亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        冰糖橙葉片受柑橘潰瘍病菌誘導(dǎo)脫落的離區(qū)解剖特性分析

        2023-10-27 04:35:56孫紫青羅健銘李益顏培涵劉戀秧拯民張鳳盛玲馬先鋒韓健
        果樹學(xué)報(bào) 2023年10期

        孫紫青 羅健銘 李益 顏培涵 劉戀 秧拯民 張鳳 盛玲 馬先鋒 韓健

        DOI:10.13925/j.cnki.gsxb.20230163

        摘? ? 要:【目的】觀察冰糖橙葉片受柑橘潰瘍病菌(Xanthomonas citri subsp. citri,Xcc)誘導(dǎo)脫落過程中離區(qū)組織結(jié)構(gòu)的動(dòng)態(tài)變化特征,探明冰糖橙葉片受Xcc誘導(dǎo)脫落的特征和規(guī)律?!痉椒ā客ㄟ^不同的活體接種方式和接種不同濃度的病原菌,篩選加速葉片脫落的Xcc接種方式和接種濃度,并采用樹脂切片觀察葉片脫落過程中離區(qū)組織結(jié)構(gòu)變化。【結(jié)果】與注射接種106或107 CFU·mL-1 Xcc、108 CFU·mL-1主要致病效應(yīng)子pthA4缺失的菌系Xcc 049A,以及浸泡接種108或109 CFU·mL-1 Xcc相比,注射接種108 CFU·mL-1 Xcc顯著促進(jìn)本葉脫落,翼葉未脫落,4 dpi(day post inoculation)離區(qū)細(xì)胞分化形成離層和保護(hù)層,離區(qū)細(xì)胞膨大且細(xì)胞平均面積減少?!窘Y(jié)論】冰糖橙葉片注射接種108 CFU·mL-1 Xcc后,在本葉和翼葉銜接處從外周向中軸逐漸分離,分化形成成熟的離層和保護(hù)層,最終導(dǎo)致本葉脫落。

        關(guān)鍵詞:冰糖橙;柑橘潰瘍?。蝗~片脫落;離區(qū);樹脂包埋

        中圖分類號(hào):S666.4 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2023)10-2214-15

        Anatomical observation of the characteristics of the abscission zone during leaf abscission induced by citrus canker in Bingtang orange

        SUN Ziqing1, 2, LUO Jianming1, 2, LI Yi1, 2, YAN Peihan1, 2, LIU Lian1, 2, YANG Zhengmin1, 2, ZHANG Feng1, 2, SHENG Ling1, 2, MA Xianfeng1, 2*, HAN Jian3*

        (1Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, Hunan, China; 2College of Horticulture, Hunan Agricultural University/National Center for Citrus Improvement-Changsha, Changsha 410128, Hunan, China; 3Hunan Academy of Agricultural Sciences/Hunan Horticultural Research Institute, Changsha 410125, Hunan, China)

        Abstract: 【Objective】Citrus canker is a worldwide quarantine disease caused by Xanthomonas citri subsp. citri (Xcc), which can infect various organs of citrus plants, causing severe damage and leading to defoliation and fruit drop. The mechanism of leaf abscission induced by citrus canker is still unclear, and there is limited research on the mechanisms of the leaf abscission caused by other diseases. To explore the characteristics and patterns of leaf abscission induced by Xcc in the leaves of Bingtang sweet orange, we tried to bserve the dynamic changes in the structure of separated tissue during the process of leaf abscission in Bingtang sweet orange induced by Xcc, and identify the features and rules of leaf abscission in Bingtang sweet orange induced by Xcc, to provide new insights for the study of leaf and fruit drop in citrus caused by Xcc. 【Methods】 Using the leaves of Bingtang sweet orange susceptible to citrus canker disease as materials, the different concentrations of wild-type Xcc were injected into the blades to observe the different symptoms and the time of abscission of the leaves induced by Xcc for determining the concentration of Xcc that could significantly promote leaf shedding. The different pathogenic bacteria strains were injected into the blades, and the different symptoms on the back of blades and the shedding time of the blades were observed. Using different live inoculation methods of Xcc, the suitable inoculation methods to promote leaf shedding were selected. Finally, the selected concentrations of Xcc and the method of inoculation in vivo were used to inoculate the leaves, and then the tissues of abscission zone were fixed, embedded, and resin sectioned at different time points after inoculation. The dynamic changes in the structure of the tissues in abscission zone were observed using microscope during the shedding process, and the changes in the number and the average area of the cells in unit area of the abscission zone were analyzed. 【Results】 After injection of 108 CFU·mL-1 Xcc into the leaves of Bingtang sweet orange, the back of the blades showed watery protuberant lesions at 3 dpi (day post inoculation), the blades began to fall off at 4 dpi, all blades fell off at 6 dpi, and the watery lesions completely covered the back of the blades, without forming the typical volcanic crater-like protuberant lesions of Xcc. As the concentration of Xcc decreased, the watery lesions decreased, and the time of the starting and completing of leaf shedding was correspondingly delayed. There were no obvious symptoms on the surface and no shedding of the wing leaves occurred. After injection of 108 CFU·mL-1 Xcc 049A (Xcc with the main pathogenic effector pthA4 missing) into the leaves of Bingtang sweet orange, the veins on the back of the blades showed water stain at 3 dpi, and there were no watery protuberant lesions on the blades, the blades began to fall off at the same time as the leaves injected with the same concentration of Xcc, all blades fell off at 9 dpi, 2 days after the blades were injected with the same concentration of Xcc, there were no obvious symptoms on the surface and no shedding of the wing leaves occurred. After the injection of 108 CFU·mL-1 Xoo (the same genus of Xcc but non-host bacterial strain) into the leaves of Bingtang sweet orange, no obvious symptoms were observed and no shedding of leaves occurred. After soaking inoculation of 108, 109 CFU·mL-1 Xcc, callus-like protuberant lesions appeared on the back of the blades at 8 dpi and 3 dpi, and at 14 dpi and 8 dpi, the lesions completely covered the back of the blades respectively. The blades were curled, and no shedding of the baldes or wing leaves was observed at 15 dpi; After the injection of 108 CFU·mL-1 wild-type Xcc, there was no significant difference in the tissue structure of the abscission zone compared with the control. At 4 dpi, the cells differentiated into an isolation layer and a protective layer, and the cells expanded and the average area of individual cells decreased in the abscission zone. At the junction of the separation layer and protective layer, two layers gradually separated from the outer circumference to the central axis. 【Conclusion】 The injection of 108 CFU·mL-1 of wild-type Xcc could significantly promote leaf abscission, and the injection was more effective than the soaking. Xcc with the main virulence effector pthA4 deficiency could still induce leaf abscission, but the time of abscission was significantly delayed. The leaf cells responded to the signal of abscission; the cells in the abscission zone enlarged and separated, resulting in leaf abscission.

        Key words: Bingtang sweet orange; Citrus canker; Leaf abscission; Abscission zone; Resin embedding

        柑橘潰瘍病是一種由柑橘黃單胞桿菌(Xanthomonas citri subsp. citri,Xcc)引起的世界性檢疫病害,可侵染柑橘葉片、枝梢和果實(shí),對(duì)柑橘產(chǎn)業(yè)危害嚴(yán)重[1]。柑橘不同組織受潰瘍病菌侵染后,在表層形成典型的火山口狀病斑,嚴(yán)重時(shí)導(dǎo)致落葉落果[2]。而pthA4被鑒定為在Xcc侵染過程中發(fā)揮主要作用的致病效應(yīng)子,當(dāng)pthA4從Xcc中被敲除后無法引起火山口狀病斑的形成[3]。植物的器官脫落是生命周期不同階段的一個(gè)關(guān)鍵過程,是植物界廣泛存在的一種生理現(xiàn)象,應(yīng)確保植物適時(shí)脫落不需要的器官,如葉、花、果實(shí)等[4]。它也是一個(gè)重要的農(nóng)藝性狀,對(duì)一些作物的產(chǎn)量、質(zhì)量和采后貯藏有重大影響[5-6]。

        植物通過脫落器官來適應(yīng)外界環(huán)境,器官的正常脫落與植物的生長(zhǎng)發(fā)育息息相關(guān),這對(duì)植物自身有利,如衰老、果實(shí)或種子成熟、受精等[7-8]。病原菌入侵或非生物脅迫等環(huán)境因素也可能引發(fā)器官脫落[4, 9-10]。許多研究已經(jīng)證明,植物葉片受到病原菌侵染時(shí)過早脫落,從而導(dǎo)致產(chǎn)量下降、經(jīng)濟(jì)效益降低。例如,蘋果高度感染灰霉病菌或冠狀馬松氏菌會(huì)導(dǎo)致早期葉片脫落[11-12],柑橘分枝桿菌引起的油斑病導(dǎo)致葉片脫落[13],櫻桃感染環(huán)狀尾孢菌也會(huì)出現(xiàn)嚴(yán)重的早期葉片脫落現(xiàn)象[14]。在藍(lán)莓中,葉斑病會(huì)導(dǎo)致植株在夏秋季葉片脫落過早發(fā)生,從而降低次年的產(chǎn)量[15]。葉斑病通過減少光合作用的葉面積以及降低葉的光合作用能力來降低產(chǎn)量[16-17]。上述研究均對(duì)由病害引起的葉片過早脫落對(duì)產(chǎn)量的影響進(jìn)行了討論。柑橘類果樹出現(xiàn)這種不正常脫落的危害極大,會(huì)使植株損失大量有機(jī)養(yǎng)分,從而導(dǎo)致枝梢枯萎、樹勢(shì)衰弱以及落花落果等,給柑橘產(chǎn)業(yè)帶來了巨大的經(jīng)濟(jì)損失。

        器官脫落發(fā)生在離區(qū)(abscission zone,AZ),是一個(gè)細(xì)胞形態(tài)上不同的區(qū)域,通常位于植物器官基部的固定位置,由數(shù)層較小、密集排列、細(xì)胞質(zhì)緊密的細(xì)胞組成[4, 18]。離區(qū)通常在發(fā)育的早期就已經(jīng)形成,常呈現(xiàn)為帶狀,處于靜止?fàn)顟B(tài)。離區(qū)的形成是脫落過程的第一步,但離區(qū)形成不一定啟動(dòng)脫落,只有通過進(jìn)一步的分化成熟才具備脫落的能力。在正常情況下,離區(qū)會(huì)將器官與植物母體牢固結(jié)合,當(dāng)感受到發(fā)育信號(hào)、環(huán)境變化或脅迫時(shí),離區(qū)細(xì)胞會(huì)響應(yīng)這些信號(hào),從而觸發(fā)脫落[4]。一旦觸發(fā)脫落,離區(qū)細(xì)胞膨大,各種細(xì)胞壁水解酶降解中間層(果膠層),從而使細(xì)胞分離,發(fā)生脫落。脫落后,脫落的“疤痕”上會(huì)形成一層新的保護(hù)性表皮層,以保護(hù)殘留在植物上的器官免受病原菌感染和水分流失[4, 7, 19]。

        植物器官的脫落是由發(fā)育信號(hào)和多種環(huán)境刺激誘導(dǎo)的,涉及多個(gè)調(diào)控網(wǎng)絡(luò),是一個(gè)高度協(xié)調(diào)、受到精確調(diào)控的事件,涉及細(xì)胞組織結(jié)構(gòu)改變、代謝變化和基因表達(dá)變化等多種過程[20-21]。以往有關(guān)器官脫落的研究主要集中在花器官、花梗和種子脫落的分子機(jī)制上[20, 22-23],對(duì)葉和葉柄脫落的研究較少,有關(guān)柑橘潰瘍病引起柑橘落葉的機(jī)制尚不清楚,其他關(guān)于病害引起葉片脫落機(jī)制的研究也較少。因此筆者在本研究中以易感柑橘潰瘍病的冰糖橙葉片為材料,通過采用不同的活體接種方式和活體接種不同濃度的病原菌,觀察潰瘍病菌引起葉片脫落的時(shí)間,篩選促進(jìn)冰糖橙葉片脫落的潰瘍病菌接種方式以及接種濃度。通過樹脂切片觀察葉片脫落過程中離區(qū)組織結(jié)構(gòu)的動(dòng)態(tài)變化,探索潰瘍病菌誘導(dǎo)冰糖橙葉片脫落的特征和規(guī)律,為進(jìn)一步深入研究柑橘潰瘍病引起的柑橘落葉落果現(xiàn)象提供研究思路。

        1 材料和方法

        1.1 植物材料

        筆者在本研究中所用植物材料為2年生枳砧冰糖橙無病毒容器苗,所有植物材料均放置于湖南農(nóng)業(yè)大學(xué)國(guó)家柑橘改良中心長(zhǎng)沙分中心植物培養(yǎng)室中培養(yǎng),培養(yǎng)室條件為溫度(30±1)℃、濕度80%~90%、光周期為12 h光照-12 h黑暗。植物材料接種病原菌后放置于湖南農(nóng)業(yè)大學(xué)國(guó)家柑橘改良中心長(zhǎng)沙分中心植物病理溫室中培養(yǎng),培養(yǎng)室條件為溫度(30±1)℃、濕度80%~90%、光周期為12 h光照-12 h黑暗。

        1.2 細(xì)菌菌株與活體接種

        筆者在本研究中使用的細(xì)菌菌株為柑橘潰瘍病菌DL-509菌株(以下簡(jiǎn)稱Xcc)、Xcc 049A(主要致病效應(yīng)子pthA4缺失的Xcc菌株)以及水稻白葉枯病菌(X. oryzae pv. oryzae,Xoo);Xcc由國(guó)家柑橘改良中心長(zhǎng)沙分中心分離和保存,Xcc 049A和Xoo分別由上海交通大學(xué)陳功友教授團(tuán)隊(duì)和湖南農(nóng)業(yè)大學(xué)植物保護(hù)學(xué)院戴良英教授團(tuán)隊(duì)惠贈(zèng)。

        將凍存于-80 ℃的Xcc、Xcc 049A、Xoo菌株于固體LB培養(yǎng)基上活化,28 ℃恒溫培養(yǎng)48 h。隨后挑取單菌落至5 mL液體LB培養(yǎng)基中,在28 ℃、220 r·min-1條件下培養(yǎng)18 h,取1 mL菌液至40 mL液體LB培養(yǎng)基中在28 ℃、220 r·min-1條件下培養(yǎng)12 h,4 ℃、7500 r·min-1離心5 min,去上清液后加入10 mmol·L-1 MgCl2溶液重懸,使重懸菌液OD600為0.60±0.02,此時(shí)菌液濃度為109 CFU·mL-1,隨后進(jìn)行梯度濃度稀釋,依次獲得濃度為103~109 CFU·mL-1的Xcc、Xcc 049A以及108 CFU·mL-1的Xoo菌液,103、104 CFU·mL-1的菌液用于菌落計(jì)數(shù),106~109 CFU·mL-1菌液用于注射和浸泡接種冰糖橙葉片,各15個(gè)重復(fù)。選用冰糖橙植株新梢上達(dá)到最大葉面積但未完全轉(zhuǎn)為深綠的葉片進(jìn)行活體注射和浸泡接種病原菌。每天拍照記錄接種不同病原菌的冰糖橙葉片出現(xiàn)的癥狀及變化,觀察葉片脫落的發(fā)生部位及時(shí)間,并統(tǒng)計(jì)落葉率。

        注射接種:使用1 mL無菌注射器將稀釋好的菌液緩慢注射進(jìn)葉片背部(翼葉除外)至均勻充滿葉片,注射接種完成后使用無菌脫脂棉擦干葉片表面殘留的菌液。

        浸泡接種:向稀釋好的重懸菌液中加入1/5000體積的表面活性劑Sil-wet L-77,振蕩混勻,將冰糖橙葉片(翼葉除外)置于菌液中浸泡5 s,隨后取出葉片自然風(fēng)干。

        1.3 樹脂切片

        冰糖橙葉片注射接種108 CFU·mL-1的Xcc重懸液,2、4 dpi(days post inoculation)對(duì)葉片離區(qū)取樣固定(圖1)。使用飛鷹牌剃須刀片快速切下葉片離區(qū)組織,立即放入FAA固定液中,使用JOANLAB VP-30L無油隔膜真空泵抽真空15 min,緩慢放氣,更換新的FAA固定液后置于4 ℃條件下固定1~2 d用于后續(xù)試驗(yàn)。參照周乃富等[23]報(bào)道的方法進(jìn)行離區(qū)樣品軟化,全程注意密封避免試劑揮發(fā)。在室溫條件下,使用梯度體積分?jǐn)?shù)的乙醇進(jìn)行脫水,70%乙醇處理1 h,85%乙醇處理1 h,95%乙醇處理1.5 h,無水乙醇處理1 h,更換新的無水乙醇處理1 h。脫水完成后使用樹脂(KULZER Technovit 7100)進(jìn)行包埋,待樹脂固化后置于65 ℃恒溫處理24 h,隨后使用超薄切片機(jī)(Leica EM UC6)進(jìn)行超薄組織切片,采用組織縱向切片,切片示意圖如圖1-A~B所示。切片厚度設(shè)置為5 μm,切片置于0.1%甲苯胺藍(lán)染液中展片,在65 ℃恒溫條件下烘片10 min,烘片完成后使用Zeiss Axio Imagine 2.0顯微鏡觀察切片。

        1.4 離區(qū)細(xì)胞計(jì)數(shù)及單個(gè)細(xì)胞平均面積分析

        冰糖橙葉片注射接種108 CFU·mL-1的Xcc,在2、4 dpi葉片離區(qū)的縱向組織切片中,取由外向內(nèi)的切片#4(圖1-B切片示意圖#4)進(jìn)行單位面積(28 476.56 μm2)離區(qū)細(xì)胞計(jì)數(shù)及單個(gè)細(xì)胞平均面積分析。細(xì)胞計(jì)數(shù)使用Image J軟件,顯著性分析使用Excel 2016軟件,繪圖使用Chiplot Online(https://www.chiplot.online/)。

        2 結(jié)果與分析

        2.1 不同濃度Xcc誘導(dǎo)冰糖橙葉片脫落差異分析

        為了篩選適宜的促進(jìn)冰糖橙葉片脫落的Xcc接種濃度,使用106~108 CFU·mL-1的Xcc注射接種冰糖橙葉片,置于植物病理溫室中觀察葉片感病癥狀的特征并統(tǒng)計(jì)分析落葉率。結(jié)果顯示,注射接種108 CFU·mL-1 Xcc后,3 dpi本葉背面出現(xiàn)水漬狀突起病斑,4 dpi本葉開始脫落,落葉率為31%,6 dpi本葉全部脫落,水漬狀病斑完全覆蓋葉片背面,未形成潰瘍病典型的火山口狀突起病斑(圖2-A、D),離區(qū)AZ為本葉脫落部位,翼葉表面未觀察到明顯癥狀且未發(fā)生脫落(圖1-A、C);注射接種107 CFU·mL-1 Xcc后,3 dpi本葉背面的水漬狀突起病斑較注射接種108 CFU·mL-1 Xcc減少,6 dpi葉片開始脫落,落葉率為26%,8 dpi葉片全部脫落(圖2-A~B,D),本葉脫落部位與注射接種108 CFU·mL-1 Xcc相同,翼葉表面未觀察到明顯癥狀且未發(fā)生脫落(圖1-A、C);注射接種106 CFU·mL-1 Xcc后,4 dpi本葉背面出現(xiàn)水漬狀突起病斑,病斑較注射接種108 CFU·mL-1和107 CFU·mL-1 Xcc減少,9 dpi葉片開始脫落,落葉率為24%(圖2-A~D),本葉脫落部位與注射接種108 CFU·mL-1 Xcc相同,翼葉表面未觀察到明顯癥狀且未發(fā)生脫落(圖1-A、C)。冰糖橙葉片注射接種108 CFU·mL-1的Xcc導(dǎo)致葉片背面水漬狀病斑增多,促進(jìn)葉片脫落,即隨著Xcc濃度增加,葉片脫落的時(shí)間縮短。

        2.2 不同病原菌誘導(dǎo)冰糖橙葉片脫落差異分析

        野生型Xcc的致病效應(yīng)子pthA4是誘導(dǎo)柑橘葉片形成典型潰瘍病癥狀的主要調(diào)節(jié)因子[25],但pthA4在冰糖橙葉片受Xcc誘導(dǎo)落葉中的功能尚不明確。Xcc 049A為pthA4缺失的Xcc菌株,Xoo與Xcc同屬于黃單胞桿菌屬,是引起水稻白葉枯病的水稻致病變種,主要危害水稻,但其不危害柑橘,在柑橘葉片和果實(shí)上均不表現(xiàn)癥狀。注射接種108 CFU·mL-1 Xcc顯著促進(jìn)冰糖橙葉片脫落,因此使用108 CFU·mL-1的Xcc、Xcc 049A、Xoo菌液侵染冰糖橙葉片,置于植物病理溫室中觀察葉片出現(xiàn)癥狀的特征并統(tǒng)計(jì)分析落葉率。結(jié)果顯示,注射接種Xcc后,3 dpi本葉背面出現(xiàn)水漬狀突起病斑,4 dpi本葉開始脫落,落葉率為31%,6 dpi本葉全部脫落,水漬狀病斑完全覆蓋本葉背面(圖3-A,D),離區(qū)AZ為本葉脫落部位,翼葉表面未觀察到明顯癥狀且未發(fā)生脫落(圖1-A,C);注射接種Xcc 049A后,3 dpi本葉背面葉脈呈水漬狀,葉片未出現(xiàn)水漬狀突起病斑,6 dpi本葉脫落,落葉率為36%,時(shí)間較注射接種相同濃度的Xcc延遲2 d(圖3-A~B,D),本葉脫落與注射接種Xcc的葉片相同,翼葉未觀察到明顯癥狀且未發(fā)生脫落(圖1-A,C);而注射接種Xoo后,葉片表面未觀察到明顯癥狀且未發(fā)生脫落(圖3-C~D),表明注射接種Xcc引起的葉片脫落中,致病效應(yīng)子pthA4顯著促進(jìn)冰糖橙葉片脫落,可能還有其他因素影響Xcc誘導(dǎo)葉片脫落的發(fā)生。

        2.3 不同接種方式誘導(dǎo)冰糖橙葉片脫落差異分析

        不同的潰瘍病菌接種量引起的冰糖橙葉片感病癥狀和葉片脫落時(shí)間不同,病原菌濃度越高,病斑越多,顯著促進(jìn)葉片脫落。為了探明不同的Xcc接種方式是否影響冰糖橙葉片出現(xiàn)的癥感病狀以及冰糖橙葉片受Xcc誘導(dǎo)的落葉率,使用108 CFU·mL-1的Xcc分別采用注射和浸泡兩種不同方式活體接種冰糖橙葉片,置于植物病理溫室中觀察葉片出現(xiàn)癥狀的特征并統(tǒng)計(jì)分析落葉率。結(jié)果顯示,注射接種108 CFU·mL-1 Xcc后,3 dpi本葉背面出現(xiàn)水漬狀突起病斑,4 dpi本葉開始脫落,落葉率為31%,6 dpi本葉全部脫落,水漬狀病斑完全覆蓋本葉背面(圖4-A,D),離區(qū)AZ為本葉脫落部位,翼葉表面未觀察到明顯癥狀且未發(fā)生脫落(圖1-A,C);浸泡接種108 CFU·mL-1 Xcc后,8 dpi本葉背面出現(xiàn)愈傷狀突起病斑,14 dpi病斑完全覆蓋整個(gè)葉片背面,葉片卷曲,15 dpi未觀察到本葉或翼葉脫落(圖4-B,D);為了探索浸泡接種Xcc的方式能否誘導(dǎo)冰糖橙葉片脫落,將Xcc菌液濃度增高至109 CFU·mL-1 Xcc后,3 dpi本葉背面出現(xiàn)愈傷狀突起病斑,8 dpi病斑完全覆蓋整個(gè)本葉背面,葉片卷曲,15 dpi仍未觀察到本葉或翼葉脫落(圖4-B,D)。以上結(jié)果表明,不同的病原菌接種方式導(dǎo)致葉片發(fā)病癥狀產(chǎn)生差異,注射接種較浸泡接種顯著促進(jìn)冰糖橙葉片脫落。因此使用注射接種108 CFU·mL-1 Xcc促進(jìn)冰糖橙葉片脫落。

        2.4 Xcc誘導(dǎo)冰糖橙葉片脫落過程中離區(qū)組織結(jié)構(gòu)變化

        在器官脫落過程中,離區(qū)響應(yīng)脫落信號(hào)分化形成離層和保護(hù)層,細(xì)胞分離最終導(dǎo)致器官脫落[3]。為了觀察Xcc誘導(dǎo)冰糖橙葉片脫落過程中離區(qū)組織結(jié)構(gòu)的動(dòng)態(tài)變化過程,在冰糖橙葉片注射接種108 CFU·mL-1 Xcc后,0、2、4 dpi對(duì)葉片離區(qū)AZ取樣固定,經(jīng)樹脂切片后在顯微鏡下觀察離區(qū)組織結(jié)構(gòu)的變化特征。結(jié)果顯示,在正常冰糖橙葉片離區(qū)AZ的縱向切片中,切片#1中觀察到本葉與翼葉的表皮細(xì)胞之間貼近但未發(fā)生連接,切片#2~#7中觀察到離區(qū)已經(jīng)形成,為細(xì)胞質(zhì)緊密、排列密集的小細(xì)胞群(圖5);2 dpi離區(qū)AZ組織結(jié)構(gòu)較對(duì)照無明顯變化(圖6~圖8);在4 dpi離區(qū)AZ中,切片#1中觀察到離區(qū)組織結(jié)構(gòu)與對(duì)照相似,切片#2~#4中觀察到離區(qū)細(xì)胞分離,離層和保護(hù)層形成,切片#5~#7中觀察到離區(qū)細(xì)胞分層,排列整齊,細(xì)胞未分離(圖6~圖8),即離區(qū)AZ在離層和保護(hù)層銜接處從外周向中軸逐漸分離形成兩層,分化形成成熟的離層和保護(hù)層,最終導(dǎo)致本葉脫落。以上結(jié)果表明,Xcc誘導(dǎo)冰糖橙葉片離區(qū)AZ中細(xì)胞分離,導(dǎo)致本葉脫落。

        2.5 離區(qū)細(xì)胞計(jì)數(shù)及單個(gè)細(xì)胞平均面積分析

        隨著器官脫落的發(fā)生,離區(qū)細(xì)胞會(huì)發(fā)生膨大,這是脫落的主要驅(qū)動(dòng)力[26-28]。為了探明Xcc誘導(dǎo)冰糖橙葉片脫落過程中離區(qū)細(xì)胞是否膨大,在冰糖橙葉片注射接種108 CFU·mL-1 Xcc后,對(duì)葉片離區(qū)0、2、4 dpi的組織縱切片的切片#4中的離區(qū)細(xì)胞進(jìn)行單位面積(28 476.56 μm2)細(xì)胞計(jì)數(shù)以及單個(gè)細(xì)胞平均面積分析。分析結(jié)果顯示,注射接種108 CFU·mL-1 Xcc后,2、4 dpi離區(qū)細(xì)胞數(shù)量較對(duì)照減少,單個(gè)細(xì)胞平均面積較對(duì)照增大(圖9)。表明Xcc誘導(dǎo)冰糖橙葉片離區(qū)細(xì)胞膨大,導(dǎo)致本葉脫落。

        3 討 論

        植物的器官脫落是生命周期不同階段的一個(gè)關(guān)鍵過程,是植物界廣泛存在的一種生理現(xiàn)象,確保植物適時(shí)脫落不需要的器官如葉、花、果實(shí)等[4]。柑橘潰瘍病可侵染柑橘葉片、枝梢和果實(shí),嚴(yán)重時(shí)導(dǎo)致落葉落果,對(duì)柑橘產(chǎn)業(yè)危害嚴(yán)重。病原菌侵染導(dǎo)致的葉片脫落通常發(fā)生在感染后期,而在落葉中存活的病原菌則可能引起下一輪的侵染。Patharkar等[10]的研究表明,擬南芥莖生葉受假單胞菌侵染后葉片脫落,這個(gè)過程與宿主的防御信號(hào)有關(guān)。Teper等[29]的研究表明,金橘接種Xcc后,免疫反應(yīng)增強(qiáng),例如PR基因的上調(diào)、水楊酸的積累、過敏反應(yīng)、細(xì)胞死亡和早期葉片脫落,有助于金橘抵抗Xcc。所以葉片脫落可能是植物應(yīng)對(duì)病原體侵染的一種主動(dòng)防御機(jī)制,在其他免疫反應(yīng)不能抑制病原體定殖時(shí),通過脫落受感染的葉片,減少植物體內(nèi)的病原菌,防止病原菌傳播到健康部位[10, 29]。結(jié)果顯示,Xcc能誘導(dǎo)冰糖橙葉片脫落,注射接種108 CFU·mL-1 Xcc顯著促進(jìn)葉片脫落,隨著Xcc濃度的降低,Xcc誘導(dǎo)冰糖橙葉片脫落的程度降低。筆者在本試驗(yàn)中使用不同的細(xì)菌菌株以及不同接種方式接種病原菌至葉片內(nèi),結(jié)果表明,注射接種Xcc誘導(dǎo)了冰糖橙葉片的脫落,且加大Xcc接種濃度顯著促進(jìn)了柑橘葉片脫落,相較于葉片自然感病后落葉和其他的病原菌接種方式,可明顯縮短試驗(yàn)周期,便于研究柑橘潰瘍病引起的葉片脫落發(fā)生機(jī)制。筆者在本研究中僅觀察到Xcc侵染冰糖橙葉片后出現(xiàn)早期葉片脫落,尚未探明葉片脫落過程中免疫反應(yīng)是否增強(qiáng),如PR基因的上調(diào)、水楊酸的積累、過敏反應(yīng)以及細(xì)胞死亡是否被誘導(dǎo)等,探明Xcc誘導(dǎo)的柑橘葉片脫落過程中的免疫調(diào)控網(wǎng)絡(luò)具有重要意義。冰糖橙受Xcc侵染導(dǎo)致葉片脫落可能也是葉片響應(yīng)病原菌的入侵,啟動(dòng)自身的防御機(jī)制,從而保護(hù)未受病原菌侵染的其他組織和器官。如果葉片脫落是植物主動(dòng)的防御反應(yīng),那么防御增強(qiáng)突變體可能會(huì)比野生型植株更易發(fā)生葉片脫落[30]。據(jù)報(bào)道,金橘對(duì)Xcc具有抗性,其對(duì)Xcc的免疫反應(yīng)是由其主要致病效應(yīng)子pthA4介導(dǎo)的,Xcc中pthA4的突變不會(huì)降低金橘葉片中病原菌的生長(zhǎng)量,但消除了潰瘍病癥狀、細(xì)胞死亡和葉片脫落等免疫反應(yīng)[29]。結(jié)合筆者課題組前期鑒定的柑橘屬獨(dú)特抗柑橘潰瘍病種質(zhì)枸櫞C-05的葉片在接種105 CFU·mL-1 Xcc后部分葉片在6~8 dpi脫落,與接種107 CFU·mL-1 Xcc的冰糖橙葉片脫落時(shí)間接近,表明Xcc誘導(dǎo)的葉片脫落可能與柑橘對(duì)Xcc的防御機(jī)制相關(guān),后續(xù)需進(jìn)一步驗(yàn)證在同樣的病原菌侵染條件下,柑橘抗病種質(zhì)是否會(huì)更容易發(fā)生葉片脫落。除pthA4外,金橘葉片接種效應(yīng)子xps突變的Xcc,表現(xiàn)出免疫反應(yīng)和葉片脫落的延遲,但病原菌的生長(zhǎng)量少于野生型Xcc,所以免疫反應(yīng)的減少可能是由于xps的缺失,或xps突變的Xcc生長(zhǎng)量過少,未達(dá)到病原體識(shí)別需要的細(xì)菌種群閾值[29]。本研究結(jié)果表明,與接種108 CFU·mL-1的Xcc相比,冰糖橙葉片接種同濃度的Xcc 049A后,脫落時(shí)間顯著延遲,說明pthA4的存在能顯著促進(jìn)葉片脫落,其他效應(yīng)子可能也參與誘導(dǎo)柑橘葉片脫落[31-35]。但筆者尚未對(duì)接種Xcc和Xcc 049A后的冰糖橙葉片中病原菌的生長(zhǎng)量進(jìn)行檢測(cè),只探討了pthA4在誘導(dǎo)冰糖橙葉片脫落過程中的作用,尚未研究其他致病效應(yīng)子在誘導(dǎo)葉片脫落中的功能。探明潰瘍病菌致病效應(yīng)子在誘導(dǎo)葉片脫落中的作用,可作為未來研究方向。此外,擬南芥葉片上細(xì)菌侵染位置決定了葉片脫落的程度,當(dāng)葉片局部被侵染時(shí),只有部分細(xì)胞發(fā)生分離[10]。在本研究中,加大病原菌濃度,顯著促進(jìn)Xcc誘導(dǎo)的冰糖橙本葉脫落,但對(duì)于Xcc侵染葉片的位置以及局部性是否會(huì)影響葉片的脫落和離區(qū)的分化尚不清楚,未來可以深入研究。Xcc含量檢測(cè)結(jié)果表明,沙田柚葉片本葉中注射接種Xcc后在翼葉中也檢測(cè)到少量Xcc。本研究表明,Xcc誘導(dǎo)的冰糖橙葉片脫落僅限于本葉脫落,而翼葉不發(fā)生脫落,可能是由于Xcc注射接種都是在冰糖橙本葉,本葉中Xcc含量顯著多于翼葉。筆者僅在15 d的試驗(yàn)觀察期間記錄葉片脫落發(fā)生的部位以及統(tǒng)計(jì)落葉率,15 dpi往后翼葉是否發(fā)生脫落尚未可知。或者本葉的脫落以及翼葉不發(fā)生脫落是由冰糖橙植株本身響應(yīng)Xcc而啟動(dòng)的防御機(jī)制,與Xcc侵染的部位無明顯關(guān)聯(lián),但此方面的內(nèi)容尚不清楚,未來可進(jìn)一步研究。有關(guān)柑橘潰瘍病誘導(dǎo)柑橘果實(shí)脫落的機(jī)制尚不清楚,但本研究為解釋病原菌引起的落葉落果現(xiàn)象提供了新的思路,未來有關(guān)柑橘果實(shí)脫落的研究應(yīng)作為重要的方向。

        與動(dòng)物細(xì)胞不同,大多數(shù)植物細(xì)胞都被細(xì)胞壁的中間層緊緊地粘在一起,嚴(yán)格阻礙鄰近細(xì)胞的細(xì)微位置變化。離區(qū)是器官脫離植物母體的位置,離區(qū)細(xì)胞在未發(fā)育成熟時(shí)并不具備脫落的功能,只有在感受到脫落信號(hào)后,通過進(jìn)一步分化,形成離層和保護(hù)層,從而啟動(dòng)脫落[4, 36]。離區(qū)常伴隨著器官發(fā)育成熟而形成,但只有在感受到特定的脫落信號(hào)后,才會(huì)啟動(dòng)脫落進(jìn)程[37]。筆者在本研究中通過對(duì)冰糖橙葉片受Xcc誘導(dǎo)脫落過程中離區(qū)組織的樹脂切片完整展示了離區(qū)組織結(jié)構(gòu)的動(dòng)態(tài)變化過程。結(jié)果顯示,正常的冰糖橙葉片中離區(qū)已經(jīng)存在,為相對(duì)較小、細(xì)胞質(zhì)緊密的細(xì)胞群,處于靜止?fàn)顟B(tài),不具備成熟離區(qū)的功能;在Xcc侵染后,離區(qū)AZ完成了離層與保護(hù)層的分化,離區(qū)細(xì)胞在離層和保護(hù)層銜接處從外周向中軸逐漸分離,最終導(dǎo)致葉片脫落。Wilmowicz等[38-39]的研究表明,在脫落的過程中EPIP肽誘導(dǎo)特定的細(xì)胞修飾,如細(xì)胞分裂反應(yīng)的高細(xì)胞活性、細(xì)胞質(zhì)中的合成顆粒和大量胞間連絲的出現(xiàn)。筆者在本研究中僅使用樹脂切片展示了Xcc誘導(dǎo)的冰糖橙葉片脫落過程中離區(qū)組織結(jié)構(gòu)的動(dòng)態(tài)變化,未能觀察到離區(qū)細(xì)胞的超微結(jié)構(gòu),未來可通過透射電子顯微鏡深入觀察離區(qū)細(xì)胞超微結(jié)構(gòu)的變化。所有的細(xì)胞分離事件都可能需要力的作用,就像種子干燥時(shí)種子莢壁上的張力一樣,脫落的力量可能來自離區(qū)細(xì)胞的擴(kuò)張,或者在有果實(shí)的情況下可能來自重力[40]。早在20世紀(jì),科學(xué)家們就認(rèn)為離區(qū)細(xì)胞擴(kuò)大產(chǎn)生的機(jī)械剪切力是脫落的主要驅(qū)動(dòng)力[26]。隨著脫落的發(fā)生,離區(qū)細(xì)胞會(huì)發(fā)生膨大[27-28]。筆者在本研究中發(fā)現(xiàn)在Xcc誘導(dǎo)的冰糖橙葉片脫落過程中,離區(qū)細(xì)胞數(shù)量減少,單個(gè)細(xì)胞平均面積增大,說明離區(qū)細(xì)胞在葉片脫落前膨大,這可能為葉片脫落提供了驅(qū)動(dòng)力。Du等[41]通過分析蒺藜苜蓿葉片脫落過程中葉柄的斷裂強(qiáng)度和抖動(dòng)脫落試驗(yàn)證明了脫落突變體葉片脫落的能力。本研究中,尚未明確Xcc誘導(dǎo)的冰糖橙脫落過程中離區(qū)的斷裂強(qiáng)度,未來可進(jìn)一步研究。在Xcc誘導(dǎo)冰糖橙葉片脫落過程中,葉片脫落僅發(fā)生于離區(qū)AZ,葉柄處不發(fā)生脫落。受Xcc誘導(dǎo)發(fā)生脫落的離區(qū)AZ和葉柄處潛在的離區(qū)之間,組織結(jié)構(gòu)的變化是否存在差異,細(xì)胞是否膨大等都尚未可知。探明不同離區(qū)之間的差異變化,對(duì)于更好地理解冰糖橙葉片受Xcc誘導(dǎo)脫落具有重要意義。Lee等[42]的研究表明,在病原菌入侵后,擬南芥葉片中木質(zhì)素積累,形成一種類似凱氏帶的物理屏障,空間上限制了病原菌的傳播,從而終止其生長(zhǎng)。在擬南芥花器官脫落過程中,離區(qū)細(xì)胞分化形成兩種類型的細(xì)胞,殘留的器官表面形成表皮細(xì)胞,起保護(hù)作用,隨花器官脫落而脫落的離區(qū)細(xì)胞則產(chǎn)生一種木質(zhì)素構(gòu)成的蜂窩狀結(jié)構(gòu),起到機(jī)械“支撐”的作用,在空間上將細(xì)胞壁的破裂限制于此處。所以木質(zhì)素的積累可以在空間上限制病原菌的傳播[7]。在Xcc誘導(dǎo)的冰糖橙葉片脫落過程中,離區(qū)細(xì)胞是否也會(huì)分化形成兩種類型的細(xì)胞并積累木質(zhì)素,一方面確保脫落的精準(zhǔn)發(fā)生,另一方面防止病原菌的傳播,因此葉片脫落僅發(fā)生于離區(qū)AZ中,但這方面的內(nèi)容還不清楚,未來可作為重要的研究方向。

        在溫帶氣候中,最顯著的細(xì)胞分離過程是秋天樹木的葉片脫落,為過冬做準(zhǔn)備[43]。光周期和較冷的溫度會(huì)在秋季引發(fā)葉片脫落[44]。葉片衰老中第一個(gè)可見的表型變化是葉片顏色的變化,這是由于葉綠素的優(yōu)先分解并伴隨著葉綠體的分解[44]。在柑橘亞科中,除每年秋季落葉的枳為落葉果樹,其余均為常綠果樹,筆者在本研究中使用的植物材料冰糖橙葉片生長(zhǎng)周期一般為2~3 a(年)。在Xcc誘導(dǎo)的枳和冰糖橙葉片脫落過程中,葉片在脫落前會(huì)逐漸變黃,但在Xcc誘導(dǎo)柑橘葉片脫落過程中葉色的變化與枳自然落葉葉色變化之間是否存在差異,不同誘因誘導(dǎo)的柑橘葉片脫落的部位是否存在差異,以及離區(qū)的組織結(jié)構(gòu)變化是否相同,未來需深入研究。

        4 結(jié) 論

        Xcc的注射接種方式較其他接種方式能夠有效誘導(dǎo)冰糖橙葉片脫落,且Xcc接種濃度越高,葉片脫落越快;其次,含有致病效應(yīng)子pthA4的Xcc會(huì)加速葉片脫落,葉片離區(qū)的組織切片動(dòng)態(tài)觀察表明離區(qū)細(xì)胞會(huì)逐步膨大并由外向內(nèi)分離,最后葉片脫落。

        參考文獻(xiàn) References:

        [1] 胡天其. 柑桔潰瘍病的發(fā)生與防治的研究綜述[J]. 世界農(nóng)業(yè),1988(7):30-32.

        HU Tianqi. Review on the occurrence and control of Citrus canker disease[J]. World Agriculture,1988(7):30-32.

        [2] STOVER E,DRIGGERS R,RICHARDSON M L,HALL D G,DUAN Y P,LEE R F. Incidence and severity of Asiatic Citrus canker on diverse Citrus and Citrus-related germplasm in a Florida field planting[J]. HortScience,2014,49(1):4-9.

        [3] HU Y,ZHANG J L,JIA H G,SOSSO D,LI T,F(xiàn)ROMMER W B,YANG B,WHITE F F,WANG N,JONES J B. Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(4):E521-E529.

        [4] PATHARKAR O R,WALKER J C. Advances in abscission signaling[J]. Journal of Experimental Botany,2018,69(4):733-740.

        [5] ZHAO W,BALDWIN E A,BAI J H,PLOTTO A,IREY M. Comparative analysis of the transcriptomes of the calyx abscission zone of sweet orange insights into the huanglongbing-associated fruit abscission[J]. Horticulture Research,2019,6:71.

        [6] OLSSON V,BUTENKO M A. Abscission in plants[J]. Current Biology,2018,28(8):R338-R339.

        [7] LEE Y,YOON T H,LEE J,JEON S Y,LEE J H,LEE M K,CHEN H Z,YUN J,OH S Y,WEN X H,CHO H K,MANG H,KWAK J M. A lignin molecular brace controls precision processing of cell walls critical for surface integrity in Arabidopsis[J]. Cell,2018,173(6):1468-1480.

        [8] CHO S K,LARUE C T,CHEVALIER D,WANG H C,JINN T L,ZHANG S Q,WALKER J C. Regulation of floral organ abscission in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(40):15629-15634.

        [9] PATHARKAR O R,WALKER J C. Core mechanisms regulating developmentally timed and environmentally triggered abscission[J]. Plant Physiology,2016,172(1):510-520.

        [10] PATHARKAR O R,GASSMANN W,WALKER J C. Leaf shedding as an anti-bacterial defense in Arabidopsis cauline leaves[J]. PLoS Genetics,2017,13(12):e1007132.

        [11] ROSENBERGER D A,ENGLE C A,MEYER F W. Effects of management practices and fungicides on sooty blotch and flyspeck diseases and productivity of ‘Liberty apples[J]. Plant Disease,1996,80(7):798-803.

        [12] SHARMA I M,BHARDWAJ S S. Efficacy and economics of different fungicide spray schedules in controlling premature defoliation disease in apple[J]. Plant Disease Research Ludhiana,2003,18(1):21-24.

        [13] HIDALGO H,SUTTON T B,ARAUZ F. Epidemiology and control of Citrus greasy spot on Valencia orange in the humid tropics of Costa Rica[J]. Plant Disease,1997,81(9):1015-1022.

        [14] SZTEJNBERG A. Etiology and control of cherry leaf spot disease in Israel caused by Cercospora circumscissa[J]. Plant Disease,1986,70(4):349.

        [15] CLINE W O. Blueberry bud set and yield following the use of fungicides for leaf spot control in North Carolina[J]. Acta Horticulturae,2002,574:71-74.

        [16] JESUS JUNIOR W C,VALE F X R,COELHO R R,PAUL P A,HAU B,F(xiàn)ILHO A B,ZAMBOLIM L,BERGER R D. Relationships between angular leaf spot,healthy leaf area,effective leaf area and yield of Phaseolus vulgaris[J]. European Journal of Plant Pathology,2003,109(6):625-632.

        [17] LOPES D B,BERGER R D. The effects of rust and anthracnose on the photosynthetic competence of diseased bean leaves[J]. Phytopathology,2001,91(2):212-220.

        [18] ADDICOTT F T,LYNCH R S. Physiology of abscission[J]. Annual Review of Plant Physiology,1955,6:211-238.

        [19] GAO Y R,LIU C,LI X D,XU H Q,LIANG Y,MA N,F(xiàn)EI Z J,GAO J P,JIANG C Z,MA C. Transcriptome profiling of petal abscission zone and functional analysis of an Aux/IAA family gene RhIAA16 involved in petal shedding in rose[J]. Frontiers in Plant Science,2016,7:1375.

        [20] MENG X Z,ZHOU J G,TANG J,LI B,DE OLIVEIRA M V V,CHAI J J,HE P,SHAN L B. Ligand-induced receptor-like kinase complex regulates floral organ abscission in Arabidopsis[J]. Cell Reports,2016,14(6):1330-1338.

        [21] ESTORNELL L H,AGUST? J,MERELO P,TAL?N M,TADEO F R. Elucidating mechanisms underlying organ abscission[J]. Plant Science,2013,199/200:48-60.

        [22] LI R Z,SHI C L,WANG X Y,MENG Y,CHENG L N,JIANG C Z,QI M F,XU T,LI T L. Inflorescence abscission protein SlIDL6 promotes low light intensity-induced tomato flower abscission[J]. Plant Physiology,2021,186(2):1288-1301.

        [23] REICHARDT S,PIEPHO H P,STINTZI A,SCHALLER A. Peptide signaling for drought-induced tomato flower drop[J]. Science,2020,367(6485):1482-1485.

        [24] 周乃富,張俊佩,劉昊,查巍巍,裴東. 木本植物非均質(zhì)化組織石蠟切片制作方法[J]. 植物學(xué)報(bào),2018,53(5):653-660.

        ZHOU Naifu,ZHANG Junpei,LIU Hao,ZHA Weiwei,PEI Dong. New protocols for paraffin sections of heterogeneous tissues of woody plants[J]. Chinese Bulletin of Botany,2018,53(5):653-660.

        [25] JIA H G,ORBOVIC V,JONES J B,WANG N. Modification of the PthA4 effector binding elements in Type I CsLOB1 promoter using Cas9/sgRNA to produce transgenic Duncan grapefruit alleviating XccΔpthA4:dCsLOB1.3 infection[J]. Plant Biotechnology Journal,2016,14(5):1291-1301.

        [26] SEXTON R,ROBERTS J A. Cell biology of abscission[J]. Annual Review of Plant Physiology,1982,33:133-162.

        [27] KIM J. Four shades of detachment:Regulation of floral organ abscission[J]. Plant Signaling & Behavior,2014,9(11):e976154.

        [28] 盛云燕,楊麗敏,戴冬洋,張佳欣,王嶺,王迪,才羿,田麗美. 甜瓜果柄離區(qū)細(xì)胞學(xué)觀察及成熟脫落基因AL3的初步定位[J]. 園藝學(xué)報(bào),2022,49(2):341-351.

        SHENG Yunyan,YANG Limin,DAI Dongyang,ZHANG Jiaxin,WANG Ling,WANG Di,CAI Yi,TIAN Limei. Cytological observation of fruit peduncle abscission zone and preliminary mapping of mature fruit abscission AL3 gene in melon[J]. Acta Horticulturae Sinica,2022,49(2):341-351.

        [29] TEPER D,XU J,LI J Y,WANG N. The immunity of Meiwa kumquat against Xanthomonas citri is associated with a known susceptibility gene induced by a transcription activator-like effector[J]. PLoS Pathogens,2020,16(9):e1008886.

        [30] PATHARKAR O R. Quantification of cauline leaf abscission in response to plant pathogens[M]//GASSMANN W. Plant Innate Immunity. New York:Humana,2019:127-139.

        [31] TEPER D,XU J,PANDEY S S,WANG N. PthAW1,a transcription activator-like effector of Xanthomonas citri subsp. citri,promotes host-specific immune responses[J]. Molecular Plant Microbe Interactions,2021,34(9):1033-1047.

        [32] WEI C D,DING T,CHANG C Q,YU C P,LI X W,LIU Q G. Global regulator PhoP is necessary for motility,biofilm formation,exoenzyme production,and virulence of Xanthomonas citri subsp. citri on Citrus plants[J]. Genes,2019,10(5):340.

        [33] 徐鑫焱,李艷嬌,戶勛,鄒華松. 柑橘潰瘍病菌胞外蛋白水解酶對(duì)其致病力的作用[J]. 福建農(nóng)林大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,49(1):1-9.

        XU Xinyan,LI Yanjiao,HU Xun,ZOU Huasong. The role of extracellular protease on the virulence of Xanthomonas citri subsp. citri[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition),2020,49(1):1-9.

        [34] TEPER D,ZHANG Y N,WANG N. TfmR,a novel TetR-family transcriptional regulator,modulates the virulence of Xanthomonas citri in response to fatty acids[J]. Molecular Plant Pathology,2019,20(5):701-715.

        [35] ROESCHLIN R A,UVIEDO F,GARC?A L,MOLINA M C,F(xiàn)AVARO M A,CHIESA M A,TASSELLI S,F(xiàn)RANCO-ZORRILLA J M,F(xiàn)ORMENT J,GADEA J,MARANO M R. PthA4AT,a 7.5-repeats transcription activator-like (TAL) effector from Xanthomonas citri ssp. citri,triggers Citrus canker resistance[J]. Molecular Plant Pathology,2019,20(10):1394-1407.

        [36] SERRA O,GELDNER N. The making of suberin[J]. New Phytologist,2022,235(3):848-866.

        [37] NAKANO T,F(xiàn)UJISAWA M,SHIMA Y,ITO Y. Expression profiling of tomato pre-abscission pedicels provides insights into abscission zone properties including competence to respond to abscission signals[J]. BMC Plant Biology,2013,13:40.

        [38] WILMOWICZ E,KU?KO A,TRANBARGER T J,OSTROWSKI M,NIEDOJAD?O J,KARWASZEWSKI J,KAPU?CI?SKA D,PANEK K. EPIP as an abscission promoting agent in the phytohormonal pathway[J]. Plant Physiology and Biochemistry,2022,178(1):137-145.

        [39] WILMOWICZ E,KU?KO A,OSTROWSKI M,PANEK K. INFLORESCENCE DEFICIENT IN ABSCISSION-like is an abscission-associated and phytohormone-regulated gene in flower separation of Lupinus luteus[J]. Plant Growth Regulation,2018,85(1):91-100.

        [40] PATHARKAR O R,WALKER J C. Connections between abscission,dehiscence,pathogen defense,drought tolerance,and senescence[J]. Plant Science,2019,284:25-29.

        [41] DU J,LU S Y,CHAI M F,ZHOU C E,SUN L,TANG Y H,NAKASHIMA J,KOLAPE J,WEN Z Z,BEHZADIRAD M,ZHONG T X,SUN J,ZHANG Y W,WANG Z Y. Functional characterization of PETIOLULE-LIKE PULVINUS (PLP) gene in abscission zone development in Medicago truncatula and its application to genetic improvement of alfalfa[J]. Plant Biotechnology Journal,2021,19(2):351-364.

        [42] LEE M H,JEON H S,KIM S H,CHUNG J H,ROPPOLO D,LEE H J,CHO H J,TOBIMATSU Y,RALPH J,PARK O K. Lignin-based barrier restricts pathogens to the infection site and confers resistance in plants[J]. The EMBO Journal,2019,38(23):e101948.

        [43] JIN X,ZIMMERMANN J,POLLE A,F(xiàn)ISCHER U. Auxin is a long-range signal that acts independently of ethylene signaling on leaf abscission in Populus[J]. Frontiers in Plant Science,2015,6:634.

        [44] WOO H R,KIM H J,LIM P O,NAM H G. Leaf senescence:Systems and dynamics aspects[J]. Annual Review of Plant Biology,2019,70:347-376.

        收稿日期:2023-05-11 接受日期:2023-07-11

        基金項(xiàng)目:國(guó)家重點(diǎn)研發(fā)計(jì)劃(2022YFD1200503);湖南省研究生科研創(chuàng)新項(xiàng)目(CX20210671)

        作者簡(jiǎn)介:孫紫青,女,在讀碩士研究生,研究方向?yàn)楣麡鋵W(xué)。Tel:18374880969,E-mail:sunziqing330@163.com

        通信作者 Author for correspondence. Tel:13875832924,E-mail:ma8006@hunau.edu.cn;Tel:13507499449,E-mail:hanjian1020@163.com

        伊人加勒比在线观看视频| 中文字幕乱码人妻无码久久麻豆| 国产精品美女久久久久久大全| 淫妇日韩中文字幕在线| 亚洲天堂av黄色在线观看| 特黄 做受又硬又粗又大视频| 高潮迭起av乳颜射后入| 日本中文字幕婷婷在线| 亚洲精品无码高潮喷水a片软| 欧美国产日韩a在线视频| 欧美三级超在线视频| 中文字幕麻豆一区二区| 高清不卡日本v二区在线| 曰韩无码无遮挡a级毛片| 日日干夜夜操高清视频| 国产成人精品免费视频大全| 青青草在线免费观看视频| 久久久亚洲欧洲日产国码aⅴ| 久久久久久久久久久国产| 久久青草国产精品一区| 日韩一区中文字幕在线| 中文无码人妻有码人妻中文字幕| 无码国产伦一区二区三区视频| 久久精品片| 中文字幕日韩人妻高清在线| 亚洲精品女同一区二区三区| 欧美又粗又长又爽做受| 一本大道东京热无码| 韩国无码精品人妻一区二| 各类熟女熟妇激情自拍 | 国产精品麻豆va在线播放| 日本成本人三级在线观看| 亚洲欧美一区二区三区国产精| 亚洲国产综合久久精品| 欧美xxxxx高潮喷水| 国产成人精品一区二区三区免费| 欧美日韩中文字幕日韩欧美| 自拍视频在线观看国产| 国产精品vⅰdeoxxxx国产 | 国产欧美日韩图片一区二区| 高清中文字幕一区二区三区|