張玉磊,馬俊怡,艾 平,趙立欣,姚宗路*,于佳動(dòng),梁 依
生物炭負(fù)載蒽醌-2-磺酸鈉對厭氧消化的影響
張玉磊1,2,馬俊怡2,艾 平1,趙立欣2,姚宗路2*,于佳動(dòng)2,梁 依2
(1.華中農(nóng)業(yè)大學(xué)工學(xué)院,湖北 武漢 430072;2.中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所,農(nóng)業(yè)農(nóng)村部華北平原農(nóng)業(yè)綠色低碳重點(diǎn)實(shí)驗(yàn)室,北京 100081)
為提高厭氧消化系統(tǒng)的降解效率,以生物炭(BC)為載體負(fù)載蒽醌-2-磺酸鈉(AQS),制備復(fù)合材料BC/AQS并應(yīng)用于厭氧消化系統(tǒng).在中溫條件(35℃)下開展批式厭氧消化試驗(yàn),探究BC/AQS對玉米秸稈厭氧消化的影響.結(jié)果表明,當(dāng)AQS浸漬濃度為1mmol/L時(shí),BC/AQS強(qiáng)化厭氧消化的產(chǎn)甲烷效率最高,此時(shí)最大產(chǎn)甲烷速率max達(dá)到10.64mL/(d·g),最大累積甲烷產(chǎn)量max達(dá)到240.41mL/g,單位揮發(fā)性固體(VS)累積產(chǎn)甲烷量分別比空白對照組和添加BC的試驗(yàn)組提高20.60%和12.11%(<0.05).產(chǎn)甲烷古菌中甲烷八疊球菌屬()和甲烷泡菌屬()得到富集.此外,BC/AQS在發(fā)酵前期促進(jìn)了揮發(fā)性脂肪酸(VFA)的生成,使總VFA濃度在第10d比對照組提高了7.73%~18.54%;在中后期促進(jìn)了VFA的降解,其中BC/AQS-1mmol/L使總VFA濃度下降77.43%,降幅最大.BC/AQS提高了水解產(chǎn)酸菌群、、和不動(dòng)桿菌屬()的豐度.
玉米秸稈;厭氧消化;生物炭;蒽醌-2-磺酸鈉;復(fù)合介體
我國生物質(zhì)資源豐富,其中農(nóng)作物秸稈已逐漸成為農(nóng)業(yè)生產(chǎn)活動(dòng)中的主要廢棄物之一.傳統(tǒng)的作物秸稈處理方式如焚燒、填埋及翻耕等,不僅會(huì)污染空氣與土壤,也會(huì)造成生物質(zhì)資源的浪費(fèi)[1].因此,尋找一種有效的方式來消納農(nóng)作物秸稈是關(guān)重要.厭氧消化技術(shù)通過生物作用降解有機(jī)質(zhì),是一種理想的處理手段.該技術(shù)可以產(chǎn)生沼氣用于發(fā)電或作為化石能源的替代品,從而減輕環(huán)境污染并緩解國家能源危機(jī),具有重要的意義.然而,盡管厭氧消化技術(shù)的潛力巨大,但其降解效率受到各種抑制因素的限制[2].近年來,許多學(xué)者發(fā)現(xiàn)添加氧化還原介體可以有效提高厭氧消化技術(shù)的降解性能.例如,張立國等[3]以及班巧英等[4]均探究了氧化還原介體在提高厭氧消化降解效率上的顯著性.
蒽醌-2-磺酸鈉(AQS)是一種常見的醌類氧化還原介體,常作為外源添加劑應(yīng)用于厭氧消化系統(tǒng).研究發(fā)現(xiàn),極低濃度的AQS便可顯著提高厭氧消化的效率. Cai等[5]在以葡萄糖為底物的試驗(yàn)中添加較少量AQS(50μmol/L)使甲烷產(chǎn)量提高了33.5%.然而,AQS屬于水溶性氧化還原介體,易在連續(xù)厭氧生物處理中流失,如何使AQS在厭氧消化系統(tǒng)中持續(xù)穩(wěn)定地發(fā)揮作用是應(yīng)用可溶性氧化還原介體所面臨的主要問題之一.
近年來,研究人員通過物理或化學(xué)等方法將可溶性氧化還原介體固定在特定的載體上,以形成密集且可持續(xù)發(fā)揮作用的復(fù)合介體[6]. Zhou等[7]采用AQS和氧化石墨烯修飾聚氨酯泡沫塑料(AQS- rGO-PUF)用于強(qiáng)化酸性紅18(AR18)的厭氧脫色,在進(jìn)行8輪試驗(yàn)后,AR18的脫色率仍保持在98.18%,證明了AQS-rGO-PUF的可重復(fù)使用性和催化穩(wěn)定性.此外,AQS在不同的載體上可能會(huì)表現(xiàn)出不同的性能,為進(jìn)一步提高AQS的吸附容量和催化效果,確保其在厭氧消化系統(tǒng)中的穩(wěn)定性和可靠性,目前仍需尋找一種具備多種優(yōu)良特性的載體材料[8].
生物炭(BC)是在缺氧條件下高溫?zé)峤馍镔|(zhì)制備的固體材料,其制備原料來源廣泛、制備工藝簡單且環(huán)境友好[9]. BC具有豐富的含氧官能團(tuán)、良好的導(dǎo)電能力、生物相容性、較高的孔隙率以及陽離子交換能力,十分適合用作載體材料[10-11].而研究發(fā)現(xiàn),通過將AQS分別固定于BC和GAC進(jìn)行比較研究,BC對AQS的吸附容量更高,BC-AQS含有更多的氧化還原基團(tuán),表明BC更適合作為AQS的載體[12].然而,將BC/AQS應(yīng)用于強(qiáng)化厭氧消化產(chǎn)甲烷的研究較少,其強(qiáng)化效果也需進(jìn)一步探究.
基于此,本研究以BC作為載體負(fù)載AQS,制備復(fù)合介體BC/AQS,并應(yīng)用于強(qiáng)化秸稈厭氧消化.首先對復(fù)合介體進(jìn)行表征,分析AQS固定化后的材料特征,其次比較分析不同AQS浸漬濃度的復(fù)合介體對秸稈厭氧消化產(chǎn)甲烷、揮發(fā)性脂肪酸變化及微生物群落結(jié)構(gòu)的影響規(guī)律,探究固定化AQS對秸稈厭氧消化的強(qiáng)化效果.
蒽醌-2-磺酸鈉(AQS;分子量:310.26g/mol),國藥集團(tuán);氯化鋅(ZnCl2; 98%),國藥集團(tuán);玉米秸稈收集于江蘇連云港某玉米地,經(jīng)清洗、風(fēng)干,高速粉碎機(jī)粉碎并過20目篩后儲(chǔ)存于原料室備用; BC以上述玉米秸稈為原料經(jīng)熱解制備,熱解溫度為550℃,升溫速率為10℃/min,停留時(shí)間為2h.接種污泥取自某中溫條件下處理牛糞和玉米秸稈的厭氧消化反應(yīng)器.試驗(yàn)原料的總固體(TS)、揮發(fā)性固體(VS)及灰分含量如表1所示.
表1 試驗(yàn)原料主要特性
稱取定量BC加入到含250g/L ZnCl2的鹽酸溶液中,鹽酸濃度為1mol/L,置于磁力攪拌器上以30℃、120r/min條件攪拌0.5h, 90℃去離子水洗滌樣品至中性后放置于烘箱中105℃烘干至恒重;將烘干的生物炭分為5份分別浸入配制的1,2,4,6,8mmol/L AQS溶液中,AQS的劑量選擇參考于之前的研究[13-14],利用磁力攪拌器攪拌至均勻后置于30℃的搖床中振蕩24h,用去離子水洗滌固態(tài)產(chǎn)物至中性后烘干,即得到BC/AQS.
試驗(yàn)裝置采用500mL血清瓶(有效容積400mL),瓶口處配有雙孔補(bǔ)料轉(zhuǎn)接口,其中一孔通過硅膠軟管連接雙孔鋁箔氣袋,另一孔密封,作為批式厭氧消化反應(yīng)器.在恒溫培養(yǎng)箱中以中溫(35℃)進(jìn)行發(fā)酵,反應(yīng)器中產(chǎn)生的氣體通過硅膠軟管進(jìn)入氣袋,使用注射器抽取氣體測量體積,并將氣體注入備用氣袋進(jìn)行氣體組分分析.
試驗(yàn)以玉米秸稈為發(fā)酵底物,所有試驗(yàn)組玉米秸稈添加量為60g VS/L,接種比例為30%/,設(shè)置空白對照組CK(未添加介體材料)、BC組(添加BC)、和BC/AQS組(分別添加5種AQS浸漬濃度的BC/AQS).每組設(shè)置3個(gè)重復(fù),試驗(yàn)期間每天同一時(shí)間收集氣體并對血清瓶進(jìn)行振蕩,每5d取一次液體樣品進(jìn)行揮發(fā)性脂肪酸及pH值等測定.各試驗(yàn)組設(shè)計(jì)如表2所示.
表2 BC/AQS介導(dǎo)厭氧消化試驗(yàn)方案
TS 和VS 采用標(biāo)準(zhǔn)方法(APHA,1998)測定[15];使用雷磁多參數(shù)分析儀(DZS-706,中國)測量pH值;日產(chǎn)氣量通過注射器上標(biāo)示體積的刻度線來讀取; 沼氣組分使用氣相色譜-熱導(dǎo)池檢測器(G5,北京普析)測定;揮發(fā)性脂肪酸采用氣相色譜分析法(GC- 7890A,安捷倫,美國)測定;C、H、N、S的含量使用元素分析儀(Vario EL cube,德國Elemantar)測定;通過掃描電子顯微鏡(Apreo 2C,賽默飛,美國)觀測BC及BC/AQS的表觀形態(tài);采用傅里葉紅外光譜法(INVENIO R, Bruker,德國)測定BC及BC/AQS的化學(xué)結(jié)構(gòu);使用全自動(dòng)物理吸附儀(ASAP 2460美國)測定BC及BC/AQS的比表面積.
微生物群落結(jié)構(gòu)分析采用16S rRNA高通量測序(深圳微科盟科技集團(tuán)有限公司),測序平臺(tái)為Illumina MiSeq, PCR擴(kuò)增引物采用319F (CCTACGGGNGGCWGCAG)和806R(GGACTAC- HVG GGTATCTAATCC)擴(kuò)增16S rRNA基因V3- V4區(qū).
通過Excel進(jìn)行數(shù)據(jù)記錄與基本運(yùn)算;通過SPSS 26對試驗(yàn)數(shù)據(jù)進(jìn)行顯著性分析;通過OriginPro 2022b 進(jìn)行繪圖與動(dòng)力學(xué)擬合.
根據(jù)S元素含量的變化,利用公式1計(jì)算AQS實(shí)際負(fù)載量.
式中:AQS為AQS實(shí)際負(fù)載量,mmol/g;S為BC/AQS材料的S含量,mg/g;1為BC中S的含量,mg/g.
利用修正Gompertz方程對單位VS累積甲烷產(chǎn)量進(jìn)行擬合.
式中:()為第d累積甲烷產(chǎn)量,mL/g;max為最大累積甲烷產(chǎn)量,mL/g;max為最大產(chǎn)甲烷速率,mL/ (d·g);為延滯期,d; e為自然常數(shù),2.718282.
2.1.1 微觀結(jié)構(gòu)與比表面積 通過掃描電鏡分析各介體材料表觀形態(tài)的差異.如圖1所示,其中生物炭原炭即BC表面比較平整,無明顯孔隙結(jié)構(gòu),而BC/AQS材料表面比較粗糙,孔隙增多,表面疏松多孔,這可能是在鹽酸的侵蝕下炭表面暴露出更多的片層結(jié)構(gòu)與缺陷位點(diǎn)[12],這種結(jié)構(gòu)不僅有利于AQS的負(fù)載,還有利于微生物定植,進(jìn)而提高BC/AQS的傳質(zhì)能力[16-17].各材料的比表面積大小依次為BC/AQS-1mmol/L (14.50m2/g)、BC/AQS-2mmol/L (12.25m2/g)、BC/AQS-4mmol/L (10.07m2/g)、BC/ AQS-6mmol/L (9.94m2/g)、BC/AQS-8mmol/L (9.92m2/g)、BC(1.14m2/g), BC/AQS的比表面積顯著大于BC的比表面積,但在各BC/AQS組中,隨著AQS負(fù)載濃度的增加BC/AQS的比表面積逐漸減小,這可能是因?yàn)锳QS分子會(huì)阻塞生物炭部分孔隙,占據(jù)生物炭表面點(diǎn)位,使BC/AQS的比表面積下降[18].
2.1.2 紅外光譜分析 應(yīng)用FTIR檢測分析了BC及BC/AQS表面官能團(tuán)的差異,光譜分析結(jié)果如圖2所示.在1728cm-1波數(shù)處的峰對應(yīng)羰基或酯類中C=O的伸縮振動(dòng)[12,19], 1600cm-1附近的峰對應(yīng)醌類化合物中醌基官能團(tuán)的伸縮振動(dòng)[20-21],與BC相比, BC/AQS在這兩處的峰面積明顯增大,特征峰相對明顯,這可能是因?yàn)锽C與AQS發(fā)生相互作用,C=O和醌基官能團(tuán)含量增加,表明二者形成了復(fù)合介體.1400cm-1處的峰值與酚羥基的變化有關(guān)[12]. 1030cm-1處的特征峰屬于C-O-C[22].1210cm-1附近的峰是由-SO3-引起的[23], BC/AQS在此處有明顯的特征峰,這可能是因?yàn)锳QS中-SO3-的伸縮振動(dòng)[24],進(jìn)一步說明BC對AQS實(shí)現(xiàn)了有效負(fù)載.
圖2 BC及BC/AQS的紅外光譜圖
2.1.3 元素分析 各介體材料的S元素質(zhì)量分?jǐn)?shù)與BC/AQS實(shí)際AQS負(fù)載量如表3所示.根據(jù)公式(1)計(jì)算各BC/AQS復(fù)合介體的實(shí)際AQS負(fù)載量.BC中S元素含量極少,而在BC/AQS中S元素質(zhì)量分?jǐn)?shù)均有增加,表明AQS成功負(fù)載于BC.然而,隨著AQS浸漬濃度的增加,實(shí)際AQS負(fù)載量并未隨之增多,在浸漬濃度為2mmol/L時(shí)達(dá)到最大實(shí)際負(fù)載量0.1282mmol/g,當(dāng)浸漬濃度為4,6,8mmol/L時(shí)負(fù)載量呈現(xiàn)下降趨勢,這可能是因?yàn)殡S著AQS濃度的升高BC表面大量的活性位點(diǎn)被占據(jù)并達(dá)到吸附飽和狀態(tài),也可能因?yàn)槲皆贐C上的AQS分子阻塞了部分表面,使可利用吸附位點(diǎn)減少[25-26].
表3 元素分析及AQS負(fù)載量
2.2.1 日甲烷產(chǎn)量與累積甲烷產(chǎn)量 BC及BC/ AQS介導(dǎo)秸稈厭氧消化日甲烷產(chǎn)量的變化如圖3(a)所示,各試驗(yàn)組分別在第8~9d、第20~25d出現(xiàn)兩次產(chǎn)甲烷高峰期.添加BC/AQS的試驗(yàn)組均在第8d出現(xiàn)產(chǎn)甲烷高峰,而添加BC試驗(yàn)組的產(chǎn)甲烷高峰出現(xiàn)在第9d,這可能是因?yàn)锳QS參與促進(jìn)了大分子有機(jī)物的水解,提高了微生物對能量的利用效率[6].第9d后產(chǎn)甲烷量迅速下降,此時(shí)玉米秸稈中的有機(jī)質(zhì)被水解產(chǎn)酸菌利用產(chǎn)生了大量的有機(jī)酸,抑制了產(chǎn)甲烷菌的活性[27].第20~21d BC/AQS組均達(dá)到第二個(gè)產(chǎn)甲烷高峰期,而BC組及CK在第24d和26d達(dá)到高峰期,這可能是因?yàn)锽C/AQS改善了微生物的電子傳遞能力提高了系統(tǒng)內(nèi)反應(yīng)速率,AQS能夠在氧化態(tài)與還原態(tài)之間相互轉(zhuǎn)化,接受電子供體產(chǎn)生的電子并傳遞至電子受體,加速系統(tǒng)內(nèi)的氧化還原反應(yīng),進(jìn)而提高產(chǎn)甲烷效率[28].隨后產(chǎn)甲烷量下降到較低值進(jìn)入停滯期,在第35~ 40d產(chǎn)氣有所恢復(fù),但隨著有機(jī)物的減少甲烷產(chǎn)量再次下降.
各試驗(yàn)組的單位VS累積甲烷產(chǎn)量如圖3(b)所示,各試驗(yàn)組的變化趨勢基本一致,均在前33d處于上升期,之后趨于平穩(wěn).試驗(yàn)組BC/AQS-1mmol/L、BC/AQS-4mmol/L、BC/AQS-8mmol/L產(chǎn)氣效果較好,累積甲烷產(chǎn)量依次為244.02, 221.74, 219.67mL/g VS,分別比CK提高20.60%、9.59%和8.57%(<0.05),其中, BC/AQS-1mmol/L組比BC組提高12.11% (<0.05).可見,BC/AQS有效提高了厭氧消化的甲烷產(chǎn)量.AQS中的醌基結(jié)構(gòu)可以在醌/氫醌的氧化態(tài)與還原態(tài)之間反復(fù)循環(huán),使BC/AQS能夠接受并傳遞電子,為胞外電子流提供一個(gè)高效連續(xù)的路徑,從而能夠強(qiáng)化產(chǎn)甲烷[29].Wang等[12]在研究中測定了BC、BC-AQS、GAC、GAC-AQS的電子傳遞能力(ETC),發(fā)現(xiàn)BC-AQS的電子接受能力 (EAC)更高,因此BC-AQS在研究中表現(xiàn)出更高的催化性能.此外,BC作為載體除了固定AQS外,還為微生物提供了大量附著位點(diǎn),增加其與電子供、受體的接觸點(diǎn),進(jìn)一步提高電子傳遞效率[30].
在添加BC/AQS的各試驗(yàn)組之間累積甲烷產(chǎn)量由大到小為:BC/AQS-1mmol/L、BC/AQS-4mmol/ L、BC/AQS-8mmol/L、BC/AQS-6mmol/L、BC/AQS- 2mmol/L.綜上所述,BC/AQS-1mmol/L組產(chǎn)氣效果最佳.隨著AQS浸漬濃度的增加,累積甲烷產(chǎn)量呈現(xiàn)先下降再上升的趨勢,實(shí)際AQS負(fù)載量最高的BC/ AQS-2mmol/L組產(chǎn)氣效果最差,這與胡金梅等[31]的研究結(jié)果一致.AQS的存在會(huì)富集參與醌反應(yīng)有關(guān)的微生物,較高濃度的AQS促進(jìn)了反應(yīng)體系中的醌呼吸作用并與產(chǎn)甲烷途徑產(chǎn)生競爭,此外,醌呼吸在熱力學(xué)上較甲烷生成更易發(fā)生,這也使得產(chǎn)甲烷活動(dòng)被抑制[32-33].
2.2.2 產(chǎn)甲烷動(dòng)力學(xué)分析 應(yīng)用修正的Gompertz方程擬合添加不同介體材料介導(dǎo)的厭氧消化累積甲烷產(chǎn)量,結(jié)果如表4所示.各試驗(yàn)組的相關(guān)系數(shù)2均大于0.99,表明該模型能夠合理準(zhǔn)確地描述各試驗(yàn)組的產(chǎn)甲烷過程.除BC/AQS-2mmol/L組與BC/AQS-6mmol/L組外,其它各BC/AQS組的最大累積甲烷產(chǎn)量max均高于CK,其中僅BC/AQS-1mmol/L組高于BC組.最大產(chǎn)甲烷速率max能夠在一定程度上表現(xiàn)日甲烷產(chǎn)量的變化,與各試驗(yàn)組相比, BC/AQS-1mmol/L組具有最大產(chǎn)甲烷速率10.64mL/(d·g).對于延滯期, BC/ AQS-2mmol/L組的延滯期較長,其他試驗(yàn)組之間無顯著差異.綜上, BC/AQS-1mmol/L組具有最大產(chǎn)甲烷速率和最大累積甲烷產(chǎn)量,因此, BC/ AQS-1mmol/L組的介體材料更適合強(qiáng)化秸稈厭氧消化產(chǎn)甲烷.
表4 產(chǎn)甲烷動(dòng)力學(xué)分析
如圖4所示,各試驗(yàn)組VFA變化均呈現(xiàn)先增加后大幅減少最后趨于平穩(wěn)的趨勢.第5d各試驗(yàn)組總VFA濃度在910.42~1883.3mg/L之間,此時(shí)秸稈中的部分有機(jī)質(zhì)被轉(zhuǎn)化生成水溶性有機(jī)物,為水解產(chǎn)酸菌提供生長條件并被降解產(chǎn)生VFA[34].第10d VFA濃度上升到1997.0~3428.9mg/L,達(dá)到最大值,前10d有機(jī)底物被充分降解,產(chǎn)氫產(chǎn)酸菌快速生長繁殖使VFA在此期間大量累積[35].第10d除BC/AQS- 2mmol/L組(圖4(b))其他各試驗(yàn)組的總VFA濃度較對照組提高了7.73%~ 18.54%,表明BC/AQS能有效提高水解產(chǎn)酸菌的活性.隨后VFA被產(chǎn)甲烷微生物利用而迅速下降,對比第10~15d總VFA濃度的下降幅度發(fā)現(xiàn), BC/AQS- 1mmol/L組(圖4(a))下降幅度最大為77.43%, BC組(圖4(f))下降72.81%, CK組(圖4(g))下降73.84%,表明BC/AQS-1mmol/L組更有利于促進(jìn)VFA的降解,而BC/AQS-2mmol/L組不僅產(chǎn)酸效果不佳,其下降幅度也最小為57.31%,這可能與實(shí)際AQS負(fù)載量有關(guān),較高濃度的AQS會(huì)抑制VFA的產(chǎn)生,也不利于VFA降解[4].Cai等[5]的研究揭示了AQS強(qiáng)化VFA產(chǎn)生與降解的機(jī)制:發(fā)酵前期, AQS作為電子受體促進(jìn)了產(chǎn)酸菌的增值與代謝,并被氧化為AHQS/AH2QS, VFA大量產(chǎn)生;在后期, AHQS/ AH2QS為產(chǎn)甲烷菌提供電子,產(chǎn)甲烷菌利用VFA產(chǎn)生甲烷.
對VFA的組成分析表明,乙酸是各BC/AQS試驗(yàn)組的第一優(yōu)勢揮發(fā)性脂肪酸,在厭氧消化系統(tǒng)中大多數(shù)的甲烷是由乙酸分解生成的,丙酸、丁酸、戊酸及醇類等被轉(zhuǎn)化成乙酸后由乙酸型產(chǎn)甲烷菌轉(zhuǎn)化生成甲烷[36-37].在CK中發(fā)現(xiàn)較高濃度的丙酸(462.62~516.83mg/L)于第20~25d生成,丙酸難以被產(chǎn)氫產(chǎn)乙酸菌代謝,其大量積累會(huì)對乙酸化及甲烷化階段產(chǎn)生不利影響[38],而在BC/AQS-1mmol/L組中同樣發(fā)現(xiàn)第40d仍有丙酸生成,其對產(chǎn)甲烷的抑制體現(xiàn)在第30~35d較低的日甲烷產(chǎn)量與累積甲烷產(chǎn)量在此時(shí)期的波動(dòng).此外,在前30d內(nèi)BC/AQS組均有丁酸持續(xù)產(chǎn)生,平均濃度依次為239.53, 225.77, 257.84, 168.83, 240.48mg/L, BC組為226.93mg/L, CK在第15d之后不再生成丁酸,表明BC/AQS可能會(huì)促進(jìn)系統(tǒng)內(nèi)的丁酸代謝.
2.4.1 微生物群落的多樣性 通過16S rRNA高通量測序分析了BC/AQS-1mmol/L組、BC組及CK組第10, 25, 60d微生物群落的差異, α多樣性指數(shù)初步顯示了BC/AQS對微生物群落多樣性的影響(表5).其中Chao1指數(shù)用來衡量群落豐富度,其值與群落豐度呈正相關(guān).對應(yīng)于第一個(gè)產(chǎn)氣高峰期,第10d BC/AQS-1mmol/L組的Chao1指數(shù)為152明顯低于BC組(169)與CK組(168),表明此時(shí)BC/AQS- 1mmol/L組的物種豐富度較低,在第25及60d為177, Chao1指數(shù)有所增加.據(jù)報(bào)道,固定化AQS會(huì)使某些特定的細(xì)菌成為微生物群落中的優(yōu)勢物種[39].根據(jù)Shannon指數(shù)和Simpson指數(shù)評價(jià)微生物群落的多樣性.在第60d試驗(yàn)結(jié)束時(shí),BC/AQS-1mmol/L組檢測到較低的Shannon指數(shù)和較高的Simpson指數(shù),表明該厭氧消化系統(tǒng)內(nèi)微生物群落的多樣性較差.這可能是因?yàn)橄到y(tǒng)內(nèi)富集了能夠利用BC/AQS的特定菌群,對BC/AQS敏感的微生物逐漸被淘汰. Zhang等[40]在剩余污泥發(fā)酵制氫的研究中發(fā)現(xiàn), AQS的存在富集了某些與產(chǎn)氫相關(guān)的菌群;同樣, Dai等[41]發(fā)現(xiàn)添加AQS的厭氧消化系統(tǒng)與未添加AQS的系統(tǒng)在代謝途徑和微生物群落方面存在顯著差異, AQS在厭氧消化系統(tǒng)內(nèi)進(jìn)行氧化還原反應(yīng)構(gòu)建電子傳遞通道,刺激了能夠參與該電子傳遞過程的菌群,其他菌群或被抑制或沒有影響.
2.4.2 微生物群落組成變化 圖5(a)是3個(gè)試驗(yàn)組菌群在門水平的相對豐度圖.厚壁菌門(Firmicutes)、擬桿菌門(Bacteroidetes)和變形菌門(Proteobacteria)是優(yōu)勢菌門.厚壁菌門(Firmicutes)是水解過程中的主要菌群,可以水解脂肪、蛋白質(zhì)等[42],其第10d的豐度在3個(gè)試驗(yàn)組中均在80%以上. Bacteroidetes通常會(huì)在降解過程中產(chǎn)生多種裂解酶,對纖維素和半纖維素具有較強(qiáng)的降解作用[43], Bacteroidetes還是一種主要的產(chǎn)酸菌群,能生產(chǎn)乙酸、丙酸及丁酸等,因此Bacteroidetes也與VFA的濃度有關(guān)[44].第10d Bacteroidetes在BC/AQS-1mmol/L組中的豐度為7.18%,而在BC組及CK中僅為0.23%和0.16%,在第25d其豐度分別比BC組和CK高15.96%和14.18%,這可能是BC/AQS-1mmol/L組在第10d VFA濃度較高的原因之一. Proteobacteria中的細(xì)菌能夠以丙酸鹽及丁酸鹽為底物并在產(chǎn)酸過程中產(chǎn)生乙酸[45],在BC/AQS-1mmol/L組中其相對豐度從第10d的3.87%持續(xù)增長到第60d的47.13%,在BC組和CK中的變化不明顯.綜上所述,BC/AQS富集了與水解產(chǎn)酸相關(guān)的菌群,對水解酸化過程具有一定的促進(jìn)作用.
表5 不同試驗(yàn)組微生物群落的α多樣性指數(shù)
圖5(b)顯示了微生物群落在屬水平上的分布情況.在第10d、和是3個(gè)試驗(yàn)組的共有優(yōu)勢菌群,相對豐度均在10%以上,這33種菌群參與葡萄糖、氨基酸及有機(jī)酸的代謝,并將這些物質(zhì)轉(zhuǎn)化為H2,有利于產(chǎn)甲烷菌利用[46-47].此外,在第10d的BC/AQS-1mmol/L組中發(fā)現(xiàn)了、及,相對豐度依次為0.99%、4.51%和0.83%,而在BC組與CK組并未發(fā)現(xiàn)這3種菌群,表明BC/AQS的添加富集了這些微生物.具有較高的木聚糖酶活性,可促進(jìn)木質(zhì)素的降解[48],第25d BC/AQS-1mmol/L組中的相對豐度顯著增加,達(dá)到25.16%,分別比同時(shí)期的BC組及CK高5.74倍和1.89倍,表明添加BC/AQS可能會(huì)促進(jìn)木質(zhì)素降解;及具有蛋白質(zhì)水解的功能,能促進(jìn)消化系統(tǒng)內(nèi)的有機(jī)質(zhì)轉(zhuǎn)化[49].此外,在第25與60d的CK中及第60d的BC組中均發(fā)現(xiàn)是相對豐度最高的菌群(21.92%~ 39.58%),據(jù)報(bào)道是多種抗生素抗性基因(AGRs)的潛在宿主,而AGRs因其持久性及強(qiáng)傳播性已被列為新污染物[50].與此同時(shí),在BC/AQS- 1mM組中發(fā)現(xiàn)不動(dòng)桿菌屬()豐度顯著提高,在第60d相對豐度為46.96%, CK組為17.84%, BC組僅為5.98%,而不僅與水解產(chǎn)酸過程有關(guān),還可以促進(jìn)抗生素的生物降解并減少ARGs的產(chǎn)生[51],這表明BC/AQS在去除ARGs方面有一定的作用.
甲烷桿菌屬()、甲烷八疊球菌屬()和甲烷泡菌屬()是3個(gè)試驗(yàn)組中檢測到的古菌,和均是氫營養(yǎng)型產(chǎn)甲烷菌[52-53],既可利用乙酸產(chǎn)生甲烷,也可利用H2/CO2產(chǎn)生甲烷[54].第10d BC/AQS-1mmol/L組中豐度為2.90%,低于BC組(9.47%)和CK(6.89%),而在第25及60d其豐度持續(xù)下降,表明BC/AQS抑制了的活性.而和的相對豐度在BC/AQS-1mmol/L組中均呈現(xiàn)上升趨勢,并在第60d分別比對照提高了44.30%和129.83%,表明BC/AQS對促進(jìn)氫型產(chǎn)甲烷途徑更具優(yōu)勢.
綜上所述,BC/AQS在細(xì)菌群落展現(xiàn)出了良好的調(diào)節(jié)能力,多種與水解產(chǎn)酸相關(guān)、與降解復(fù)雜底物相關(guān)的菌群被富集,證明了BC/AQS在水解酸化階段的優(yōu)勢作用.在古菌方面,得到富集,BC/AQS的添加大幅提高了的豐度,但抑制了的活性,表明BC/AQS在強(qiáng)化氫營養(yǎng)型產(chǎn)甲烷方面更具優(yōu)勢,這與Cai等[5]的研究結(jié)果一致,嗜氫型產(chǎn)甲烷菌受益于AQS的電子傳遞能力,加速了甲烷的生成.
3.1 通過對BC負(fù)載AQS前后的SEM、BET和FTIR的差異分析,表明AQS成功負(fù)載于BC.根據(jù)元素含量的計(jì)算,浸漬AQS濃度為2mmol/L時(shí)達(dá)到最大實(shí)際負(fù)載量0.1282mmol/g.
3.2 BC/AQS作為外源介體材料能夠顯著強(qiáng)化秸稈厭氧消化產(chǎn)甲烷,當(dāng)AQS浸漬濃度為1mM,厭氧消化產(chǎn)甲烷效率最高,此時(shí)具有最高的max和max.單位VS累積甲烷產(chǎn)量比對照組提高了20.60%.
3.3 BC/AQS的添加在發(fā)酵前期(第10d)促進(jìn)了總VFA的生成,在中后期促進(jìn)了VFA降解.
3.4、、、不動(dòng)桿菌屬()以及甲烷八疊球菌屬()和甲烷泡菌屬()得到富集,被抑制.
[1] 霍麗麗,趙立欣,孟海波,等.中國農(nóng)作物秸稈綜合利用潛力研究[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2019,35(13):218-224. Huo L L, Zhao L X, Meng H B, et al. Research on the comprehensive utilization potential of crop straw in China [J]. Journal of Agricultural Engineering, 2019,35(13):218-224.
[2] 朱俊兆,卓 楊,華飛虎,等.提高污泥含固率對高溫厭氧消化互營產(chǎn)甲烷特性影響 [J]. 中國環(huán)境科學(xué), 2023:1-13. Zhu J Z, Zhuo Y, Hua F H, et al. Effects of increasing sludge solids content on the methane production characteristics of high-temperature anaerobic digestion with mutualization [J]. China Environmental Science, 2023:1-13.
[3] 張立國,艾冰凌,李建政,等.氧化還原介體強(qiáng)化厭氧活性污泥發(fā)酵產(chǎn)氫特征 [J]. 中國環(huán)境科學(xué), 2021,41(5):2196-2202.
[4] 班巧英,岳立峰,李建政,等.萘厭氧降解菌群的富集及氧化還原介體的強(qiáng)化[J]. 中國環(huán)境科學(xué), 2020,40(7):3150-3155. Ban Q Y, Yue L F, Li J Z, et al. Enrichment of anaerobic naphthalene degrading bacteria and enhancement of redox mediators [J]. China Environmental Science, 2020,40(7):3150-3155.
[5] Cai G, Zhu G, Zhou M, et al. Syntrophic butyrate-oxidizing methanogenesis promoted by anthraquinone-2-sulfonate and cysteine: Distinct tendencies towards the enrichment of methanogens and syntrophic fatty-acid oxidizing bacteria [J]. Bioresource Technology, 2021,332:125074.
[6] 班巧英,劉 琦,余 敏,等.氧化還原介體催化強(qiáng)化污染物厭氧降解研究進(jìn)展[J]. 科技導(dǎo)報(bào), 2019,37(21):88-96. Ban Q Y, Liu Q, Yu M, et al. Progress of redox mediator catalyzed enhanced anaerobic degradation of pollutants [J]. Science and Technology Herald, 2019,37(21):88-96.
[7] Zhou Y, Lu H, Wang J, et al. Catalytic performance of quinone and graphene-modified polyurethane foam on the decolorization of azo dye Acid Red 18 by Shewanella sp. RQs-106 [J]. Journal of Hazardous Materials, 2018,356:82-90.
[8] Olivo-Alanis D, Garcia-Reyes R B, Alvarez L H, et al. Mechanism of anaerobic bio-reduction of azo dye assisted with lawsone- immobilized activated carbon [J]. Journal of Hazardous Materials, 2018,347:423-430.
[9] Sun Y, Jia J, Huo L, et al. Heteroatom-doped biochar for CO2adsorption: a review of heteroatoms, doping methods, and functions [J]. Biomass Conversion and Biorefinery, 2023:1-13.
[10] Ren Z, Ma P, Lv L, et al. Application of exogenous redox mediators in anaerobic biological wastewater treatment: A critical review [J]. Journal of Cleaner Production, 2022,372:133527.
[11] Pan J, Ma J, Zhai L, et al. Achievements of biochar application for enhanced anaerobic digestion: A review [J]. Bioresource Technology, 2019,292:122058.
[12] Wang G, Yang S, Ding J, et al. Immobilized redox mediators on modified biochar and their role on azo dye biotransformation in anaerobic biological systems: Mechanisms, biodegradation pathway and theoretical calculation [J]. Chemical Engineering Journal, 2021, 423:130300.
[13] 周偉竹.醌改性殼聚糖強(qiáng)化印染廢水中偶氮染料厭氧生物降解 [D]. 上海:東華大學(xué), 2022. Zhou W Z. Quinone-modified chitosan for enhanced anaerobic biodegradation of azo dyes in printing and dyeing wastewater [D]. Shanghai: Donghua University, 2022.
[14] Chi M, Su X, Sun X, et al. Microbial analysis and enrichment of anaerobic phenol and p-cresol degrading consortia with addition of AQDS [J]. Water Science and Technology, 2021,84(3):683-696.
[15] APHA. Standard methods for the examination of water and wastewater [M]. American Public Health Association, Washington, DC, 2005.
[16] 楊 芳,簡宏先,高 越,等.基于細(xì)菌學(xué)研究改性生物炭對抗生素的降解機(jī)制 [J]. 中國環(huán)境科學(xué), 2021,41(4):1723-1731. Yang F, Jian H X, Gao Y, et al. Bacteriological study on the degradation mechanism of antibiotics by modified biochar [J]. China Environmental Science, 2021,41(4):1723-1731.
[17] Bu J, Hu B, Wu H, et al. Improved methane production with redox-active/conductive biochar amendment by establishing spatial ecological niche and mediating electron transfer [J]. Bioresource Technology, 2022,351.
[18] Sun Y, Yu I K M, Tsang D C W, et al. Multifunctional iron-biochar composites for the removal of potentially toxic elements, inherent cations, and hetero-chloride from hydraulic fracturing wastewater [J]. Environment International, 2019,124:521-532.
[19] 劉朝霞,牛文娟,楚合營,等.秸稈熱解工藝優(yōu)化與生物炭理化特性分析[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2018,34(5):196-203. Liu C X, Niu W J, Chu H Y, et al. Optimization of straw pyrolysis process and physicochemical characterization of biochar [J]. Journal of Agricultural Engineering, 2018,34(5):196-203.
[20] 許 晴,侯正浩,田秀蕾,等.醌基功能型高分子生物載體(PET-AQS)制備及催化生物反硝化特性研究[J]. 環(huán)境科學(xué), 2015,36(4):1374- 1378. Xu Q, Hou Z H, Tian X L, et al. Preparation of quinone-based functional polymer biocarrier (PET-AQS) and characterization of catalytic biological denitrification [J]. Environmental Science, 2015,36(4):1374-1378.
[21] Chacón F J, Sánchez-Monedero M A, Lezama L, et al. Enhancing biochar redox properties through feedstock selection, metal preloading and post-pyrolysis treatments [J]. Chemical Engineering Journal, 2020, 395:125100.
[22] Hamedi S, Shojaosadati S A. Preparation of antibacterial ZnO NP-containing schizophyllan/bacterial cellulose nanocomposite for wound dressing [J]. Cellulose, 2021,28(14):9269-9282.
[23] Zhang L, Han D, Tao Y, et al. Dense organic molecules/graphene network anodes with superior volumetric and areal performance for asymmetric supercapacitors [J]. Journal of Materials Chemistry A, 2020,8(1):461-469.
[24] Zhang X, Zhang J, Chen Y, et al. Freestanding 3D Polypyrrole@ reduced graphene oxide hydrogels as binder-free electrode materials for flexible asymmetric supercapacitors [J]. Journal of Colloid and Interface Science, 2019,536:291-299.
[25] 趙 敏,張小平,王梁嶸.硅改性花生殼生物炭對水中磷的吸附特性[J]. 環(huán)境科學(xué), 2021,42(11):5433-5439. Zhao M, Zhang X P, Wang L R. Adsorption characteristics of silica-modified peanut shell biochar on phosphorus in water [J]. Environmental Science, 2021,42(11):5433-5439.
[26] 趙思鈺.椰殼生物炭負(fù)載納米零價(jià)鐵對土霉素和鉛的去除性能與機(jī)理研究[D]. 西安:西北大學(xué), 2022. Zhao S Y. Study on the removal performance and mechanism of hygromycin and lead by coconut shell biochar loaded with nano zero-valent iron [D]. Xi¢an: Northwest University, 2022.
[27] 潘君廷,馬俊怡,邱 凌,等.生物炭介導(dǎo)雞糞厭氧消化性能研究[J]. 中國環(huán)境科學(xué), 2016,36(9):2716-2721. Pan J T, Ma J Y, Qiu L, et al. Study on anaerobic digestion performance of chicken manure mediated by biochar [J]. China Environmental Science, 2016,36(9):2716-2721.
[28] Van der Zee F P, Cervantes F J. Impact and application of electron shuttles on the redox (bio)transformation of contaminants: A review [J]. Biotechnology Advances, 2009,27(3):256-277.
[29] Hernández-Montoya V, Alvarez L H, Montes-Morán M A, et al. Reduction of quinone and non-quinone redox functional groups in different humic acid samples by Geobacter sulfurreducens [J]. Geoderma, 2012,183-184:25-31.
[30] Liu G, Dong B, Zhou J, et al. Facilitated bioreduction of nitrobenzene by lignite acting as low-cost and efficient electron shuttle [J]. Chemosphere, 2020,248:125978.
[31] 胡金梅,虞 磊,黃天寅.蒽醌-2-磺酸鈉促進(jìn)Klebsiella oxytoca GS-4-08脫色產(chǎn)氫機(jī)制與產(chǎn)能分析[J]. 環(huán)境科學(xué), 2016,37(10): 3891-3898. Hu J M, Yu L, Huang T Y. Analysis of the mechanism and energy production of sodium anthraquinone-2-sulfonate to promote the decolorization and hydrogen production of Klebsiella oxytoca GS-4- 08 [J]. Environmental Science, 2016,37(10):3891-3898.
[32] Cervantes F J, van der Velde S, Lettinga G, et al. Competition between methanogenesis and quinone respiration for ecologically important substrates in anaerobic consortia [J]. FEMS Microbiol. Ecol., 2000, 34(2):161-171.
[33] Del Angel Y A, Garcia-Reyes R B, Celis L B, et al. Quinone- reducing enrichment culture enhanced the direct and mediated biotransformation of azo dye with soluble and immobilized redox mediator [J]. Journal of Water Process Engineering, 2021,44.
[34] 董姍燕,羅進(jìn)財(cái),王欣蕓,等.pH調(diào)控方法對剩余污泥與柑橘廢渣厭氧共發(fā)酵產(chǎn)酸性能影響 [J]. 中國環(huán)境科學(xué), 2023,DOI:10.19674/j. cnki.issn1000-6923.20230823004. Dong S Y, Luo J C, Wang X Y, et al. Effect of pH regulation methods on the acid production performance of anaerobic co-fermentation of residual sludge and citrus waste residue [J]. China Environmental Science, 2023,DOI:10.19674/j.cnki.issn1000-6923.20230823004.
[35] Xue S, Wang Y, Lyu X, et al. Interactive effects of carbohydrate, lipid, protein composition and carbon/nitrogen ratio on biogas production of different food wastes [J]. Bioresource Technology, 2020,312:123566.
[36] Meegoda J N, Li B, Patel K, et al. A Review of the Processes, Parameters, and Optimization of Anaerobic Digestion [J]. International Journal of Environmental Research and Public Health, 2018,15(10): 2224.
[37] Paritosh K, Yadav M, Chawade A, et al. Additives as a Support Structure for Specific Biochemical Activity Boosts in Anaerobic Digestion: A Review [J]. Frontiers in Energy Research, 2020,8:88.
[38] Janssen P H, Kirs M. Structure of the Archaeal Community of the Rumen [J]. Applied and Environmental Microbiology, 2008,74(12): 3619-3625.
[39] Lu H, Wang J, Huang L, et al. Effect of immobilized anthraquinone- 2-sulfonate on antibiotic resistance genes and microbial community in biofilms of anaerobic reactors [J]. Journal Of Environmental Management, 2021,282:111967.
[40] Zhang L, Ban Q, Li J, et al. An enhanced excess sludge fermentation process by anthraquinone-2-sulfonate as electron shuttles for the biorefinery of zero-carbon hydrogen [J]. Environmental Research, 2022,210:113005.
[41] Dai R, Chen X, Xiang X, et al. Understanding azo dye anaerobic bio-decolorization with artificial redox mediator supplement: Considering the methane production [J]. Bioresource Technology, 2018,249:799-808.
[42] Riviere D, Desvignes V, Pelletier E, et al. Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge [J]. ISME Journal, 2009,3(6):700-714.
[43] Burns A S, Pugh C W, Segid Y T, et al. Performance and microbial community dynamics of a sulfate-reducing bioreactor treating coal generated acid mine drainage [J]. Biodegradation, 2012,23(3):415- 429.
[44] Hatamoto M, Kaneshige M, Nakamura A, et al.sp. nov., an anaerobic, cellulolytic and xylanolytic bacterium isolated from methanogenic sludge [J]. International Journal of Systematic And Evolutionary Microbiology, 2014,64:1770-1774.
[45] Nelson M C, Morrison M, Yu Z. A meta-analysis of the microbial diversity observed in anaerobic digesters [J]. Bioresource Technology, 2011,102(4):3730-3739.
[46] Rabelo C A B S, Camargo F P, Sakamoto I K, et al. Metataxonomic characterization of an autochthonous and allochthonous microbial consortium involved in a two-stage anaerobic batch reactor applied to hydrogen and methane production from sugarcane bagasse [J]. Enzyme And Microbial Technology, 2023,162:110119.
[47] Zhang C, Yang R, Sun M, et al. Wood waste biochar promoted anaerobic digestion of food waste: focusing on the characteristics of biochar and microbial community analysis [J]. Biochar, 2022, 4(1):1-12.
[48] Weiss S, Zankel A, Lebuhn M, et al. Investigation of mircroorganisms colonising activated zeolites during anaerobic biogas production from grass silage [J]. Bioresource Technology, 2011,102(6):4353-4359.
[49] Jiang X, Lyu Q, Bi L, et al. Improvement of sewage sludge anaerobic digestion through synergistic effect combined trace elements enhancer with enzyme pretreatment and microbial community response [J]. Chemosphere, 2022,286:131356.
[50] Song W, Wang X, Gu J, et al. Effects of different swine manure to wheat straw ratios on antibiotic resistance genes and the microbial community structure during anaerobic digestion [J]. Bioresource Technology, 2017,231:1-8.
[51] Aydin S, Ince B, Ince O. Assessment of anaerobic bacterial diversity and its effects on anaerobic system stability and the occurrence of antibiotic resistance genes [J]. Bioresource Technology, 2016,207: 332-338.
[52] Xu L, Peng S, Dong D, et al. Performance and microbial community analysis of dry anaerobic co-digestion of rice straw and cow manure with added limonite [J]. Biomass & Bioenergy, 2019,126:41-46.
[53] Shen R, Jing Y, Feng J, et al. Performance of enhanced anaerobic digestion with different pyrolysis biochars and microbial communities [J]. Bioresource Technology, 2020,296.
[54] Fitamo T, Treu L, Boldrin A, et al. Microbial population dynamics in urban organic waste anaerobic co-digestion with mixed sludge during a change in feedstock composition and different hydraulic retention times [J]. Water Research, 2017,118:261-271.
Effect of biochar-loaded sodium anthraquinone-2-sulfonate on anaerobic digestion.
ZHANG Yu-lei1,2, MA Jun-yi2, AI Ping1, ZHAO Li-xin2, YAO Zong-lu2*, YU Jia-dong2, LIANG Yi2
(1.College of Engineering, Huazhong Agricultural University, Wuhan 430072, China;2.Key Laboratory of Green and Low Carbon Agriculture in North China Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences, Beijing 100081, China)., 2023,43(11):5863~5872
In order to improve the efficiency of anaerobic digestion system, biochar (BC) was used as a carrier of anthraquinone-2-sulfonate (AQS) for the preparation of composite mediator (BC/AQS) that can be applied in anaerobic digestion system. The batch anaerobic digestion experiment was carried out at mesophilic condition (35℃) to explore the effect of BC/AQS on anaerobic digestion of corn straw. The results showed that when the AQS loading concentration was 1mmol/L, BC/AQS performed best in enhancing methane production efficiency. On this condition, the maximum methane production rate (max) reached 10.64mL/(d×g), the maximum cumulative methane production (max) reached 240.41mL/g, and the cumulative methane production per unit volatile solid (VS) respectively increased by 20.60% and 12.11% compared to the control and treatment solely added BC (<0.05). The archaea enriched by BC/AQS wereand. In addition, BC/AQS promoted the generation of volatile fatty acids (VFAs) in the early stage of digestion, resulting in an increase of 7.73% to 18.54% in total VFAs concentration onday 10 compared with the control. In the middle and later stages, BC/AQS promoted the degradation of VFAs. BC/AQS-1mmol/L induced the largest decrease in total VFAs concentration, with a decrease of 77.43%. The potential mechanism may be BC/AQS increased the abundance of hydrolytic acid-producing bacteria including,,and.
corn straw;anaerobic digestion;biochar;sodium anthraquinone-2-sulfonate;composite mesocosm
X705
A
1000-6923(2023)11-5863-10
張玉磊(1997-),男,內(nèi)蒙古赤峰人,碩士研究生,研究方向?yàn)檗r(nóng)業(yè)廢棄厭氧生物處理技術(shù).zhangyulei1018@163.com.
張玉磊,馬俊怡,艾 平,等.生物炭負(fù)載蒽醌-2-磺酸鈉對厭氧消化的影響 [J]. 中國環(huán)境科學(xué), 2023,43(11):5863-5872.
Zhang Y L, Ma J Y, Ai P, et al. Effect of biochar-loaded sodium anthraquinone-2-sulfonate on anaerobic digestion [J]. China Environmental Science, 2023,43(11):5863-5872.
2023-03-07
國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)資助;中國農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程;中國博士后科學(xué)基金資助項(xiàng)目(2022M713418);國家自然科學(xué)基金資助項(xiàng)目(51406064)
* 責(zé)任作者, 研究員, yaozonglu@caas.cn