劉凱,龐坤,宋建民,王新偉,王紅杰,王雯龍,胡俊,陳剛
鋼鐵成形
42CrMoA鋼熱變形過(guò)程動(dòng)態(tài)再結(jié)晶行為
劉凱1,2,3,龐坤4,宋建民5,王新偉4,王紅杰1,2,3,王雯龍1,2,3,胡俊1,陳剛1,2,3
(1.中國(guó)兵器科學(xué)研究院寧波分院,浙江 寧波 315103;2.浙江省寧波表面工程研究中心,浙江 寧波 315103;3.寧波表面工程研究院有限公司,浙江 寧波 315010;4.浙江天力機(jī)車(chē)部件有限公司,浙江 麗水 323000;5.寧波市鄞創(chuàng)科技孵化器管理服務(wù)有限公司,浙江 寧波 315010)
通過(guò)Deform-3D軟件模擬42CrMoA鋼的熱壓縮過(guò)程,研究在壓縮量為60%、變形溫度為950~ 1 100 ℃和應(yīng)變速率為0.01~10 s?1條件下42CrMoA鋼再結(jié)晶模型的可靠性。將熱壓縮試樣沿軸線對(duì)半分開(kāi),以試樣中心和邊部位置作為金相觀察區(qū),分析42CrMoA鋼的熱變形行為,將計(jì)算得到的動(dòng)態(tài)再結(jié)晶臨界模型輸入Deform-3D軟件的前處理模塊中,模擬過(guò)程的變形參數(shù)與實(shí)驗(yàn)過(guò)程的相同,通過(guò)在模擬試樣的心部和邊部位置進(jìn)行點(diǎn)追蹤,實(shí)現(xiàn)模擬結(jié)果和實(shí)驗(yàn)結(jié)果中組織的對(duì)比分析。在壓縮過(guò)程中42CrMoA鋼真應(yīng)力的變化受加工硬化和動(dòng)態(tài)軟化協(xié)同作用影響。隨著溫度的升高,試樣心部和邊部的再結(jié)晶體積分?jǐn)?shù)均有所上升,且試樣心部動(dòng)態(tài)再結(jié)晶體積分?jǐn)?shù)大于邊部的。模擬結(jié)果顯示,當(dāng)溫度由1 000 ℃升高至1 100 ℃時(shí),試樣心部動(dòng)態(tài)再結(jié)晶體積分?jǐn)?shù)由75.6%升高至89.5%,在相同條件下,通過(guò)金相觀察到試樣心部的動(dòng)態(tài)再結(jié)晶體積分?jǐn)?shù)由73.2%升高至85.3%?;贘ohnson-Mehl-Avrami模型改進(jìn)的Yada再結(jié)晶模型可以較好地描述42CrMoA鋼的動(dòng)態(tài)再結(jié)晶過(guò)程,實(shí)驗(yàn)結(jié)果與模擬結(jié)果間的相對(duì)誤差小于8.35%,驗(yàn)證了動(dòng)態(tài)再結(jié)晶模型的準(zhǔn)確性。
42CrMoA鋼;流動(dòng)應(yīng)力;本構(gòu)方程;動(dòng)態(tài)再結(jié)晶行為;微觀組織
42CrMoA鋼是具有代表性的中碳、低合金、高強(qiáng)度鋼之一。它具有強(qiáng)度高、韌性好、耐磨性好等優(yōu)點(diǎn),主要用于尺寸大且形狀復(fù)雜的受力構(gòu)件[1-4]。42CrMoA鋼通常通過(guò)熱鍛、熱軋和擠壓進(jìn)行變形,在成形過(guò)程中材料的微觀結(jié)構(gòu)和流動(dòng)應(yīng)力將發(fā)生復(fù)雜的變化,且材料內(nèi)部組織演變過(guò)程不可預(yù)見(jiàn),通過(guò)Deform-3D軟件可以直觀地了解組織的演變規(guī)律,這對(duì)42CrMoA鋼的生產(chǎn)加工具有重要意義[5-8]。
目前一些學(xué)者對(duì)42CrMoA鋼的熱變形行為進(jìn)行了大量研究。駱剛[9]在指定條件下進(jìn)行了熱壓縮實(shí)驗(yàn),得出了42CrMoA鋼流動(dòng)應(yīng)力的變化規(guī)律,然后利用雙曲正弦函數(shù)和Fields-Backofen方程建立了42CrMo鋼的峰值流動(dòng)應(yīng)力模型和Fields-Backofen模型,并通過(guò)引入軟化因子,對(duì)Fields-Backofen模型進(jìn)行了修正。Lin等[10]建立了42CrMo鋼的高溫本構(gòu)模型,并利用Zener-Hollomon參數(shù)方程解釋了流動(dòng)應(yīng)力的變化規(guī)律,通過(guò)該模型成功預(yù)測(cè)了42CrMo鋼的應(yīng)力()-應(yīng)變()曲線。藺永誠(chéng)等[11]研究了42CrMo鋼的熱壓縮流變應(yīng)力行為,通過(guò)對(duì)-數(shù)據(jù)進(jìn)行修正,建立了較為準(zhǔn)確的本構(gòu)模型,預(yù)測(cè)值的最大相對(duì)誤差僅為4.54%。代孟強(qiáng)等[12]采用42CrMoA鋼的應(yīng)力-應(yīng)變曲線構(gòu)建了動(dòng)態(tài)再結(jié)晶體積模型,且通過(guò)計(jì)算驗(yàn)證了42CrMoA鋼動(dòng)態(tài)再結(jié)晶本構(gòu)模型的準(zhǔn)確性。
隨著有限元軟件的普及,計(jì)算仿真+實(shí)驗(yàn)驗(yàn)證已成為研究材料成形的主流手段。然而,目前關(guān)于42CrMoA動(dòng)態(tài)再結(jié)晶模型的研究只停留在理論計(jì)算階段,有關(guān)與軟件相結(jié)合且與實(shí)驗(yàn)相互驗(yàn)證的研究較少。本文通過(guò)Deform-3D軟件模擬了42CrMoA鋼熱壓縮過(guò)程,利用點(diǎn)追蹤方法,研究了熱壓縮試樣同一位置組織的動(dòng)態(tài)再結(jié)晶體積分?jǐn)?shù)和整體的平均晶粒體積分?jǐn)?shù),驗(yàn)證了42CrMoA鋼動(dòng)態(tài)再結(jié)晶模型的準(zhǔn)確性,以期建立能指導(dǎo)實(shí)際生產(chǎn)的物理模型。
實(shí)驗(yàn)所用的材料為擠壓態(tài)42CrMoA鋼,其化學(xué)成分如表1所示。利用線切割設(shè)備在擠壓態(tài)42CrMoA鋼相應(yīng)位置獲取壓縮試樣,采用Gleeble-1500型熱壓縮模擬試驗(yàn)機(jī)對(duì)42CrMoA鋼進(jìn)行熱壓縮實(shí)驗(yàn)。實(shí)驗(yàn)過(guò)程示意圖和工藝路線如圖1a所示,試樣的具體尺寸與形狀如圖1b所示。熱壓縮試樣的變形參數(shù)如下:壓下量為60%、應(yīng)變速率為0.01~10 s?1、變形溫度為950~1 100 ℃,具體過(guò)程見(jiàn)圖1。在實(shí)驗(yàn)準(zhǔn)備階段,在試樣中間焊接k型熱電偶以監(jiān)測(cè)試樣溫度,將石墨片放置在試樣與設(shè)備頭部接觸處以減小試樣的摩擦和壓縮過(guò)程中的不均勻變形。為了觀察試樣心部和邊部的微觀組織,將試樣沿圖1b軸線切開(kāi),經(jīng)過(guò)機(jī)械研磨(直至7000目)、拋光(至表面沒(méi)有劃痕)及腐蝕(飽和苦味酸溶液)后,采用ZEISS-Image光學(xué)顯微鏡觀察金相組織。
表1 42CrMoA鋼的化學(xué)成分
圖1 熱壓縮試驗(yàn)示意圖(a)和壓縮前后試樣示意圖(b)
42CrMoA鋼在不同變形參數(shù)下的真實(shí)應(yīng)力()-應(yīng)變()曲線如圖2所示??梢钥吹?,應(yīng)力值受應(yīng)變量的影響較為明顯,在應(yīng)變產(chǎn)生初期,-曲線呈迅速上升趨勢(shì),直至應(yīng)力達(dá)到最大值;隨后,應(yīng)力值不再隨應(yīng)變的增大而發(fā)生顯著變化,曲線趨于穩(wěn)定,這可以用加工硬化和動(dòng)態(tài)回復(fù)來(lái)解釋[13-15]??梢詫?曲線分為3個(gè)區(qū)域:區(qū)域A,應(yīng)力值急劇升高,這是因?yàn)殡S著應(yīng)變的增大,位錯(cuò)大量產(chǎn)生,短時(shí)間內(nèi)位錯(cuò)密度明顯增大,發(fā)生增殖和纏結(jié)現(xiàn)象,此時(shí)加工硬化占據(jù)主導(dǎo)地位[16];區(qū)域B,變形所引起的材料內(nèi)部溫度的升高使材料動(dòng)態(tài)回復(fù)能力增強(qiáng)[17-18],此時(shí)-曲線的上升趨勢(shì)變緩且出現(xiàn)鋸齒形波動(dòng)直到應(yīng)力達(dá)到峰值;區(qū)域C,隨著應(yīng)變的繼續(xù)增大,材料內(nèi)部發(fā)生動(dòng)態(tài)再結(jié)晶行為[19],流動(dòng)應(yīng)力呈現(xiàn)緩慢下降的趨勢(shì)。由圖2a可知,在應(yīng)變速率由0.01 s?1增大到10 s?1過(guò)程中,達(dá)到峰值應(yīng)力所對(duì)應(yīng)的應(yīng)變值有所增大,在圖2b~d中也可以發(fā)現(xiàn)此規(guī)律。這是由于在應(yīng)變速率增大的過(guò)程中,位錯(cuò)密度增殖的速度加快,在短時(shí)間內(nèi)動(dòng)態(tài)回復(fù)過(guò)程減弱,加工硬化占據(jù)主導(dǎo)地位,所需要的變形力也會(huì)增大。
在不同變形條件下42CrMoA鋼與峰值應(yīng)力的三維柱狀圖如圖3所示??梢杂^察到,峰值應(yīng)力受溫度和應(yīng)變速率的影響較為明顯。峰值應(yīng)力會(huì)隨著箭頭(見(jiàn)圖3)所示方向呈非線性下降,由261.36 MPa(950 ℃、10 s?1)降低到60.466 MPa(1 100 ℃、0.01 s?1)。
圖2 不同溫度下42CrMoA鋼真實(shí)應(yīng)力-應(yīng)變曲線
Fig.2 True stress-true strain curves of 42CrMoA steel at different temperatures
式中:為熱力學(xué)溫度,K;為材料熱變形激活能,J/mol;為氣體常數(shù),8.314 J/(mol·K);、、、1、2、、1均為材料常數(shù)。
對(duì)式(1)~(3)分別進(jìn)行取對(duì)數(shù)處理,如式(4)~(6)所示。
將圖3中各條件下的值代入式(5)和式(6),對(duì)式(5)和式(6)進(jìn)行線性擬合,擬合結(jié)果如圖4a和圖4b所示,可以求得=0.055 75,1=7.75 97,和1的關(guān)系如式(7)所示,式(7)可以用來(lái)反映動(dòng)態(tài)軟化的應(yīng)力水平參數(shù)。
對(duì)式(1)兩邊取自然對(duì)數(shù),并將1/的值擴(kuò)大1 000倍,如式(8)所示。
將相應(yīng)的數(shù)據(jù)代入式(8),得到相應(yīng)擬合關(guān)系圖,如圖4d所示。對(duì)式(8)求偏微分并整理,如式(9)所示。
在熱加工過(guò)程中,常用Zener-Hollomon提出的溫度補(bǔ)償因子來(lái)表示應(yīng)力、溫度和應(yīng)變速率的協(xié)同關(guān)系[22-23],如式(10)所示。
對(duì)式(10)兩邊取對(duì)數(shù),如式(11)所示。
包含參數(shù)的表述如式(13)所示。
2.3.1 動(dòng)態(tài)再結(jié)晶臨界條件
為了明確42CrMoA鋼在本實(shí)驗(yàn)條件下DRX的臨界條件,現(xiàn)以950 ℃為例,繪制該條件下的加工硬化率-應(yīng)力()曲線,如圖6所示。根據(jù)Najafizadeh和Jonas提出的三階多項(xiàng)式擬合曲線[22],如式(14)所示。
式中:、、、為相關(guān)系數(shù)。通過(guò)對(duì)-曲線進(jìn)行三次多項(xiàng)式擬合,可得出、、、,對(duì)式(14)求二階偏導(dǎo)可得式(15),令式(15)得0可求得動(dòng)態(tài)再結(jié)晶臨界值c,其對(duì)應(yīng)的應(yīng)變即為臨界應(yīng)變c。得到的不同條件下的臨界應(yīng)變與峰值應(yīng)變的關(guān)系如表2所示。可知,在相同溫度下,隨著應(yīng)變速率的增大,臨界應(yīng)變c也有所增大。
圖4 (a)、(b)、(c)、(d)的關(guān)系曲線
圖5 的關(guān)系
圖6 950 ℃各應(yīng)變條件下的加工硬化率θ與流動(dòng)應(yīng)力σ之間的關(guān)系曲線
表2 各變形條件下的臨界應(yīng)變值(?c)及其與峰值應(yīng)變(?p)比值統(tǒng)計(jì)
2.3.2 動(dòng)態(tài)再結(jié)晶臨界應(yīng)變模型
Deform-3D軟件中臨界應(yīng)變和峰值應(yīng)變的關(guān)系如式(16)所示。
由表2可知,1值為0.59~0.795,本文取1=0.65。有限元軟件Deform-3D中的p表達(dá)式如式(17)所示。
式中:0為初始晶粒尺寸;1為再結(jié)晶激活能;1、1為線性回歸常數(shù)。由于0=50 μm,令1=101,并對(duì)式(17)兩邊取自然對(duì)數(shù),如式(18)所示。
圖7 ln ?p與ln 和1/T的線性關(guān)系
2.3.3 動(dòng)態(tài)再結(jié)晶動(dòng)力學(xué)模型
本文選擇的再結(jié)晶模型是基于Johnson-Mehl- Avrami模型改進(jìn)的Yada模型[24],如式(20)~(21)所示。
式中:drex為動(dòng)態(tài)再結(jié)晶體積分?jǐn)?shù);0.5為動(dòng)態(tài)再結(jié)晶體積分?jǐn)?shù)50%時(shí)的應(yīng)變;2為動(dòng)態(tài)再結(jié)晶體積分?jǐn)?shù)50%時(shí)的激活能;d、d、2、2、2為材料常數(shù)。對(duì)式(20)和(21)取對(duì)數(shù)后,代入圖2中的熱壓縮實(shí)驗(yàn)結(jié)果,利用Origin軟件進(jìn)行線性擬合,可得d=0.153 1,d=2.354 7,2=0.045 1,2=0.132 4,2=0.215 2,2=48 056.2 J/mol。因此,42CrMoA鋼的動(dòng)態(tài)再結(jié)晶動(dòng)力學(xué)方程如式(22)、式(23)所示。
2.3.4 動(dòng)態(tài)再結(jié)晶晶粒尺寸模型
在Deform-3D中,動(dòng)態(tài)再結(jié)晶晶粒尺寸模型如式(24)所示[25]。
式中:drex為動(dòng)態(tài)再結(jié)晶平均晶粒尺寸;3、、3、3、3為帶回歸系數(shù)。對(duì)式(24)取對(duì)數(shù),如式(25)所示。
令ln3+ln0+3ln=ln3,將不同變形條件下測(cè)得的drex代入式(25),可以得到3=?0.099,3=?76 166.38 J/mol,3=33 618.65。獲得的42CrMoA鋼的動(dòng)態(tài)再結(jié)晶晶粒尺寸模型方程如式(26)所示。
采用Deform-3D軟件對(duì)熱壓縮實(shí)驗(yàn)進(jìn)行數(shù)值模擬,試樣尺寸與實(shí)際尺寸相同,如圖1所示。根據(jù)2.2與2.3中的結(jié)果,將得到的流動(dòng)應(yīng)力本構(gòu)模型和動(dòng)態(tài)再結(jié)晶模型等輸入42CrMoA鋼的材料數(shù)據(jù)庫(kù)中。有限元仿真的基本參數(shù)與實(shí)際實(shí)驗(yàn)的參數(shù)相同,具體如下:初始溫度為950、1 000、1 050、1 100 ℃,應(yīng)變速率為0.01 s?1,模具溫度為400 ℃,摩擦因數(shù)為0.5,傳熱系數(shù)為2 N/(mm·s ℃),初始晶粒尺寸為50 μm。
通過(guò)模擬得到的試樣在變形溫度為1 000 ℃和1 100 ℃、應(yīng)變速率為0.01 s?1條件下材料心部(P1)和邊部(P2)的動(dòng)態(tài)再結(jié)晶體積分?jǐn)?shù)和平均晶粒體積分?jǐn)?shù)如圖8所示。由圖8a可知,材料的動(dòng)態(tài)再結(jié)晶行為主要發(fā)生在材料心部位置,在1 000 ℃時(shí),心部的動(dòng)態(tài)再結(jié)晶體積分?jǐn)?shù)達(dá)到75.6%,而邊部的動(dòng)態(tài)再結(jié)晶體積分?jǐn)?shù)只有54.4%,遠(yuǎn)遠(yuǎn)低于心部數(shù)值,這主要是因?yàn)樾牟课恢玫牡刃?yīng)變高于邊部位置的,較大的應(yīng)變使材料內(nèi)部產(chǎn)生較大的位錯(cuò)密度,促使再結(jié)晶晶粒更容易形核,動(dòng)態(tài)再結(jié)晶行為更容易發(fā)生,且由心部到邊部動(dòng)態(tài)再結(jié)晶體積分?jǐn)?shù)呈現(xiàn)逐漸降低的趨勢(shì)。同時(shí),當(dāng)溫度由1 000 ℃升高至1 100 ℃時(shí),心部動(dòng)態(tài)再結(jié)晶體積分?jǐn)?shù)由75.6%升高至89.5%,由圖8c和圖8d可知,在1 000 ℃時(shí),材料平均晶粒尺寸在15 μm以下的占比為76.5%左右,此時(shí)再結(jié)晶晶粒尺寸大多為5~17.5 μm,而在1 100 ℃時(shí),材料平均晶粒尺寸在15 μm以下的占比為50%左右,此時(shí)再結(jié)晶晶粒尺寸大多為7.5~25 μm。這是由于溫度升高使材料內(nèi)部的熱激活增強(qiáng),使動(dòng)態(tài)再結(jié)晶開(kāi)始的臨界應(yīng)變降低,從而在相同的應(yīng)變量下,溫度越高,動(dòng)態(tài)再結(jié)晶分?jǐn)?shù)越高,同時(shí)也伴隨著晶粒的長(zhǎng)大。
試樣在變形溫度為1 000 ℃和1 100 ℃、應(yīng)變速率為0.01 s?1條件下材料心部(P1)和邊部(P2)的金相組織(五角星代表再結(jié)晶晶粒、三角形代表未再結(jié)晶晶粒)如圖9所示??芍牧闲牟烤Я3叽缑黠@小于邊部的,且晶粒細(xì)化程度遠(yuǎn)大于邊部的,這是由于心部應(yīng)變量大于邊部的,用于發(fā)生再結(jié)晶的能量也大于邊部的,當(dāng)變形溫度由1 000 ℃升高至1 100 ℃時(shí),心部再結(jié)晶晶粒尺寸由3.5~15.7 μm增大到5.5~20.3 μm,再結(jié)晶體積分?jǐn)?shù)由73.2%增大到85.3%,這與模擬結(jié)果相吻合。通過(guò)金相觀察得到的結(jié)果較好地驗(yàn)證了動(dòng)態(tài)再結(jié)晶模型的可靠性,其相對(duì)誤差小于8.35%。
圖8 模擬得到不同條件下動(dòng)態(tài)再結(jié)晶和平均晶粒體積分?jǐn)?shù)分布規(guī)律
圖9 不同條件下心部與邊部的顯微組織
1)42CrMoA鋼的流變應(yīng)力行為受變形溫度和應(yīng)變速率的影響。當(dāng)溫度恒定時(shí),流動(dòng)應(yīng)力隨應(yīng)變速率的增大而增大,當(dāng)應(yīng)變速率恒定時(shí),流動(dòng)應(yīng)力隨變形溫度的升高而減小。流動(dòng)應(yīng)力曲線可以分為3個(gè)區(qū)域:區(qū)域A(應(yīng)力快速上升)、區(qū)域B(應(yīng)力達(dá)到峰值)、區(qū)域C(應(yīng)力處于穩(wěn)定)。這是加工硬化和動(dòng)態(tài)軟化協(xié)同作用的結(jié)果。42CrMoA鋼的本構(gòu)方程如下:
2)42CrMoA鋼再結(jié)晶體積分?jǐn)?shù)與溫度和應(yīng)變量呈正相關(guān),但是溫度升高會(huì)導(dǎo)致晶粒尺寸增大。
3)42CrMoA鋼動(dòng)態(tài)再結(jié)晶模型方程如下:
[1] CHEN M S, YUAN W Q, LIN Y C, et al. Modeling and Simulation of Dynamic Recrystallization Behavior for 42CrMo Steel by an Extended Cellular Automaton Method[J]. Vacuum, 2017, 146: 142-151.
[2] QUAN G Z, ZHAO L, CHEN T, et al. Identification for the Optimal Working Parameters of As-extruded 42CrMo High-Strength Steel from a Large Range of Strain, Strain Rate and Temperature[J]. Materials Science & Engineering A, 2012, 538: 364-373.
[3] GUO L, WANG F, ZHEN P, et al. A Novel Unifified Model Predicting Flow Stress and Grain Size Evolutions during Hot Working of Non-uniform As-cast 42CrMo Billets[J]. Chinese Journal of Aeronautics, 2019, 32(2): 531-545.
[4] CAI Z M, JI H C, PEI W H, et al. Hot Workability, Constitutive Model and Processing Map of 3Cr23Ni8Mn3N Heat Resistant Steel[J]. Vacuum: Technology Applications & Ion Physics: The International Journal & Abstracting Service for Vacuum Science & Technology, 2019, 165: 324-336.
[5] LIN Y C, CHEN M S, ZHONG J. Study of Static Recrystallization Kinetics in a Low Alloy Steel[J]. Computational Materials Science, 2009, 44(2): 316-321.
[6] QIN F, LI Y, QI H, et al. Deformation Behavior and Microstructure Evolution of As-cast 42CrMo Alloy in Isothermal and Non-isothermal Compression[J]. Journal of Materials Engineering & Performance, 2016, 25(11): 1-9.
[7] BOBBILI R, MADHU V. An Investigation into Hot Deformation Characteristics and Processing Maps of High-Strength Armor Steel[J]. Journal of Materials Engineering and Performance, 2015, 24(12): 4728-4735.
[8] CHEN X F, TANG B, LIU D, et al. Dynamic Recrystallization and Hot Processing Map of Ti-48Al-2Cr-2Nb Alloy during the Hot Deformation[J]. Materials Characterization, 2021, 179: 111332.
[9] 駱剛. 42CrMo熱塑性流變及動(dòng)態(tài)再結(jié)晶行為研究[D]. 重慶: 重慶大學(xué), 2010.
LUO Gang. Study on Thermoplastic Rheology and Dynamic Recrystallization Behavior of 42CrMo[D]. Chongqing: Chongqing University, 2010.
[10] LIN Y C, CHEN M S, ZHONG J. Effect of Temperature and Strain Rate on the Compressive Deformation Behavior of 42CrMo Steel[J]. Journal of Materials Processing Tech, 2008, 205(1/2/3): 308-315.
[11] 藺永誠(chéng), 陳明松, 鐘掘. 42CrMo鋼的熱壓縮流變應(yīng)力行為[J]. 中南大學(xué)學(xué)報(bào), 2008(3): 549-553.
LIN Yong-cheng, CHEN Ming-song, ZHONG Jue. Rheological Stress Behavior of Hot Compression of 42CrMo Steel[J]. Journal of Central South University, 2008(3): 549-553.
[12] 代孟強(qiáng), 桂在濤, 廖振成, 等. 42CrMoA鋼動(dòng)態(tài)再結(jié)晶行為研究[J]. 熱處理, 2022, 37(2): 1-10.
DAI Meng-qing, GUI Zai-tao, LIAO Zhen-cheng, et al. Dynamic Recrystallization Behavior of 42CrMoA Steel[J]. Heat Treatment, 2022, 37(2): 1-10.
[13] HAN Lin, ZHANG Hao-yu, CHENG Jun, et al. Thermal Deformation Behavior of Ti-6Mo-5V-3Al-2Fe Alloy[J]. Crystals, 2021, 11(10): 1245.
[14] LIU Y, GENG C, LIN Q, et al. Study on Hot Deformation Behavir and Intrinsic Workability of 6063 Aluminum Alloys Using 3D Processing Map[J]. Journal of Alloys and Compounds, 2017, 713: 212-221.
[15] LIANG Qiang, LIU Xin, LI Ping, et al. Hot Deformation Behavior and Processing Map of High-Strength Nickel Brass[J]. Metals, 2020, 10(6): 782.
[16] WANG L, LIU F, ZUO Q, et al. Prediction of Flow Stress for N08028 Alloy under Hot Working Conditions[J]. Materials and Design, 2013, 47(5): 737-745.
[17] CHEN X X, ZHAO G Q, ZHANG C S, et al. Constitutive Modeling and Microstructure Characterization of 2196 Al-Li Alloy in Various Hot Deformation Conditions[J]. Journal of Manufacturing Processes, 2020, 59: 326-342.
[18] 王曉溪, 張翔, 王華東, 等. 基于熱加工圖的6061鋁合金熱壓縮變形特性研究[J]. 特種鑄造及有色合金, 2017, 37(9): 5.
WANG Xiao-xi, ZHANG Xiang, WANG Hua-dong, et al. Research on Hot Compression Deformation Characteristics of 6061 Aluminum Alloy Based on Hot Working Diagram[J]. Special Casting and Non-ferrous Alloys, 2017, 37(9): 5.
[19] 孫文偉, 張楚函, 趙亞軍, 等. 奧氏體不銹鋼的熱壓縮本構(gòu)方程及動(dòng)態(tài)再結(jié)晶行為[J]. 機(jī)械工程材料, 2022, 46(6): 9.
SUN Wen-wei, ZHANG Chu-han, ZHAO Ya-jun, et al. Thermal Compression Constitutive Equation and Dynamic Recrystallization Behavior of Austenitic Stainless Steel[J]. Materials for Mechanical Engineering, 2022, 46(6): 9.
[20] 毛敏, 欒佰峰, 李飛濤, 等. β-T51Z合金的熱變形行為與組織演變研究[J]. 稀有金屬材料與工程, 2020, 49(4): 1211-1219.
MAO Min, LUAN Bai-feng, LI Fei-tao, et al. Study on Hot Deformation Behavior and Microstructure Evolution of β-T51Z Alloy[J]. Rare Metal Materials and Engineering, 2020, 49(4): 1211-1219.
[21] ZHANG H M, CHEN G, CHEN Q, et al. A Physically-based Constitutive Modelling of a High Strength Aluminum Alloy at Hot Working Conditions[J]. Journal of Alloys and Compounds, 2018, 743: 283-293.
[22] 趙憲明, 吳迪, 陳學(xué)軍. 60Si2Mn鋼動(dòng)態(tài)再結(jié)晶數(shù)學(xué)模型的實(shí)驗(yàn)研究[J]. 鋼鐵研究學(xué)報(bào), 2003(5): 3.
ZHAO Xian-ming, WU Di, CHEN Xue-jun. Experimental Study on Mathematical Model of Dynamic Recrystallization of 60Si2Mn Steel[J]. Journal of Iron and Steel Research, 2003(5): 3.
[23] HE A, WANG X T, XIE G L, et al. Modified Arrhenius-type Constitutive Model and Artificial Neural Network-based Model for Constitutive Relationship of 316LN Stainless Steel during Hot Deformation[J]. Journal of Iron and Steel Research International, 2015, 22(8): 721-729.
[24] KARHAUSEN K, KOPP R, SOUZA M M D. Numerical Simulation Method for Designing Thermomechanical Treatments, Illustrated by Bar Rolling[J]. Scandinavian Journal of Metallurgy, 1991, 20(6): 351-363.
[25] 肖凱, 陳拂曉. 鑄態(tài)鉛黃銅動(dòng)態(tài)再結(jié)晶模型的建立[J]. 塑性工程學(xué)報(bào), 2008(3): 132-137.
XIAO Kai, CHEN Fu-xiao. Establishment of Dynamic Recrystallization Model of Cast Lead Brass[J]. Chinese Journal of Plastic Engineering, 2008(3): 132-137.
Dynamic Recrystallization Behavior of 42CrMoA Steel during Thermal Deformation
LIU Kai1,2,3, PANG Kun4, SONG Jian-min5, WANG Xin-wei4, WANG Hong-jie1,2,3, WANG Wen-long1,2,3, HU Jun1, CHEN Gang1,2,3
(1. Inner Mongolia Metallic Materials Research Institute, Zhejiang Ningbo 315103, China; 2. Ningbo Surface Engineering Research Center, Zhejiang Ningbo 315103, China; 3. Ningbo Surface Engineering Research Institute Co., Ltd., Zhejiang Ningbo 315010, China; 4. Zhejiang Tianli Motor Parts Co., Ltd., Zhejiang Lishui 323000, China; 5. Ningbo Yinchuang Incubator Co., Ltd., Zhejiang Ningbo 315010, China)
The work aims to study the reliability of the 42CrMoA steel recrystallization model under the total compression strain of 60%, deformation temperature of 950-1 100 ℃ and strain rate of 0.01-10 s?1by Deform-3D software. The compressed sample was cut along the axis, and the center and edge position of the sample were used as the metallographic observation area. The thermal deformation behavior of 42CrMoA steel was analyzed. The calculated dynamic recrystallization model was input to the pre-processing module of Deform-3D software, and the deformation parameters of the simulation process were the same as those of the experimental process. The point tracking of the simulation results was carried out at the same position as the metallographic observation area. The results of simulation and experiment were compared and analyzed. It was found that the change of flow stress of 42CrMoA steel was affected by processing hardening and dynamic softening. The recrystallization volume fraction of the center and edge of the sample increased with the increase of temperature. The recrystallization grain volume fraction in the sample center was greater than that at the edge. The simulation results showed that when the temperature increased from 1 000 ℃ to 1 100 ℃, the dynamic recrystallization grain volume fraction of the sample center increased from 75.6% to 89.5%, and the dynamic recrystallization volume fraction of the sample center of the sample increased from 73.2% to 85.3% under the same conditions. The improved Yada recrystallization model based on the Johnson-Mehl-Avrami model can better describe the dynamic recrystallization process of 42CrMoA steel, and the relative error between simulation and test results is smaller than 8.35%, which verifies the accuracy of dynamic reconstruction models.
42CrMoA steel; flow stress; constitutive equation; dynamic recrystallization behavior; microstructure
10.3969/j.issn.1674-6457.2023.011.017
TG1442.41
A
1674-6457(2023)011-0147-09
2023-06-08
2023-06-08
寧波市2025重大科技攻關(guān)項(xiàng)目(2022Z003,2022Z056,2023Z013,2022Z002)
2025 Key Science and Technology Research Project of Ningbo (2022Z003, 2022Z056, 2023Z013, 2022Z002)
劉凱, 龐坤, 宋建民, 等. 42CrMoA鋼熱變形過(guò)程動(dòng)態(tài)再結(jié)晶行為[J]. 精密成形工程, 2023, 15(11): 147-155.
LIU Kai, PANG Kun, SONG Jian-min, et al. Dynamic Recrystallization Behavior of 42CrMoA Steel during Thermal Deformation[J]. Journal of Netshape Forming Engineering, 2023, 15(11): 147-155.
責(zé)任編輯:蔣紅晨