李忠超,賈 琪,馮 恒,唐合棋
(1.武漢市市政建設(shè)集團(tuán)有限公司,湖北 武漢 430023;2.湖南大學(xué)土木工程學(xué)院,湖南 長沙 410082)
近年來,我國城市地下空間得到飛速發(fā)展,在大規(guī)模開發(fā)城市地下空間的同時(shí),不可避免會(huì)遇到新建深基坑近接既有建筑物的情況?;娱_挖卸載會(huì)引起地層應(yīng)力釋放,從而引起周圍土體位移[1-3]和既有建(構(gòu))筑物變形[4-6]。許多學(xué)者采用了現(xiàn)場實(shí)測、數(shù)值模擬、模型試驗(yàn)和理論分析等手段研究基坑開挖對鄰近既有建筑物的影響。鄭剛等[4]通過現(xiàn)場實(shí)測和數(shù)值模擬,研究了圍護(hù)墻變形、地表沉降與建筑物變形之間的聯(lián)系。Son等[5]通過物理模型試驗(yàn)和數(shù)值模擬,結(jié)合建筑物變形和破壞的實(shí)例研究,評估砌體結(jié)構(gòu)變形與破壞之間的關(guān)系。Pickhaver等[6]將砌體結(jié)構(gòu)等效為Timoshenko梁并評估地層損失對建筑物的影響。
然而,已有研究大多探究地表沉降和建筑物變形之間的聯(lián)系,既有建筑物-土體-基坑關(guān)聯(lián)機(jī)制方面的研究較少,而圍護(hù)結(jié)構(gòu)變形的大小和形狀將導(dǎo)致不同類型的土體沉降剖面,建筑物沉降又與土體沉降密切相關(guān),因此很有必要分析建筑物-土體-基坑相互作用機(jī)理。此外,現(xiàn)有研究通常假設(shè)基坑與附近建筑物的相互作用為平面問題,而忽略了其三維空間效應(yīng),從而不能準(zhǔn)確地揭示基坑開挖引起的鄰近建筑物實(shí)際響應(yīng)規(guī)律。
本文基于武漢和平大道南延(中山路—張之洞路)工程北側(cè)某深基坑開挖工程案例,通過現(xiàn)場實(shí)測和三維數(shù)值模擬研究基坑開挖對鄰近既有建筑物的影響,獲得了基坑開挖作用下既有建筑物沉降、撓曲變形和最大角變量變化規(guī)律,揭示了基坑-墻后土體-既有建筑物相互作用機(jī)理,分析了坑角效應(yīng)對建筑物變形的影響,最后根據(jù)建筑物破壞準(zhǔn)則評估基坑開挖對鄰近建筑物的破壞程度。
基坑平面和剖面分別如圖1和圖2所示?;游挥卩徑呀ńㄖ飽|側(cè),基坑圍護(hù)結(jié)構(gòu)由C30地下連續(xù)墻結(jié)合2道混凝土支撐和1道鋼支撐組成,鋼支撐預(yù)應(yīng)力約166kN?;悠矫嫘螤罱茷樘菪?南側(cè)和北側(cè)邊長分別約28.5m和21.3m,長為94m。地下連續(xù)墻厚1m,深度為27.5m,穿越②6粉質(zhì)黏土夾粉土,進(jìn)入③粉砂夾粉土、粉質(zhì)黏土的深度約1m。基坑開挖深度為16.2m,施工順序如表1所示。建筑物外形輪廓為長條形,長58.8m,寬33.7m,采用筏板基礎(chǔ),承重體系為框架結(jié)構(gòu),層數(shù)8層,高36.5m,距基坑最小距離16.8m,建筑物立面如圖3所示。
圖1 場地平面及監(jiān)測點(diǎn)布置Fig.1 Plan view of the site and monitoring point layout
場地為典型黏土地層,屬于長江沖洪積一級階地,地下水位位于地表下14.8m。通過土體基本物理力學(xué)特性室內(nèi)外試驗(yàn),包括含水量、常規(guī)三軸試驗(yàn)、標(biāo)準(zhǔn)貫入試驗(yàn)、旁壓試驗(yàn)和剪切波速測試等,獲得了主要土層的物理性質(zhì)指標(biāo),如表2所示。
表2 土體基本物理性質(zhì)Table 2 Basic soil physical properties
基坑開挖范圍內(nèi)地層包括①3素填土、②1粉質(zhì)黏土、②2黏土和②3粉質(zhì)黏土等,基坑底以下一定范圍內(nèi)(-16.800~-26.500m)為②粉質(zhì)黏土夾粉土。根據(jù)水文地質(zhì)資料,地下水位在-14.800m以下,對基坑施工影響較小。
為研究基坑開挖對鄰近建筑物影響,現(xiàn)場布設(shè)了地表沉降監(jiān)測點(diǎn)、建筑物沉降監(jiān)測點(diǎn)和地下連續(xù)墻水平位移監(jiān)測點(diǎn)。如圖1所示,沉降監(jiān)測點(diǎn)均布置在垂直圍護(hù)結(jié)構(gòu)的斷面上,所有監(jiān)測點(diǎn)均在基坑開挖前布設(shè)完畢。監(jiān)測點(diǎn)安裝方式如下:將鋼筋錨入地表以下并用混凝土包裹加固,在建筑物墻面埋入彎成“L”形的φ14圓鋼筋并用混凝土澆筑固定,使用水準(zhǔn)儀分別監(jiān)測地表沉降和建筑物沉降;采用測斜儀測量埋設(shè)在地下連續(xù)墻中的測斜管,監(jiān)測基坑開挖期間圍護(hù)墻的水平位移。
本文采用PLAXIS 3D進(jìn)行三維有限元數(shù)值模擬,模型參數(shù)和計(jì)算步驟如下。
為便于建模及計(jì)算,地下連續(xù)墻、基坑底板、樓板和砌體建筑均采用6節(jié)點(diǎn)板單元模擬,混凝土支撐、鋼支撐、梁和柱采用3節(jié)點(diǎn)梁單元模擬,均假定為各向同性的線彈性材料。在分析中,考慮到施工缺陷等因素,結(jié)構(gòu)單元?jiǎng)偠认鄬υO(shè)計(jì)值均折減20%[7]。各結(jié)構(gòu)單元計(jì)算參數(shù)如表3所示。
表3 結(jié)構(gòu)計(jì)算參數(shù)Table 3 Structural calculation parameters
研究表明,不考慮土體小應(yīng)變現(xiàn)象會(huì)明顯高估基坑開挖引起的變形量,該結(jié)果將導(dǎo)致針對坑外建筑物的變形研究存在較大的誤差。Burland等[8]研究表明小應(yīng)變水平下土體剛度對基坑開挖引起的隧道變形有顯著影響。Brinkgreve等[9]認(rèn)為,只有考慮土體小應(yīng)變現(xiàn)象的模型才能合理地預(yù)測開挖引起的土體或隧道變形。因此,本文土體采用10節(jié)點(diǎn)楔形體單元,其應(yīng)力-應(yīng)變關(guān)系通過考慮小應(yīng)變剛度行為的小應(yīng)變土體硬化模型(HSS模型)模擬。
(1)
式中:e0為土體初始孔隙比。
γ0.7的取值范圍較小,Brinkgreve等建議可采用下式計(jì)算γ0.7:
(2)
式中:c′和φ′分別為有效黏聚力和有效內(nèi)摩擦角;σ1′為土體豎向有效應(yīng)力,計(jì)算時(shí)可取對應(yīng)土層中間位置豎向有效應(yīng)力;K0為靜止側(cè)壓力系數(shù)。
對于影響基坑開挖的主要土層①3素填土、②黏土和③粉砂夾粉土、粉質(zhì)黏土采用HSS模型,其余強(qiáng)度和剛度較大或位于基底以下較深處的土層(⑩1強(qiáng)風(fēng)化含粉砂泥巖、⑩2-2中風(fēng)化含粉砂泥巖和⑩3中微風(fēng)化含粉砂泥巖)采用莫爾-庫侖模型。本基坑開挖時(shí)間相對較短,且土體滲透系數(shù)相對較低,因此數(shù)值計(jì)算中土體強(qiáng)度指標(biāo)采用總應(yīng)力指標(biāo)(固結(jié)快剪)。各土層計(jì)算參數(shù)如表4所示。
表4 土層計(jì)算參數(shù)Table 4 Input soil parameters
為消除模型范圍對計(jì)算結(jié)果的影響,模型側(cè)向邊界取4倍基坑最大開挖深度的距離[7],即225m(長)×198m(寬)×60m(高)。邊界條件方面:模型頂面自由,底部邊界受水平和垂直位移約束,側(cè)面邊界受水平位移約束。計(jì)算過程中,不考慮基坑分區(qū)開挖和基坑降水,土體位移僅由基坑開挖引起,基坑開挖前位移重置為0。地下水位以下土體在開挖完成后設(shè)置水位深度位于開挖面,開挖土體水力條件設(shè)置為干,周圍地層的水位仍為初始潛水位,基坑周圍地層在上述水頭差下向坑底發(fā)生滲流。有限元模型如圖4所示。
圖4 三維有限元模型Fig.4 Three-dimensional FEM model
通過比較各施工階段DB1~DB4測點(diǎn)地表沉降和CX01,CX05測點(diǎn)圍護(hù)墻水平位移的實(shí)測值與數(shù)值模擬計(jì)算值來驗(yàn)證上述參數(shù)和模型的合理性。如圖5所示,地表沉降實(shí)測和計(jì)算值隨著基坑開挖卸載增大而增大,且兩者為凹槽形沉降,沉降大小也非常接近(最大實(shí)測值為-4.4mm,最大計(jì)算值為-4.6mm)。
圖5 地表沉降實(shí)測值與計(jì)算值Fig.5 Measured and calculated ground settlements
如圖1所示,CX01測點(diǎn)位于基坑南邊側(cè)墻,缺乏第1道支撐的約束作用,因此變形呈現(xiàn)懸臂形。相比而言,CX05測點(diǎn)位于基坑西邊側(cè)墻,由于存在第1道支撐約束,其變形呈現(xiàn)紡錘形。圍護(hù)墻最大實(shí)測位移為6.4mm,最大計(jì)算值為7.1mm,兩者較為吻合。
本基坑土方開挖分為3層,采用分塊分區(qū)開挖。由于圍護(hù)墻變形較小,為了搶工期,實(shí)際施工將第3層土方開挖到一定程度再施工第3道鋼支撐,所以主要變形發(fā)生在第2層土方開挖期間,后續(xù)的第3層土方開挖引起的變形增量很小。
從圖5和圖6可以發(fā)現(xiàn)實(shí)測結(jié)果與模型計(jì)算結(jié)果吻合較好,這說明本文所取的結(jié)構(gòu)參數(shù)、土體參數(shù)和計(jì)算模型是合理的。
圖6 CX01測點(diǎn)圍護(hù)墻水平位移實(shí)測值與計(jì)算值Fig.6 Measured and calculated wall deflections on CX01
Ou等[12]認(rèn)為基坑開挖引起的地表沉降剖面主要有兩種類型,即凹槽形和三角形,而基坑開挖卸載作用下引起的圍護(hù)結(jié)構(gòu)變形是導(dǎo)致地表沉降的主要原因[13],圍護(hù)結(jié)構(gòu)變形的大小和形狀將導(dǎo)致不同類型的地表沉降和土層沉降剖面,而建筑物沉降與土體沉降密切相關(guān),因此很有必要分析建筑物-土體-基坑關(guān)聯(lián)機(jī)制。
通過比較基坑開挖期間地表沉降、圍護(hù)墻變形和建筑物沉降實(shí)測值與計(jì)算值可以發(fā)現(xiàn):A—A斷面地表沉降實(shí)測值、計(jì)算值與Ou等[12]經(jīng)驗(yàn)曲線非常接近;主次沉降區(qū)的分布也與其基本吻合;圍護(hù)墻變形和建筑物沉降實(shí)測值與計(jì)算值大小和趨勢較為一致(見圖7~9),這從另一方面證明了模型與計(jì)算的準(zhǔn)確性。
圖7 A—A斷面圍護(hù)墻水平位移(CX05測點(diǎn))Fig.7 Diaphragm wall displacement of section A—A (CX05)
地下連續(xù)墻在開挖的初始階段出現(xiàn)較小的墻體側(cè)移,當(dāng)開挖進(jìn)行到較深處時(shí),墻體上部的側(cè)移受到內(nèi)支撐的約束作用,墻體側(cè)移將轉(zhuǎn)移到更深處,出現(xiàn)了內(nèi)凸形變形模式,實(shí)測最大水平位移為12.4mm,計(jì)算最大水平位移為12.0mm(見圖7)。
由于墻頂受第1道混凝土支撐約束作用幾乎不產(chǎn)生側(cè)移,只在第3道鋼支撐和基底之間有最大側(cè)移,使得緊鄰圍護(hù)墻的土體沉降很小,而墻后出現(xiàn)了明顯的沉降槽(凹槽形),即轉(zhuǎn)化為與圍護(hù)墻內(nèi)凸型變形模式一致的地表沉降剖面(見圖8)。最大沉降發(fā)生在距墻體0.5倍基坑開挖深度處,為-2.9mm;超過主要影響區(qū)[12]后,沉降曲線迅速減小;約2.3倍開挖深度處,沉降曲線的上凸撓曲最為顯著;4倍開挖深度后土體幾乎不受基坑開挖影響,這與Lim等[7]研究結(jié)果一致,即基坑開挖的影響范圍大致為4倍基坑開挖深度。
圖8 A—A斷面歸一化沉降曲線Fig.8 Normalized settlement curves of section A—A
建筑物僅跨越墻后地表沉降槽的上凸區(qū)域,并未同時(shí)跨越沉降槽最低點(diǎn)及上凸曲率最大點(diǎn)[4],其沉降曲線和地表沉降曲線在大小和趨勢上基本一致(見圖9)。但由于建筑物自身約束作用,使得地表沉降曲線的上凸區(qū)域沉降程度略微降低,沉降曲線的變化更為平緩,說明建筑物對土體約束作用較小,并和土體協(xié)調(diào)變形。而建筑物沉降受基坑開挖影響較大,隨開挖卸載量增大而增加,施加內(nèi)支撐能很好控制建筑物沉降,底板澆筑完成后建筑物基本保持穩(wěn)定不再發(fā)生沉降。
圖9 JZ01監(jiān)測點(diǎn)建筑物沉降-時(shí)間曲線Fig.9 Building settlement-time curve of point JZ01
建筑上沿建筑物長軸方向布置的墻稱為縱墻,如圖1中虛線所示,其撓曲變形分為3種:下凹撓曲變形、上凸撓曲變形和S形撓曲變形。本文中建筑物跨越墻后沉降槽的上凸區(qū)域,其撓曲變形呈現(xiàn)上凸撓曲變形(見圖10),且建筑物在沉降槽上凸曲率最大點(diǎn)時(shí)有最大上凸撓曲變形(0.9mm),即建筑物距離圍護(hù)墻38.5m時(shí),建筑物的上凸撓曲變形最為顯著。一般來說,上凸撓曲變形造成的建筑物損壞比下凹撓曲變形更嚴(yán)重[4],因?yàn)榍罢叩慕ㄖ锢炝芽p發(fā)展得更早、更快。而建筑物撓曲變形趨勢及撓曲程度取決于建筑物所跨區(qū)間內(nèi)土體沉降曲線的撓曲變形特征,土體沉降曲線又取決于圍護(hù)墻變形模式,因此在基坑開挖期間要控制好圍護(hù)墻變形,避免引起過大側(cè)移而導(dǎo)致坑外土體和建筑物出現(xiàn)過大或不均勻沉降。
圖10 建筑物縱墻墻體B-B’撓曲變形曲線Fig.10 Flexure wall (B-B’) deformation curve in longitudinal direction
基坑長寬比約為0.94,開挖深度為16.2m,長、寬尺寸較小,而深度較大,三維空間效應(yīng)顯著。基坑開挖的空間效應(yīng)主要體現(xiàn)在坑角效應(yīng)上,而建筑物恰好位于坑角處,坑外土體的不均勻沉降將導(dǎo)致建筑物發(fā)生不均勻沉降和撓曲變形,因此有必要分析坑角效應(yīng)對建筑物變形的影響。建筑物沉降云圖如圖11所示。
圖11 建筑物沉降云圖Fig.11 Contours of building settlement
如圖12所示,坑外地表沉降最大值在距基坑邊(0.5~0.8)倍開挖深度處,這與Ou等[14]在某深基坑工程中得出的結(jié)論相近。由于坑角效應(yīng)的影響,墻后地表沉降在沿基坑邊長方向上出現(xiàn)明顯的差異。d為地表沉降曲線與左上角坑角的距離,當(dāng)d=90m,位于右上角坑角處時(shí),坑角的約束作用最強(qiáng),此時(shí)有最小地表沉降-0.9mm;而當(dāng)d=0m,即位于左上角坑角處時(shí),地表沉降相比要大些,為-2.3mm,原因是右上角坑角相比更為尖銳,坑角效應(yīng)更強(qiáng),對地表沉降的約束作用更大。而在基坑長邊中部地表沉降明顯大于坑角區(qū)域的地表沉降,且距離坑角越遠(yuǎn),地表沉降越大,最大地表沉降可達(dá)-5.3mm,約為坑角處最小地表沉降的5.9倍。根據(jù)Finno等[15]的研究,坑角效應(yīng)的影響區(qū)域約為3倍開挖深度,即本文基坑長邊中部基本可忽略坑角效應(yīng)的影響,此時(shí)圍護(hù)結(jié)構(gòu)及土體的受力與變形可近似視為平面應(yīng)力-應(yīng)變狀態(tài),且土體變形達(dá)到最大。
圖12 基坑距坑角不同距離處地表沉降曲線Fig.12 Surface settlement curve at different distance from excavation corner
圖11給出了底板施工完成后基坑坑角處建筑物的整體沉降,右側(cè)數(shù)字代表建筑物的沉降,它顯示了建筑物的整體沉降和傾斜情況[16]。由于坑角效應(yīng)影響,建筑物沉降并有向基坑方向傾斜的趨勢,裂縫一般僅發(fā)生在垂直于基坑邊線的墻體上,這與丁勇春等[17]的研究是一致的。
從墻沉降與撓曲變形如圖13,14所示。圖13所指的縱墻是指與縱墻B-B’平行,且距基坑坑角不同距離(0.5,4,9,14,19,24m)的縱墻,其中縱墻B-B’距離坑角14m。從圖13和圖14可以發(fā)現(xiàn),由于坑角效應(yīng)的存在,建筑物沉降在沿基坑長邊方向上將呈現(xiàn)明顯的差異,其中,在緊鄰坑角的區(qū)域受坑角效應(yīng)影響較大使得建筑物沉降最小(-0.51mm),而在距坑角較遠(yuǎn)處沉降為-2.34mm,約為坑角處沉降的4.6倍。距坑角不同距離處的縱墻仍在地表沉降槽上凸曲率最大點(diǎn)時(shí)有最大上凸撓曲變形,其中坑角處撓曲變形為0.14mm,距坑角較遠(yuǎn)處撓曲變形為1.0mm,約為坑角處的7.1倍。這說明坑角效應(yīng)約束了建筑物的沉降和撓曲,即當(dāng)建筑物縱墻垂直于基坑邊,且距坑角距離小于1.2倍開挖深度時(shí),坑角效應(yīng)對建筑物變形起有利作用。
圖13 距坑角不同距離處縱墻沉降曲線Fig.13 Settlement curve of longitudinal wall at different distance from excavation corner
圖14 距坑角不同距離處縱墻墻體撓曲變形曲線Fig.14 Flexure deformation curves of longitudinal wall at different distance from excavation corner
王衛(wèi)東等[18]認(rèn)為角變量β與建筑物內(nèi)部結(jié)構(gòu)扭曲或開裂直接相關(guān),評估建筑物的附加變形主要是確定角變量β,所以將β作為評估基坑開挖對建筑物損壞程度的標(biāo)準(zhǔn),其計(jì)算公式如下:
βij=θij-ω=δij/Lij-ω=(δi-δj)/Lij-ω
(3)
式中:θij為兩點(diǎn)間差異沉降與兩點(diǎn)間水平距離比值;ω為剛體轉(zhuǎn)動(dòng)量;δij為任意兩點(diǎn)i,j之間的沉降之差;Lij為i,j兩點(diǎn)的水平距離。
本文中ω較小,可取其值為0,這能得到比較保守的結(jié)果。同一斷面不同兩點(diǎn)之角變量并不相同,但我們關(guān)注的是最大角變量,即最大角變量在容許范圍內(nèi),那么其余角變量也必然在范圍內(nèi)。所以很有必要分析不同斷面和同一斷面不同兩點(diǎn)之間的最大角變量,如圖15所示。
圖15 距坑角不同距離處最大角變量-兩點(diǎn)之間距離關(guān)系曲線Fig.15 Curves of maximum angular distortion-distances of any two points at different distance from excavation corner
由圖15可知,由于坑角效應(yīng)的影響,近坑角處的建筑物沉降相比遠(yuǎn)坑角處要小,使得近坑角處的最大角變量小于遠(yuǎn)坑角處的最大角變量。當(dāng)任意兩點(diǎn)間隔1m時(shí),有最大角變量,即角變量最大值近似等于建筑物沉降曲線切線斜率的夾角,最大角變量值為1.26×10-4。Bjerrum[19]總結(jié)了建筑物損壞程度與角變量之間的關(guān)系,如表5所示。
表5 角變量與建筑損傷程度的關(guān)系Table 5 Relationship between angular distortion and damage degree of building
可以發(fā)現(xiàn)最大角變量小于建筑物容許的角變量(1.26×10-4<1/750)。在基坑開挖時(shí)現(xiàn)場人員也未發(fā)現(xiàn)建筑物產(chǎn)生任何裂縫或其他破壞,即基坑施工并未對建筑物產(chǎn)生損壞,說明本文分析和現(xiàn)場實(shí)測結(jié)果基本吻合。
本文基于武漢和平大道南延(中山路—張之洞路)工程北側(cè)深基坑開挖工程,研究了基坑開挖對鄰近既有建筑物的影響規(guī)律,通過現(xiàn)場實(shí)測和三維數(shù)值模擬,得到以下結(jié)論。
1)建筑物撓曲變形趨勢及撓曲程度取決于建筑物所跨區(qū)間內(nèi)土體沉降曲線的撓曲變形特征,土體沉降曲線又取決于圍護(hù)墻變形模式,因此在開挖期間要控制圍護(hù)墻變形,避免墻體過大側(cè)移而導(dǎo)致坑外土體和建筑物出現(xiàn)過大沉降或不均勻沉降。
2)建筑物自身約束作用,使得地表沉降曲線的上凸區(qū)域沉降程度略微降低,沉降曲線的變化更為平緩,說明建筑物對土體約束作用較小。建筑物沉降受基坑開挖影響較大,隨開挖卸載量增大而增加,施加內(nèi)支撐和底板能很好控制建筑物沉降。
3)坑角效應(yīng)會(huì)明顯改變土體位移場從而導(dǎo)致建筑物在空間上發(fā)生不均勻沉降和撓曲變形。坑角角度越尖銳,坑角效應(yīng)對坑外土體的約束作用越強(qiáng),建筑物沉降和撓曲變形更小。
4)坑角效應(yīng)約束了建筑物的沉降和撓曲,即當(dāng)建筑物縱墻垂直于基坑邊,且距坑角距離小于1.2倍基坑開挖深度時(shí),坑角效應(yīng)對建筑物變形起有利作用。
5)近坑角處的最大角變量小于遠(yuǎn)坑角處的最大角變量,角變量最大值近似等于建筑物沉降曲線切線斜率的夾角。