) 水文水資源與水利水電工程科學(xué)國家重點(diǎn)實(shí)驗(yàn)室, 南京 210098;2.河海大學(xué) 水利水電學(xué)院,南京 210098)
近年來,隨著筑壩要求的提高,我國百米級高混凝土面板壩筑壩技術(shù)日益成熟,并逐步向300 m 級靠攏和突破.隨著面板壩壩高的不斷增加,在取得成功經(jīng)驗(yàn)的同時(shí),部分面板堆石壩出現(xiàn)面板擠壓破壞問題,天生橋一級面板堆石壩[1]、水布埡面板堆石壩(壩高233 m),運(yùn)行期間均多次出現(xiàn)面板局部擠壓破損、表面脫皮等現(xiàn)象;國外如非洲萊索托的莫霍爾(Mohale)面板堆石壩(壩高145 m),巴西的巴拉·格蘭特(Barra Grande)面板壩等[2]也出現(xiàn)過類似問題.
張丙印等[3]通過將參數(shù)反演結(jié)果與實(shí)測變形數(shù)據(jù)對比分析,得出導(dǎo)致面板破損的主要原因是面板脫空;Zhang等[4]研究天生橋一級面板堆石壩,指出支撐面板的堆石體產(chǎn)生水平及豎向變形且面板與墊層間變形不協(xié)調(diào)是其面板與墊層脫空的主要原因;楊澤艷等[5]提出面板無法適應(yīng)堆石體過大的沉降和變形,導(dǎo)致了面板出現(xiàn)結(jié)構(gòu)性裂縫.
總結(jié)已建設(shè)運(yùn)行的高面板壩出現(xiàn)擠壓破壞現(xiàn)象,發(fā)現(xiàn)都具有發(fā)生位置在河谷中央壓縫區(qū)、發(fā)生部位位于壩頂處、發(fā)生寬度較窄的特點(diǎn).陳生水[6]提出百米級大壩理論無法適應(yīng)特高壩的建設(shè)和長期安全需求.目前面板擠壓破壞研究,更依賴工程經(jīng)驗(yàn),數(shù)值模擬方法研究不夠深入,影響后續(xù)300 m 級特高壩的設(shè)計(jì)施工.因此,探究特高壩的混凝土面板擠壓破壞機(jī)理,對面板進(jìn)行精細(xì)化研究,具有重要的工程應(yīng)用價(jià)值.
混凝土面板作為與堆石接觸的薄板結(jié)構(gòu),常規(guī)網(wǎng)格剖分使得面板網(wǎng)格過于粗糙[7].本文通過建立面板-垂直縫子模型結(jié)構(gòu),在壩體整體模型中切割出面板及其周圍區(qū)域,將面板視為單獨(dú)隔離體,將位移計(jì)算結(jié)果作為子模型的邊界位移約束條件,建立起通過位移結(jié)果相關(guān)聯(lián)但相對獨(dú)立的結(jié)構(gòu).使用多元線性回歸分析方法得到面板子模型的擬合位移場,最終計(jì)算出面板子模型的局部應(yīng)力場.通過精細(xì)化模擬計(jì)算,分析面板混凝土及垂直縫部位的應(yīng)力變形,探究混凝土面板擠壓破壞機(jī)理.
針對面板堆石壩混凝土面板發(fā)生擠壓破壞問題,眾多學(xué)者[8]認(rèn)為在壩體運(yùn)行期,堆石體變形通過與面板摩擦傳遞給面板,引起兩側(cè)面板向中部變位,中部面板受壓,縫面壓應(yīng)力超出混凝土抗壓強(qiáng)度,發(fā)生破壞.本文繼續(xù)研究面板擠壓破壞發(fā)生機(jī)理.
面板澆筑后,在其表面荷載作用下,墊層發(fā)生河谷中央部位大,兩邊小的變形.圖1是面板擠壓破壞示意圖,由圖1可見,混凝土面板在墊層料的帶動下不僅發(fā)生平移,同時(shí)產(chǎn)生一定轉(zhuǎn)動,導(dǎo)致面板塊與塊之間在分縫處發(fā)生局部頂部接觸、底部張開的情況,形成應(yīng)力集中,導(dǎo)致面板發(fā)生擠壓剪切破壞.分析工程原型監(jiān)測資料[9],發(fā)現(xiàn)壩體沉降變形與水位變化存在較強(qiáng)相關(guān)性.壩體運(yùn)行過程中,在水位波動循環(huán)荷載和堆石材料流變特性影響下,其變形在一定時(shí)期依舊發(fā)展,壩體變形未達(dá)到穩(wěn)定狀態(tài),面板與墊層間的變形差距會持續(xù)增大.
圖1 面板擠壓破壞示意圖
綜上分析,堆石體流變和波動水荷載是運(yùn)行期面板發(fā)生擠壓破壞的主要原因.在當(dāng)前有限元計(jì)算中,一般將橫截面尺寸較小的混凝土面板厚度方向劃分為一層單元,而壩軸向以符合實(shí)際混凝土澆筑尺寸、順坡向以適應(yīng)實(shí)際填筑高程為主,于是空間上面板單元不同方向尺寸差距過大.因此,尚不足以解釋和模擬面板變形特點(diǎn).
本文選取面板局部部位,建立面板-垂直縫子模型結(jié)構(gòu),對子模型進(jìn)行單元精細(xì)化剖分和二次建模計(jì)算,如圖2所示.
圖2 面板擠壓破壞分析子模型圖
面板壩計(jì)算時(shí)選取的壩料本構(gòu)模型很大程度上會決定最終有限元計(jì)算結(jié)果的可靠性與準(zhǔn)確性.河海統(tǒng)一廣義塑性模型[10]可以考慮堆石料剪脹性,該模型在堆石壩應(yīng)力變形三維數(shù)值計(jì)算中表現(xiàn)出較好的適用性.河海統(tǒng)一廣義塑性模型彈塑性勁度張量為:
式中:ng為塑性流動方向張量;nf為加載方向張量;H為塑性模量.剪脹方程滿足:
加載過程中的塑性流動方向表示為:
卸載時(shí)的塑性流動方向表示為:
粗粒筑壩料剪脹應(yīng)力比Mc為定值,堆石料的剪脹特性可表示為:
高應(yīng)力狀態(tài)下,顆粒破碎造成堆石料強(qiáng)度減弱,其描述為:
式中:Pr=Pa+σc;Pa為大氣壓強(qiáng);σc為筑壩料抗拉強(qiáng)度.
考慮到施工過程中堆石體應(yīng)力不斷變化,堆石體流變遺傳的特點(diǎn),采用朱晟等[11]基于Boltzmann繼效理論提出的增量流變模型,模擬大壩各級應(yīng)力增量作用下的最終流變量.假設(shè)大壩在ζn時(shí)刻作用第n級應(yīng)力增量,則其累積流變量為(t>ζn).
式中:Δεvfi,Δεsfi分別為第i級應(yīng)力增量作用下的最終體積流變量和剪切流變量.切線流變體積模量Kt和剪切模量Gt分別為:
式中:Rsf為破壞比;S為應(yīng)力水平;kv、nv、ks、ns為流變模型參數(shù),可由室內(nèi)三軸試驗(yàn)確定.
2.3.1 網(wǎng)格剖分及施工模擬
拉哇特高混凝土面板堆石壩壩頂總長398 m,壩頂高程2 709 m,最大壩高239 m,上游面板底部壩坡坡比1∶1.45.采用三維自動剖分程序,沿壩軸線方向共設(shè)置了55個(gè)剖面,共得到18 518個(gè)結(jié)點(diǎn),17 102個(gè)單元,如圖3所示.荷載施加如圖4所示,按照大壩實(shí)際填筑的分級施工高程及蓄水順序進(jìn)行模擬.
圖3 大壩三維剖分網(wǎng)格圖
圖4 壩體填筑分期模擬圖
2.3.2 本構(gòu)模型參數(shù)
利用壩料室內(nèi)三軸試驗(yàn)成果,整理壩料的河海統(tǒng)一廣義塑性模型的模型參數(shù)見表1.根據(jù)室內(nèi)三軸流變試驗(yàn)結(jié)果,并采用IGA[12]方法反演得到堆石區(qū)的流變參數(shù),見表2.混凝土彈性模量E=3×104MPa,泊松比v=0.2.
表1 河海統(tǒng)一廣義塑性模型參數(shù)值
2.3.3 應(yīng)力變形分析
面板擠壓破壞主要受軸向位移擠壓和面板轉(zhuǎn)動的影響.因此本文選取壩體的沉降變形、面板撓度、面板軸向位移和面板軸向應(yīng)力作為擠壓破壞參考指標(biāo).
選取壩體河床0+188.0 m 剖面進(jìn)行分析,圖5為滿蓄期典型剖面豎向位移等值線圖.
圖5 滿蓄期典型剖面豎向位移等值線 (單位:cm)
由圖5可知,考慮堆石流變后壩體沉降明顯增大.整理考慮堆石流變效應(yīng)的壩體竣工期和蓄水期應(yīng)力變形,計(jì)算極值見表3.
表3 河海統(tǒng)一廣義塑形模型計(jì)算極值表
可見,在水平荷載作用下,壩體變形進(jìn)一步增大.圖6為滿蓄期典型剖面大主應(yīng)力等值線圖,分布規(guī)律與壩坡平行,應(yīng)力最大值為3.78 MPa,在壩基處軸線位置.
圖6 滿蓄期典型剖面大主應(yīng)力等值線(單位:MPa)
圖7 ~8分別為滿蓄期面板撓度和軸向位移等值線.由圖7可以看出滿蓄期面板撓度在2 550~2 620 m 高程范圍內(nèi)數(shù)值較大,軸向位移表現(xiàn)出由兩岸向河谷擠壓趨勢,與實(shí)際工程規(guī)律相符合.
圖7 滿蓄期面板撓度等值線
圖8 滿蓄期面板軸向位移等值線
設(shè)計(jì)采用C30混凝土,標(biāo)準(zhǔn)抗壓強(qiáng)度20 MPa,抗拉強(qiáng)度2.01 MPa,由于壩體整體有限元分析接縫采用無厚度單元很難模擬接縫局部擠壓受力狀態(tài),計(jì)算得到的軸向壓應(yīng)力遠(yuǎn)小于混凝土極限抗壓強(qiáng)度.前文指出面板發(fā)生擠壓破壞本質(zhì)是面板塊產(chǎn)生接觸擠壓,面板轉(zhuǎn)動和移動都會對其產(chǎn)生影響.面板撓度和軸向位移是面板轉(zhuǎn)動與位移的主要影響因素,因此,根據(jù)有限元計(jì)算結(jié)果,在河谷中央壩頂位置發(fā)生面板擠壓破壞合乎規(guī)律.如圖9所示,本文選取拉哇面板壩河床處坐標(biāo)為175.87~199.87 m 的R1、R2兩塊面板,對其進(jìn)行單元精細(xì)剖分,建立子結(jié)構(gòu)模型進(jìn)行面板擠壓破壞分析,重點(diǎn)關(guān)注面板-接縫子模型的擠壓應(yīng)力,在實(shí)現(xiàn)面板局部應(yīng)力分析時(shí)可有效避免對接觸面和連接單元的處理.
圖9 R1、R2面板位置圖
面板與墊層間的脫空直接影響面板發(fā)生擠壓破壞,本文采用相對變位法,即提取面板背水面與墊層料上表面撓度差值,分析差值與循環(huán)蓄泄水次數(shù)的相關(guān)性,以水庫水位從正常蓄水位2 702 m 降至死水位2672 m,水位再上升至2702 m 高程為一次水位循環(huán).圖10為不同循環(huán)升降次數(shù)下河床段面板脫空分布圖.
圖10 不同循環(huán)升降次數(shù)下混凝土面板脫空分布圖
由圖10可知,隨著庫水位循環(huán)升降次數(shù)的增加,面板脫空區(qū)域逐漸增大后擴(kuò)展會逐漸趨于穩(wěn)定.可見,壩體運(yùn)行期水庫循環(huán)波動水荷載顯著影響混凝土面板的變形,堆石流變和波動水荷載是影響面板擠壓破壞的主要原因.
3.1.1 混凝土面板接縫模型
在子模型計(jì)算中,為避免采用無厚度接縫單元難以模擬局部面板受壓特性及容易出現(xiàn)面板互相嵌入接觸情況,根據(jù)對接縫結(jié)構(gòu)的變形特征和相應(yīng)試驗(yàn)結(jié)果,本文對有厚度的連接單元模型做出一定的改進(jìn).根據(jù)受力與變形關(guān)系式可得:
對應(yīng)剛度可由式(12)來確定:
法向剛度系數(shù)kn可由增量形式來表示:
對于有厚度的擠壓豎縫,擠壓位移和擠壓應(yīng)力分別表示為:
式中:L0為填縫料的初始厚度;L為填縫料受擠壓之后的厚度.
建立接縫壓縮模量En與法向剛度系數(shù)kn之間的關(guān)系:
本文采用如圖11所示雙曲線擠壓模型對接縫進(jìn)行模擬擠壓計(jì)算;近似地將接縫的受拉及剪切過程采用線性模型來模擬,進(jìn)一步對特高面板堆石壩面板擠壓破壞的機(jī)理進(jìn)行深入分析.
圖11 面板變形模型示意圖
3.1.2 面板-接縫子結(jié)構(gòu)剖分
對上文選取的面板子模型進(jìn)行細(xì)化剖分,子模型剖分網(wǎng)格如圖12所示,總計(jì)剖分單元160 650,結(jié)點(diǎn)182 160個(gè),并且沿面板厚度的方向共劃分了9層,平均劃分厚度為0.2 m.
圖12 面板-接縫子模型局部剖分網(wǎng)格
3.2.1 位移場擬合函數(shù)確定
根據(jù)上文三維有限元變形計(jì)算結(jié)果,利用R1、R2兩塊面板在整體模型中面板單元結(jié)點(diǎn)處的位移計(jì)算結(jié)果,采用回歸分析的方法進(jìn)行面板子模型的位移場擬合,按照彈性力學(xué)方法,利用擬合的位移場計(jì)算出子模型的應(yīng)力場.
采用高次多項(xiàng)式擬合描述面板-接縫子模型的位移場,選取子模型R1面板的迎水面左側(cè)結(jié)點(diǎn)坐標(biāo)和計(jì)算位移初步確定擬合多項(xiàng)式的次數(shù).在壩軸向R1、R2面板處僅有4個(gè)節(jié)點(diǎn),難以全面把握整體壩軸向的變形情況,故選取多塊面板并將其頂部迎水面和背水面的z向位移分別進(jìn)行擬合.由此,最終確定x、y方向位移均使用5次多項(xiàng)式擬合,z方向使用4次多項(xiàng)式擬合.如圖13(d)所示,面板迎水面和背水面的壩軸向位移差值在河床中部面板處達(dá)到極值,這表明中部面板處容易產(chǎn)生沿面板厚度方向上的錯(cuò)動開叉變形.
圖13 面板子模型結(jié)點(diǎn)位移多項(xiàng)式擬合
面板處任意一點(diǎn)的y方向位移函數(shù)u(x,y,z)表達(dá)式為:
將位移函數(shù)u(x,y,z)展開,則
式中:di=aibjck,wi=xiyjzk,可根據(jù)擬合函數(shù)得到.
由此確定出三向位移場擬合函數(shù),其他兩個(gè)方向處理方法相同,最終得到面板-縫子模型的各細(xì)化結(jié)點(diǎn)位移.
3.2.2 位移場擬合結(jié)果分析
根據(jù)計(jì)算得到的擬合函數(shù),構(gòu)造面板-縫子模型位移場擬合結(jié)果,對比整體計(jì)算結(jié)果和多元函數(shù)擬合結(jié)果,如圖14~16所示,可以看出結(jié)果規(guī)律與計(jì)算結(jié)果基本一致,對子模型精細(xì)化分析后數(shù)值都有所增大.
圖14 面板子模型水平向位移擬合結(jié)果
圖15 面板子模型豎向位移擬合結(jié)果
圖16 面板子模型壩軸向位移擬合結(jié)果
基于位移場擬合結(jié)果,計(jì)算面板擠壓應(yīng)力.計(jì)算得出面板軸向應(yīng)力基本均為壓應(yīng)力,R1、R2 面板的擠壓應(yīng)力區(qū)域基本集中在面板2 600 m 到2 660 m 高程區(qū)域.在面板子模型的中部位置壓應(yīng)力明顯較大,數(shù)值均不超過4.56 MPa.
圖17為面板-縫子模型沿厚度方向的應(yīng)力分布圖.由圖17可知,面板接縫部位的軸向應(yīng)力呈現(xiàn)明顯的應(yīng)力梯度,由迎水面往背水面應(yīng)力迅速減小,與工程實(shí)際發(fā)生的面板表面擠壓破壞十分吻合[13-14].如圖18所示,面板壩軸向應(yīng)力極值為21.34 MPa,位于2 640 m 高程位置,約為壩高上部1/3 處位置,即在R1和R2面板的接縫處擠壓應(yīng)力遠(yuǎn)大于面板中部應(yīng)力,形成了較為明顯的應(yīng)力集中現(xiàn)象,本工程此處面板容易出現(xiàn)局部擠壓破壞,符合上述分析的面板接觸擠壓破壞的機(jī)理.
圖17 面板-縫子模型壩軸向應(yīng)力沿厚度方向分布圖
圖18 面板-縫子模型壩軸向應(yīng)力分布圖
綜上計(jì)算分析,在堆石體流變和壩體運(yùn)行期波動的水荷載影響下,面板產(chǎn)生的撓曲變形使得面板上表面壓緊,下部張開;面板接縫處壓力上部較大底部較小,由此產(chǎn)生應(yīng)力集中現(xiàn)象,最終導(dǎo)致混凝土面板發(fā)生擠壓破壞.
本文基于拉哇特高面板堆石壩三維有限元分析計(jì)算,對小范圍內(nèi)混凝土面板進(jìn)行精細(xì)化分析,建立面板-縫子結(jié)構(gòu)模型,探討面板擠壓發(fā)生機(jī)理,得到以下結(jié)論:
1)論述了面板堆石壩混凝土面板縱縫處發(fā)生接觸擠壓效應(yīng),認(rèn)為堆石體流變和波動水荷載影響下面板發(fā)生的轉(zhuǎn)動和移動是造成面板發(fā)生擠壓破壞的根本原因.
2)將面板作為隔離體,建立面板-縫子模型結(jié)構(gòu),進(jìn)行單元精細(xì)化剖分和二次建模,通過位移場回歸擬合計(jì)算出子結(jié)構(gòu)面板局部應(yīng)力,有效避免對接觸面及連接單元的處理.
3)對拉哇特高面板堆石壩進(jìn)行了面板-縫子模型計(jì)算,分析面板擠壓破壞發(fā)生機(jī)理.結(jié)果表明,壩體變形最大值附近先發(fā)生擠壓破壞,若不進(jìn)行面板-縫子模型分析會低估局部面板變形,為后續(xù)特高面板壩接縫處設(shè)計(jì)提供參考.