樊艷玲,茍雅玲,王紅旗,劉增俊,許賀峰,楊 碩,梁 競
氯代烴污染深層土壤細菌群落結構及組裝機制
樊艷玲1,2,茍雅玲1,3,王紅旗1*,劉增俊2**,許賀峰4,楊 碩2,梁 競2
(1.北京師范大學水科學研究院,北京 100875;2.北京市生態(tài)環(huán)境保護科學研究院,北京 100037;3.北京市科學技術研究院資源環(huán)境研究所,北京 100095;4.中國科學院生態(tài)環(huán)境研究中心,北京 100085)
為研究氯代烴污染土壤中細菌群落結構特征和組裝機制,在某氯代烴污染場地不同污染區(qū)域采集2~10m范圍內非飽和帶土壤,基于高通量測序技術分析了細菌群落結構,揭示了群落結構變化的主要驅動因子、環(huán)境影響因子及組裝機制.結果表明:輕污染區(qū)細菌群落結構變化的主要驅動因子是土壤類型,β多樣性主要受物種替換影響,貢獻度為53.9%,群落組成與水溶性硫酸鹽(=0.61,=0.0002)和總有機碳含量(=0.42,=0.0005)顯著相關;重污染區(qū)細菌群落結構變化的主要驅動因子是污染程度,β多樣性主要受豐富度差異影響,貢獻度為52.9%,群落組成與三氯乙烯(=0.17,=0.0425)、三氯甲烷(=0.22,=0.0375)、水溶性硫酸鹽(=0.36,=0.0074)、總有機碳(=0.29,=0.0168)、全氮(=0.20,=0.0130)含量顯著相關.氯代烴脅迫降低了大多數物種的生態(tài)位寬度和生態(tài)位重疊指數,但適應性物種除外,最終導致變形菌門(Proteobacteria)的豐度增加,放線菌門(Actinobacteriota)、厚壁菌門(Firmicutes)和綠彎菌門(Chloroflexi)豐度出現(xiàn)降低.在污染物濃度較低時,菌群組裝以隨機性過程為主,貢獻度為65.6%,污染物較高時,隨機性過程下降為27.7%,組裝由確定性過程主導.
深層土壤;細菌群落;結構特征;組裝機制
氯代烴(CAHs)作為一種重要的有機溶劑和產品中間體,被廣泛應用于工業(yè)領域,在其生產、儲存和使用過程中,容易通過泄露、排放或跑冒滴漏等對土壤和地下水造成污染.我國學者對有機場地的資料統(tǒng)計顯示,地下水和土壤中出現(xiàn)鹵代有機物的場地分別占84%和57%,這些鹵代有機物主要為氯代石油烴和氯代苯類[1].美國超級基金修復報告中統(tǒng)計顯示,地下水中需開展三氯乙烯、四氯乙烯、氯乙烯、順-1,2-二氯乙烯污染修復的分別占到55%、41%、37%和34%,土壤中需開展三氯乙烯和四氯乙烯污染修復的占21%和20%[2].
與物理、化學修復方式相比,生物修復方式具有擾動小、經濟節(jié)約、不產生二次污染物、能最大限度降低污染物濃度等優(yōu)勢.氯乙烯在地下的生物降解途徑主要包含厭氧還原脫氯、好氧共代謝[3]和直接氧化[4-5],研究中發(fā)現(xiàn)的還原脫氯菌主要有地桿菌屬()、梭菌屬(. DC-1)[6],梭菌屬(spKYT-1)[7],脫鹵桿菌屬(),脫鹵擬球菌屬()[8],脫硫單胞菌屬(),脫硫桿菌屬(),sp. Y51[9],梭狀芽胞桿菌()[10],丙酸桿菌(spHK-1),硫螺旋菌屬()[11]等,氧化共代謝菌群主要有亞硝化單胞菌(),假單胞菌屬(), 紅球菌屬(),黃桿菌屬(sp)等[12].不同氯代烴場地中的優(yōu)勢微生物差異較大[13],研究表明污染土壤和清潔土壤中微生物群落結構存在顯著差異[14-15],但不同土壤環(huán)境下,觸發(fā)群落結構發(fā)生變化的污染程度不同,有室內實驗研究表明三氯乙烯在1′10-6mg/kg水平下即可對土壤微生物群落結構造成影響[16],但現(xiàn)場數據的研究結果表明多環(huán)芳烴[17]和多氯聯(lián)苯[18]在高濃度水平下才會引發(fā)群落結構的變化.為有效指導污染場地的微生物修復,應充分了解場地中的土著菌群分布特征.
微生物的多樣性和群落結構是影響環(huán)境介質功能的主要因素[19],因此研究氯代烴實際場地中的微生物群落結構及其組裝機制對氯代烴污染土壤的微生物修復具有重要的指導意義.由于氯代烴的遷移性較強,實際場地中污染深度往往貫穿整個非飽和帶,為了解場地深層土壤中微生物群落結構特征及其組裝機制,本研究基于華北某氯代烴污染場地,分析比較了2~10m深度范圍內不同污染程度和土壤質地條件下土壤微生物群落結構,探討了群落組成的影響因素和組裝機制,以期為氯代烴污染場地的微生物修復提供參考.
土壤樣品采集于華北某氯代烴污染場地,該場地包氣帶巖性以填土、粉質粘土和砂質粉土為主,污染物類型為氯代烴.2022年10月,選擇2個不同污染程度的區(qū)域進行鉆孔取樣,分別為輕污染區(qū)(經緯度為39.43463883,116.2539744,定義為L區(qū))和重污染區(qū)(經緯度為39.43455549,116.2537315,定義為H區(qū)).樣品采集深度為2,4,6,8,10m.每個區(qū)域在1m′1m范圍內均勻布設3個鉆孔,在同一深度進行取樣,作為3個重復.
現(xiàn)場采用30鉆機進行鉆孔取樣.參照《巖土工程勘察規(guī)范》[GB50021-2001][20]判斷土壤性質,用無菌鏟和VOCs土壤采樣器采集土壤樣品,每個采樣點采集3份土壤樣品,用于微生物測試的土壤裝入無菌離心管裝入裝有干冰的保溫箱中運輸至實驗室,用于污染物含量和土壤理化性質測試的土壤分別裝入40mL棕色瓶和棕色廣口瓶,低溫送至實驗室.
參照《土壤干物質和水分的測定重量法》[HJ 613-2011][21]測定土壤含水率,檢出限為0.1%;參照《土壤 pH值的測定電位法》[HJ 962-2018][22]測定土壤pH值,檢出限為0.01;參照《沉積巖中總有機碳的測定》[GB/T 19145-2003][23]測定土壤總有機碳(TOC)含量,檢出限為0.10%;參照《土壤質量全氮的測定凱式法》[HJ 717-2014][24]測定土壤總全氮(TN)含量,檢出限為48mg/kg;參照《土壤總磷的測定堿熔-鉬銻抗分光光度法》[HJ 632-2011][25]測定土壤總磷(TP)含量,檢出限為20mg/kg;參照《土壤水溶性和酸溶性硫酸鹽的測定》[HJ 635-2012][26]測定土壤硫酸鹽(S)含量,檢出限為20mg/kg;參照《土壤和沉積物揮發(fā)性有機物的測定吹掃捕集/氣相色譜-質譜法》[HJ 605-2011][27]測定土壤VOCs含量,檢出限為0.05~0.1mg/kg.
根據E.Z.N.A.? soil DNA kit(Omega Bio-tek, Norcross, GA, U.S.)說明書進行微生物群落總DNA抽提,使用1%的瓊脂糖凝膠電泳檢測DNA的提取質量,使用NanoDrop2000測定DNA濃度和純度;使用338F(5’-ACTCCTACGGGAGGCAGCAG-3’)和806R(5’-GGACTACHVGGGTWTCTAAT-3’)對16S rRNA基因V3-V4可變區(qū)進行PCR擴增,擴增程序如下:95℃預變性3min,27個循環(huán)(95℃變性30s,55℃退火30s,72℃延伸30s),然后72℃穩(wěn)定延伸10min,最后在4℃進行保存(PCR儀:ABI GeneAmp? 9700型).PCR反應體系為:5×TransStart FastPfu緩沖液4μL,2.5mM dNTPs 2μL,上游引物(5umol/L)0.8μL,下游引物(5umol/L)0.8μL,TransStart FastPfuDNA聚合酶0.4μL,模板DNA 10ng,ddH2O補足至20μL.每個樣本3個重復.
使用fastp[28](https://github.com/OpenGene/fastp, version 0.20.0)軟件對原始測序序列進行質控,使用FLASH[29](http://www.cbcb.umd.edu/software/flash,version 1.2.7)軟件進行拼接.使用UPARSE[30]軟件(http://drive5.com/uparse/,version 7.1),根據97%[30-31]的相似度對序列進行OTU聚類并剔除嵌合體.利用RDP classifier[32](http://rdp.cme.msu.edu/,version 2.2)對每條序列進行物種分類注釋,比對Silva 16S rRNA數據庫(version 138),設置比對閾值為70%.
數據處理采用Microsoft Excel 2016軟件完成.多樣性是指某個群落或生境內部的物種多樣性[33],采用R語言Vegan包計算如下指數對其進行表征:sobs指數和chao指數表征物種豐富度,既一個群落或生境中種的數目的多寡,數值越大,豐富度越大.shannon指數和simpson指數表征總多樣性,是對豐富度和均勻度的綜合反映,shannon指數越大,多樣性越高,simpson指數越大,多樣性越低.利用Kruskal-Wallis秩和檢驗進行多樣性指數的組間差異性檢驗.多樣性是指在一個梯度上從一個生境到另一個生境所發(fā)生的物種多樣性變化的速率和范圍[33],是種數改變一半的測度.采用R語言Vegan包,基于bray-curtis進行層級聚類分析和PCoA分析,基于euclidean進行置換多元方差分析(PERMANOVA),體現(xiàn)物種多樣性的變化.采用R語言adespatial包進行β多樣性分解,spaa包進行生態(tài)位寬度和生態(tài)位重疊計算.基于Spearman相關性,采用R語言linkET包進行mantel test檢驗.中性群落模型分析采用R語言minpack.lm包.
土壤樣品采集位置及檢出污染物濃度如表1所示.L區(qū)檢出污染物主要為三氯乙烯、三氯甲烷、順式-1,2-二氯乙烯,最大值分別為1.99,0.1和0.15mg/kg. H區(qū)檢出污染物為三氯乙烯、三氯甲烷和順式-1,2-二氯乙烯,濃度分布范圍分別為1.16~17.20mg/kg, 0.21~10.50mg/kg和0.08~0.42mg/ kg.H區(qū)樣品中三氯乙烯和三氯甲烷濃度普遍高于L區(qū),且H區(qū)深層(6,8和10m)三氯乙烯和三氯甲烷濃度高于淺層(2和4m).
表1 土壤樣品采集位置及污染物濃度
注:低于檢出限的樣品濃度用檢出限數值的1/2代替,3個平行樣品中當未檢出個數32個時標記為NA.
土壤類型及理化性質如表2所示.
表2 土壤類型及理化性質
對L區(qū)和H區(qū)樣品進行高通量測序,處理后共獲得10910個OTU,分類為55門、187科、456目、729科、1491屬、3139種.從樣本中隨機抽取一定數量的序列,統(tǒng)計這些序列對應樣本的Shannon指數,結果如圖1所示,曲線均趨于平緩,表明本次測序數據量足夠.
圖1 基于OTU水平香農指數稀釋曲線
圖2為土壤剖面細菌群落多樣性隨深度的變化.L區(qū)2~10m范圍內Sobs指數和Chao指數變化不顯著(圖2(a)和(b)),表明深度的變化未顯著影響物種的豐富度.Shannon指數變化不顯著(圖2(c)),但10m處Simpson指數顯著高于2和4m處(圖2(d)),表明10m處物種多樣性顯著低于2和4m處.
自閉癥譜系障礙兒童確診前后其家庭有效應對模式的構建——基于一名中度自閉癥兒童6年康復歷程的考察……………………………………………………劉英玲(95)
H區(qū)淺層(2和4m)Sobs指數、Chao指數、Shannon指數和Simpson指數均無顯著差異,表明淺層土壤內物種豐富度和多樣性無顯著差異.深層(6~10m)Sobs指數和Chao指數無顯著差異,表明深層土壤內物種豐富度未發(fā)生顯著變化.6m處Shannon指數和Simpson指數分別顯著高于和低于10m處,表明深層土壤內物種多樣性發(fā)生了變化.淺層Sobs指數、Chao指數和Shannon指數均顯著高于深層,Simpson指數顯著低于10m處,均表明淺層物種豐富度和多樣性均顯著高于深層.
基于bray_curtis距離,分別對L區(qū)和H區(qū)樣本進行層級聚類分析和PCoA分析,結果如圖3所示.樣本層級聚類結果(圖3(a))將L區(qū)全部樣本劃分為回填土(2m)和原土(4,6,8和10m)兩大類,其中,原土中又進一步分為兩個小類,分別為粉質黏土(4和6m)和砂質粉土(6和8m).以土壤類型作為分組依據對L區(qū)所有樣本進行PCoA分析(圖3(b)),結果顯示,回填土、粉質黏土和砂質粉土之間顯著區(qū)分,主成分PC1和PC2的累計解釋方差為49.65%,置換多元方差分析(PERMANOVA)2值為0.4683,P值為0.001,回填、粉質黏土和砂質粉土組間差異顯著大于組內差異,表明氯代烴低污染脅迫下土壤類型是細菌群落結構差異的主要驅動因子.
樣本層級聚類結果(圖3(c))將H區(qū)全部樣本劃分為淺層(2和4m)和深層(6,8和10m)兩大類.根據氯代烴分布規(guī)律,H區(qū)淺層樣品中污染物濃度較低,深層樣品中污染物濃度較高,因此,本文依據污染程度將H區(qū)鉆孔分為低濃度組(D)和高濃度組(G)進行PCoA分析,結果如圖3(d)所示,D組和G組之間顯著區(qū)分,主成分PC1和PC2的累計解釋方差為73.12%,置換多元方差分析(PERMANOVA)2值為0.4891,P值為0.002,表明D組和G組組間差異顯著大于組內差異,表明氯代烴高污染脅迫下污染物濃度驅動微生物群落結構發(fā)生了變化.
圖2 土壤剖面細菌群落α多樣性
a, b, c, d分別為L區(qū)土壤剖面sobs, chao, Shannon和simpson指數; e, f, g和h分別為H區(qū)土壤剖面sobs, chao, shannon和simpson指數
圖3 基于OTU水平的聚類分析與PCoA分析
a,c分別為L區(qū)和H區(qū)樣品聚類分析;b,d分別為L區(qū)和H區(qū)樣品PCoA分析
群落間物種組成差異起源于兩種不同的過程:物種周轉或豐富度差異,其中,物種周轉表示不同群落間的物種替換,而物種喪失會導致群落間物種豐富度產生差異[34-35].例如,由于物種對環(huán)境變化的敏感性不同,受脅迫物種容易因為環(huán)境壓力而在生境中消失,而對環(huán)境變化具有較高容忍度的物種則能存活下來[36].Beta多樣性分解結果顯示,L區(qū)土壤細菌群落的差異主要受物種替換過程影響,貢獻度為53.9%,豐富度差異貢獻為23.7%,相似性為22.4%(圖4(a)),H區(qū)土壤細菌群落的差異主要受豐富度差異影響,貢獻度為52.9%,物種替換貢獻度為27%,相似性為20.1%(圖4(b)),表明H區(qū)污染物的積累造成了不耐受物種的喪失.
圖4 L區(qū)和H區(qū)的b多樣性分解三元圖
土壤剖面門水平細菌群落相對豐度如圖5所示.L區(qū)2和4m處優(yōu)勢菌分別為放線菌門(Actinobacteriota)(26.02%)和綠彎菌門(Chloroflexi) (24.39%),6~8m間優(yōu)勢菌為變形菌門(Proteobacteria) (24.44%、28.89%、37.55%).變形菌門相對豐度隨深度逐漸增加,從2m至10m相對豐度依次從9.05%增加至37.55%(圖5(a)).結合L區(qū)PCoA分組結果(圖3(b)),放線菌門(Actinobacteriota)在不同土質中相對豐度不同,在回填土中的相對豐度較大(26.02%),其次是砂質粉土(14.13%~18.34%),粉質黏土中相對豐度最小(7.23%~10.62%).
H區(qū)2和4m處優(yōu)勢菌為放線菌門(Actinobacteriota) (26.42%、22.85%),6~10m間優(yōu)勢菌為變形菌門(Proteobacteria)(32.74%、51.74%、84.12%)(圖5(b)).結合H區(qū)PCoA分組結果(圖3(d)),氯代烴低濃度脅迫下(D組)放線菌門(Actinobacteriota)是優(yōu)勢菌,氯代烴高濃度脅迫下(G組)放線菌門(Actinobacteriota)、厚壁菌門(Firmicutes)和綠彎菌門(Chloroflexi)相對豐度均出現(xiàn)了下降,變形菌門(Proteobacteria)出現(xiàn)富集,成為優(yōu)勢菌.
生態(tài)位寬度反映了種群對生境資源利用程度和對環(huán)境適應能力,物種的生態(tài)位越寬越具有競爭力,生態(tài)位越窄在競爭中越處于劣勢[37-38].D組樣品中各菌群生態(tài)位寬度顯著高于G組,Wilcox檢驗p值為0.00295(圖6(b)),氯代烴脅迫造成了大部分菌群生態(tài)位的減小,只有變形菌門(Proteobacteria)、放線菌門(Actinobacteriota)、Methylomirabilota、疣微菌門(Verrucomicrobiota)等出現(xiàn)了生態(tài)位寬度增加(圖6(a)).
當兩個物種利用同一資源或共同占有某一資源時,就會出現(xiàn)生態(tài)位重疊現(xiàn)象, D組樣品中各菌群生態(tài)位寬度顯著高于G組,Wilcox檢驗p值為0.0000(圖6(c)).當生態(tài)位重疊值大于0.6時,物種對之間的生態(tài)位重疊顯著[39].G組中優(yōu)勢菌群物種關聯(lián)圖顯示(圖6(d)),變形菌門(Proteobacteria)與放線菌門(Actinobacteriota)重疊指數為0.63,與剩余8個優(yōu)勢菌群的生態(tài)位重疊指數均小于0.6,變形菌門(Proteobacteria)與其他菌群的生態(tài)位重疊現(xiàn)象不明顯.放線菌門(Actinobacteriota)與剩余8個優(yōu)勢菌群的生態(tài)位重疊指數均大于0.8,生態(tài)位重疊現(xiàn)象顯著.厚壁菌門(Firmicutes)、綠彎菌門(Chloroflexi)、放線菌門(Actinobacteriota)、擬桿菌門(Acidobacteriota)、芽單胞菌門(Gemmatimonadota)之間有明顯的重疊.
圖5 L區(qū)和H區(qū)土壤剖面細菌門水平群落組成
菌群生態(tài)位寬度和生態(tài)位重疊指數分析結果顯示,氯代烴脅迫下,變形菌門(Proteobacteria)和放線菌門(Actinobacteriota)生態(tài)位寬度變大,但由于前者生態(tài)位重疊指數較低,相對豐度出現(xiàn)了增大,后者生態(tài)位重疊指數較高,相對豐度出現(xiàn)了降低.厚壁菌門(Firmicutes)和綠彎菌門(Chloroflexi)在氯代烴脅迫下生態(tài)位寬度減小,且生態(tài)位重疊指數較高,因此兩者的相對豐度均出現(xiàn)了降低.
圖6 D組和G組樣本生態(tài)位特征
Fig.6 Niche characteristics of samples from Group D and Group G
a:物種生態(tài)位寬度;b:生態(tài)位寬度wilcox檢驗;c:生態(tài)位重疊指數wilcox檢驗;d:G組物種關聯(lián)
Mantel檢驗結果顯示(圖7),L區(qū)細菌群落組成與土壤中水溶性硫酸鹽含量(S)(=0.61,=0.0002)和TOC含量(=0.42,=0.0005)顯著相關,雖然土壤中也含有較低濃度的三氯乙烯(TCE),但細菌群落結構與其無顯著相關性,表明氯代烴入侵的初始階段或污染程度較低時,細菌群落結構具有一定的穩(wěn)定性. H區(qū)細菌群落組成與水溶性硫酸鹽含量(S)(=0.36,= 0.0074)、TOC含量(=0.29,=0.0168)、三氯乙烯(TCE) (=0.17,=0.0425)、三氯甲烷(chloroform)(= 0.22,= 0.0375)和全氮(TN)(=0.20,=0.0130)相關,表明氯代烴高濃度脅迫下,污染物影響了細菌群落組成.
圖7 L區(qū)和H區(qū)細菌群落物種組成與環(huán)境因子的相關性分析
顏色梯度和方塊大小代表Spearman相關系數,紅色代表正相關,紫色代表負相關.對細菌群落結構與環(huán)境因子做Mantel分析,線條寬度對應Mantel檢驗r值,線條顏色表示9999次置換檢驗的統(tǒng)計顯著性
傳統(tǒng)的生態(tài)位理論認為群落結構的形成是物種特征、種間相互作用和環(huán)境條件控制的確定性過程[40-41].中性理論認為群落結構是由出生、死亡、遷移、物種形成和擴散限制等隨機過程塑造的[42].微生物組裝過程中,生態(tài)位理論和中心理論同時發(fā)生[41,43-44].Sloan等[45]提出了中性群落模型(NCM),量化了中性過程的重要性,模型中2表示模擬的擬合程度,2越高擬合效果越好,即越接近中性模型,m為物種的遷移率,越高表明物種受到擴散限制越低.
圖8 基于中性群落模型(NCM)評估群落組裝過程
藍色實線表示NCM的預測曲線,藍色虛線表示NCM預測的95%置信區(qū)間
對H區(qū)D組和G組樣本進行中性群落模型評估,結果如圖8所示,D組擬合度2為0.656,遷移率m為1.08(圖8(a)),G組擬合度2為0.277,遷移率m為0.087(圖8(b)).隨機過程的相對貢獻度在G組中有了明顯的降低,擴散受到了限制,這可能是因為較高的環(huán)境異質性會限制細菌群落的擴散,推動環(huán)境選擇的確定性過程[46].Mo等[47]研究了在不同鹽度環(huán)境中真菌組裝過程,發(fā)現(xiàn)隨機過程的相對貢獻隨著鹽度的增加而逐漸降低.G組物種的生態(tài)位寬度較D組出現(xiàn)了顯著降低(圖6(b)),有研究證明,相較于具有較寬生態(tài)位的物種,較窄生態(tài)位物種更容易受確定性過程的影響[48].
在污染物濃度較低的L區(qū),以2m為間隔的樣本之間豐富度和多樣性并未發(fā)生顯著變化,表明深度未引起物種多樣性的顯著差異.樣本層級聚類和PCoA結果均顯示填土、粉質粘土和砂質粉土細菌群落顯著區(qū)分,表明土壤類型是物種差異的主要驅動力.前期已有研究證明,土壤類型是影響微生物活動和群落結構的重要因素之一[49-50],Bai等[51]基于稻田土柱實驗研究結果表明,細菌和古菌群落結構能夠根據土壤類型進行明顯的區(qū)分.但由于土壤類型代表了土壤母質以及過去和現(xiàn)在復雜的氣候條件的綜合影響,很難將土壤類型對微生物群落的影響歸因于單一因素[51].本研究的mantel檢驗結果顯示L區(qū)群落組成與總有機碳和水溶性硫酸鹽含量顯著相關.前期已有研究證明,生物多樣性與土壤中碳含量和pH值相關[52-53],但是當pH值范圍較窄時,pH值對群落組成的影響不明顯[53].本研究中全部樣品pH值范圍為8.18~8.96,未對群落組成造成明顯的影響.
H區(qū)的淺層樣本與深層樣本間多樣性存在顯著差異,層級聚類和PCoA結果表明,氯代烴污染程度是物種差異的主要驅動力.mantel檢驗結果也驗證了三氯乙烯和三氯甲烷濃度變化與物種組成變化呈顯著相關性.H區(qū)低濃度組微生物生態(tài)位重疊指數顯著高于高濃度組(圖6(c)),Galand[54]認為,物種的重疊能夠為生態(tài)系統(tǒng)提供功能冗余,緩沖多樣性的喪失,這與淺層樣本物種多樣性顯著高于深層的現(xiàn)象相吻合.
有研究報道,當環(huán)境條件超出了它們的“歷史生活”中的環(huán)境范疇時,微生物群落組成和功能將會發(fā)生變化[55],雖然NEMIR等[16]基于室內實驗確定微生物群落結構受到顯著影響的明顯閾值約為1×10-6mg/kgTCE,但本文結論顯示,L區(qū)TCE濃度范圍為0.05~1.99mg/kg時mental檢驗顯示TCE濃度與群落組成之間不存在顯著相關性.H區(qū)TCE濃度范圍介于1.16~17.20mg/kg,三氯甲烷濃度范圍介于0.21~10.50mg/kg時才驅動了群落結構的變化,類似的結論在石油和多環(huán)芳烴類污染場地中也得到了驗證:鄭一鳴等[56]在石油類污染場地中發(fā)現(xiàn)高濃度石油污染是引起土壤和沉積物中微生物群落組成變化的主要驅動因子,Liu等[17]在多環(huán)芳烴污染土壤中也發(fā)現(xiàn),多環(huán)芳烴總濃度為3166.52mg/kg樣品中的細菌群落與34.26~258.20mg/kg樣品中的細菌群落差異顯著.
變形菌門在土壤環(huán)境中非常常見,與碳、氮、硫循環(huán)功能有關[57].L區(qū)土壤中變形菌門相對豐度隨深度的增加而增大,最大為37.55%, H區(qū)高濃度氯代烴脅迫下,變形菌的相對豐度最大豐度達到84.14%,這表明,變形菌是氯代烴耐受菌,在氯代烴脅迫下,變形菌門的生態(tài)位寬度增加了45.4%,與放線菌的生態(tài)位重疊指數為0.63,與剩余8個優(yōu)勢菌門的重疊指數均小于0.54,這也表明變形菌在氯代烴環(huán)境下具有相對較強的競爭優(yōu)勢.孫仲平等[58]研究發(fā)現(xiàn),在TCE污染沉積物中變形菌是優(yōu)勢菌(相對豐度84.9%),但隨著TCE的降解,變形菌門相對豐度分別下降為66.1%和49.8%,與之趨勢相反的是厚壁菌門,污染樣品中相對豐度較低,但隨著污染物濃度的降低,相對豐度分別增大至22.1%和47.9%.Koner等[59]在9m深度處高氯代烴污染濃度土壤也發(fā)現(xiàn)了豐度較高的變形菌門.
同樣在氯代烴脅迫下生態(tài)位寬度增加的還有放線菌門,增幅為17.8%,但由于放線菌門與其他優(yōu)勢菌群的生態(tài)位重疊顯著,因此其相對豐度出現(xiàn)了下降.厚壁菌門和綠彎菌門在高氯代烴濃度環(huán)境下出現(xiàn)了生態(tài)位寬度變窄,同時具有較高的生態(tài)位重疊,因此均出現(xiàn)了相對豐度的降低,孫仲平等[58]的研究中也發(fā)現(xiàn)了厚壁菌門在TCE污染沉積物中的降低.
目前群落組裝機制的研究中應用最多的是生態(tài)位理論和中性理論,前者認為群落的形成是環(huán)境狀況、生境異質性和物種間相互作用等確定性過程影響了物種的有無及豐度的大小[60],后者則把群落的形成歸結為隨機性的過程,例如物種的出生、死亡、殖民、移民、物種形成和擴散限制[61].確定性和隨機性過程共同作用于微生物群落的形成[43],但兩者相對重要性的大小取決于環(huán)境的類型、環(huán)境條件和生物特性[62].
當環(huán)境條件充足,大部分物種能夠較好的生長時,隨機性過程起主導作用,物種多樣性較高[63],Lan等[64]發(fā)現(xiàn)森林土壤中細菌群落組裝主要以隨機性過程為主.隨著環(huán)境條件變得苛刻,確定性過程起主導作用,優(yōu)勢菌種占據主導地位,物種多樣性也隨著降低[65].Xun等[66]在研究中發(fā)現(xiàn),群落組裝過程與菌群多樣性有關,隨著土壤細菌物種豐富度和功能多樣性的降低,細菌群落組成過程由隨機過程向確定性過程轉變.H區(qū)2~4m深度內細菌群落多樣性水平較高,細菌群落組裝過程中隨機性過程貢獻度為65.6%,遷移率為1.8,細菌群落遷移率較大,組裝以隨機性過程為主.而在濃度較高的6~10m深度內,細菌群落組裝過程中隨機性過程貢獻度下降為27.7%,確定性過程占主導,擴散受到限制,遷移率下降為0.087,部分菌群受到氯代烴的抑制作用,耐受菌得以富集.研究中也發(fā)現(xiàn)H區(qū)α多樣性隨著深度的增加逐漸減小,這一現(xiàn)象與組裝機制分析結果相吻合.
4.1 輕污染區(qū)土壤中,土壤類型是造成細菌群落差異的主要驅動因子,群落組成與水溶性硫酸鹽和總有機碳含量顯著相關.細菌群落的差異主要受物種替換影響.
4.2 重污染區(qū)土壤中,污染脅迫是造成細菌群落差異的主要驅動因子,除水溶性硫酸鹽和總有機碳以外,群落組成還受三氯乙烯、三氯甲烷和全氮顯著影響.細菌群落的差異主要受豐富度差異影響.
4.3 氯代烴脅迫顯著降低了細菌群落的豐富度和多樣性,除適應性物種外,多數物種在氯代烴脅迫下降低了生態(tài)位寬度和生態(tài)位重疊指數,致使變形菌門的豐度增加,放線菌門、厚壁菌門和綠彎菌門豐度降低.
4.4 氯代烴濃度較低時,組裝中隨機性過程貢獻度為65.6%,隨著污染物濃度的增大,隨機性過程下降為27.7%,組裝以確定性過程為主.
[1] 朱 輝,葉淑君,吳吉春,等.中國典型有機污染場地土層巖性和污染物特征分析 [J]. 地學前緣, 2021,28:26-34. Zhu H, Ye S J, Wu J C, et al. Characteristics of soil lithology and pollutants in typical contamination sites in China [J]. Earth Science Frontiers, 2021,28:26-34.
[2] US EPA. Superfund Remedy Report 17th Edition [R]. Washington District of Columbia: 2023.
[3] Tiehm A, Schmidt K R. Sequential anaerobic/aerobic biodegradation of chloroethenes—aspects of field application [J]. Current Opinion in Biotechnology, 2011,22(3):415-421.
[4] 張 浩,邢志林,汪 軍,等.異養(yǎng)同化降解氯代烴的研究現(xiàn)狀、微生物代謝特性及展望 [J]. 生物工程學報, 2020,36(6):1083-1100. Zhang H, Xing Z L, Wang J, et al. Advances in microbial degradation of chlorinated hydrocarbons [J]. Chinese Journal of Biotechnology, 2020,36(6):1083-1100.
[5] 劉 帥,趙天濤,邢志林,等.氯代脂肪烴生物與非生物共促降解機制研究進展 [J]. 生物工程學報, 2018,34(4):510-524. Liu S, Zhao T I, Xing Z L, et al. Advances in biotic and abiotic mutual promoting mechanism for chlorinated aliphatic hydrocarbons degradation [J]. Chinese Journal of Biotechnology, 2018,34(4):510- 524.
[6] Hata J, Miyata N, Kim E S, et al. Anaerobic degradation of cis-1, 2-dichloroethylene and vinyl chloride by Clostridium sp. strain DC1isolated from landfill leachate sediment [J]. Journal of Bioscience and Bioengineering, 2004,97(3):196-201.
[7] Kim E S, Nomura I, Hasegawa Y, et al. Characterization of a newly isolatedcis-1,2-dichloroethylene and aliphatic compound-degrading bacterium,sp. strain KYT-1 [J]. Biotechnology and Bioprocess Engineering, 2006,11(6):553-556.
[8] Puigserver D, Herrero J, Nogueras X, et al. Biotic and abiotic reductive dechlorination of chloroethenes in aquitards [J]. Science of The Total Environment, 2022,816:151532.
[9] Furukawa K, Suyama A, Tsuboi Y, et al. Biochemical and molecular characterization of a tetrachloroethene dechlorinating Desulfitobacterium sp. strain Y51: a review [J]. Journal of Industrial Microbiology and Biotechnology, 2005,32(11):534-541.
[10] Kim E S, Nomura I, Hasegawa Y, et al. Characterization of a newly isolated cis-1,2-dichloroethylene and aliphatic compound-degrading bacterium, Clostridium sp. strain KYT-1 [J]. Biotechnology and Bioprocess Engineering, 2006,11(6):553-556.
[11] Luijten M L G C, de Weert J, Smidt H, et al. Description of Sulfurospirillumsp. nov., an anaerobic, tetrachloroethene-respiring bacterium, and transfer ofto the genus Sulfurospirillum as Sulfurospirillum multivorans comb. nov [J]. International Journal of Systematic and Evolutionary Microbiology, 2003,53:787-793.
[12] Shukla A K, Upadhyay S N, Dubey S K. Current trends in trichloroethylene biodegradation: a review [J]. Critical Reviews in Biotechnology, 2014,34(2):101-114.
[13] 余錦濤,劉 慧,李 翠,等.氯代脂肪烴污染土壤微生物群落結構的主控因子 [J]. 環(huán)境科學與技術, 2022,45:29-36. Yu J T, Liu H, Li C, et al. Research on main control factors of microbial community composition in CAHs-contaminated soi [J]. Environmental Science & Technology, 2022,45:29-36.
[14] 甄麗莎,谷 潔,胡 婷,等.黃土高原石油污染土壤微生物群落結構及其代謝特征 [J]. 生態(tài)學報, 2015,35(17):5703-5710. Zhen L S, Gu J, Hu T, et al. Microbial community structure and metabolic characteristics of oi-contaminated soil in the Loess Plateau [J]. Acta Ecologica Sinica, 2015,35(17):5703-5710.
[15] 楊 琴,趙 敏,朱 妍.陜北榆林定邊縣采油區(qū)土壤微生物群落結構的分子生態(tài)學研究 [J]. 西北大學學報(自然科學版), 2014,44(6): 943-946. Yang Q, Zhao M, Zhu Y. Molecular ecological research on microbial community structure of soil from oil fields of Dingbian, Yulin, Northern Shaanxi [J]. Journal of Northwest University (Natural Science Edition), 2014,44:943-946.
[16] Nemir A, David M M, Perrussel R, et al. Comparative phylogenetic microarray analysis of microbial communities in TCE-contaminated soils [J]. Chemosphere, 2010,80(5):600-607.
[17] Liu J Y, Liu Y, Dong W H, et al. Shifts in microbial community structure and function in polycyclic aromatic hydrocarbon contaminated soils at petrochemical landfill sites revealed by metagenomics [J]. Chemosphere, 2022,293:15.
[18] 吳宇澄,駱永明,滕 應,等.多氯聯(lián)苯污染農田土壤的細菌群落結構差異及其影響因素 [J]. 土壤學報, 2007,44(5):854-859. Wu Y C, Luo Y M, Teng Y, et al. Variation of microbial communities in PCBs contaminanted agricultural soils and influencing factors [J]. Acta Pedologica Sinica, 2007,44(5):854-849.
[19] Bertolet B L, Louden S I, Jones S E. Microbial community composition, and not pH, influences lake sediment function [J]. Ecosphere, 2022,13(5):e4091.
[20] GB50021-2001 巖土工程勘察規(guī)范 [S]. GB50021-2001 Code for investigation of geotechnical engineering [S].
[21] HJ 613-2011 土壤干物質和水分的測定重量法 [S]. HJ 613-2011 Soil-Determination of dry matter and water content Gravimetric method [S].
[22] HJ 962-2018 土壤pH值的測定電位法 [S]. HJ 962-2018 Soil-Determination of pH-Potentiometry [S].
[23] GB/T 19145-2003 沉積巖中總有機碳的測定 [S]. GB/T 19145-2003 Determination of total organic carbon in sedimentary rock [S].
[24] HJ 717-2014 土壤質量全氮的測定凱氏法 [S]. HJ 717-2014 Soil quality Determination of total nitrogen-Modified Kjeldahl method [S].
[25] HJ 632-2011 土壤總磷的測定堿熔-鉬銻抗分光光度法 [S]. HJ 632-2011 Soil-Determination of Total Phosphorus by alkali fusion Mo-Sb Anti spectrophotometric method [S].
[26] HJ 635-2012 土壤水溶性和酸溶性硫酸鹽的測定重量法 [S]. HJ 635-2012 Soil-Determination of water-soluble and acid-soluble sulfateGravimetric method [S].
[27] HJ 605-2011 土壤和沉積物揮發(fā)性有機物的測定吹掃捕集/氣相色譜-質譜法 [S]. HJ 605-2011 Soil and sediment -Determination of volatile organic compounds Purge and trap gas chromatography/mass spectrometry method [S].
[28] Chen S, Zhou Y, Chen Y, et al. fastp: an ultra-fast all-in-one FASTQ preprocessor [J]. Bioinformatics, 2018,34(17):i884-i890.
[29] Mago? T, Salzberg S L. FLASH: fast length adjustment of short reads to improve genome assemblies [J]. Bioinformatics (Oxford, England), 2011,27(21):2957-2963.
[30] Edgar R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads [J]. Nat Methods, 2013,10(10):996-998.
[31] Stackebrandt E, Goebel B M. Taxonomic note: A place for DNA: DNA reassociation and 16s rRNA sequence analysis in the present species sefinition in bacteriology [J]. International Journal of Systematic Bacteriology, 1994,44(4):846-849.
[32] Wang Q, Garrity G M, Tiedje J M, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy [J]. Appl Environ Microbiol, 2007,73(16):5261-5267.
[33] 張金屯.數量生態(tài)學.第3版 [M]. 北京:科學出版社, 2011:96-97. Zhang J T. Quantitative Ecology. 3rd Edition [M]. Beijing: Science Press, 2011:96-97.
[34] Harrison S, Ross S J, Lawton J H. Beta diversity on geographic gradients in Britain [J]. Journal of Animal Ecology, 1992,61:151-158.
[35] Baselga A. Partitioning the turnover and nestedness components of beta diversity [J]. Global Ecology and Biogeography (Global Ecol Biogeogr), 2010,19(1):134-143.
[36] 斯幸峰,趙郁豪,陳傳武,等.Beta多樣性分解:方法、應用與展望 [J]. 生物多樣性, 2017,25(5):464-480. Si X F, Zhao Y H, Chen C W, et al. Beta-diversity partitioning: methods, applications and perspectives [J]. Biodiversity Science, 2017, 25(5):464-80.
[37] 王艷紅,郝 兆,薛文凱,等.納木措不同水文期水體可培養(yǎng)酵母菌影響因素分析 [J]. 中國環(huán)境科學, 2023,43(4):2028-2038.Wang Y H, Hao Z, Xue W K, et al. Study on environmental factors affecting culturable yeast community structure during differenthydrological periods in Nam Co Lake [J]. China Environmental Science, 2023,43(4): 2028-2038.
[38] 徐紫娟,李文紅,武利軍,等.栽培綠狐尾藻的魚塘底泥菌群結構與優(yōu)勢屬生態(tài)位特征分析 [J]. 基因組學與應用生物學, 2021,40(3): 1196-1204. Xu Z J, Li W H, Wu L J, et al. Analysis of Bacterial Community Structure and Niche Characteristics of theFishpond Sediment Under the Cultivation of Myriophyllum elatinoides [J]. Genomics and Applied Biology, 2021,40(3):1196-1204.
[39] Wathne J A, Haug T, Lydersen C. Prey preference and niche overlap of ringed seals Phoca hispida and harp seals P. groenlandica in the Barents Sea [J]. Marine Ecology Progress Series, 2000,194:233-239.
[40] Chesson P. Mechanisms of maintenance of species diversity [J]. Environmental Science, 2000,31:343-366.
[41] Fargione J, Brown C S, Tilman D. Community assembly and invasion: An experimental test of neutral versus niche processes [J]. Environmental Science, 2003,100(15):8916-8920.
[42] Zhou J Z, Ning D L. Stochastic Community Assembly: Does It Matter in Microbial Ecology? [J]. Microbiology and Molecular Biology Reviews, 2017,81(4):e00002-17.
[43] Chave J. Neutral theory and community ecology [J]. Neutral theory in community ecology, 2004,7(3):241-253.
[44] Langenheder S, Székely A J. Species sorting and neutral processes are both important during the initial assembly of bacterial communities [J]. The Multidisciplinary Journal of Microbial Ecology Journal, 2011,5: 1086-1094.
[45] Sloan W T, Lunn M K, Woodcock S, et al. Quantifying the roles of immigration and chance in shaping prokaryote community structure [J]. Environmental microbiology, 2006,8(4):732-740.
[46] Vellend M, Srivastava D S, Anderson K M, et al. Assessing the relative importance of neutral stochasticity in ecological communities [J]. OIKOS, 2014,123(12):1420-1430.
[47] Mo Y, Peng F, Gao X, et al. Low shifts in salinity determined assembly processes and network stability of microeukaryotic plankton communities in a subtropical urban reservoir [J]. Microbiome, 2021, 9(1):128.
[48] Wu W, Lu H P, Sastri A, et al. Contrasting the relative importance of species sorting and dispersal limitation in shaping marine bacterial versus protist communities [J]. The lnternational Society for Microbial Ecology Journal, 2018,12(2):485-494.
[49] Cao H, Chen R, Wang L, et al. Soil pH, total phosphorus, climate and distance are the major factors influencing microbial activity at a regional spatial scale [J]. Scientific Reports, 2016,6(1):25815.
[50] Lundberg D S, Lebeis S L, Paredes S H, et al. Defining the core Arabidopsis thaliana root microbiome [J]. Nature, 2012,488(7409): 86-90.
[51] Bai R, Wang J T, Deng Y, et al. Microbial Community and Functional Structure Significantly Varied among Distinct Types of Paddy Soils But Responded Differently along Gradients of Soil Depth Layers [J]. Frontiers in microbiology, 2017,8.
[52] Bastida F, Eldridge D J, García C, et al. Soil microbial diversity– biomass relationships are driven by soil carbon content across global biomes [J]. The ISME Journal, 2021,15(7):2081-2091.
[53] Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome [J]. Nature Reviews Microbiology, 2017,15(10): 579-590.
[54] Galand P E, Pereira O, Hochart C, et al. A strong link between marine microbial community composition and function challenges the idea of functional redundancy [J]. The Multidisciplinary Journal of Microbial Ecology Journal, 2018,12(10):2470-2478.
[55] Waldrop M P, Firestone M K. Response of microbial community composition and function to soil climate change [J]. Microb Ecol, 2006,52(4):716-724.
[56] 鄭一鳴,何小松,單光春,等.石油污染對場地中細菌群落的影響及其反饋機制[J]. 環(huán)境科學研究, 2021,34(4):987-995. Zheng Y M, He X S, Shan G C, et al. Effects of petroleum contamination on bacteria communities in field and its feedback mechanisms [J]. Research of Environmental Sciences, 2021,34(4): 987-995.
[57] Spain A M, Krumholz L R, Elshahed M S. Abundance, composition, diversity and novelty of soil Proteobacteria [J]. The Multidisciplinary Journal of Microbial Ecology Journal, 2009,3(8):992-1000.
[58] 孫仲平,吳乃瑾,楊蘇才,等.微生物降解污染地下水中三氯乙烯的微宇宙試驗研究 [J]. 環(huán)境工程技術學報, 2021,11(2):298-306. Sun Z P, Wu N J, Yang S C, et al. Microcosm experimental study on microbial degradation of trichloroethylene in contaminated groundwate [J]. Journal of Environmental Engineering Technology, 2021,11(2):298-306.
[59] Koner S, Chen J S, Hsu B M, et al. Depth-resolved microbial diversity and functional profiles of trichloroethylene-contaminated soils for Biolog EcoPlate-based biostimulation strategy [J]. Journal of Hazardous Materials, 2022,424:127266.
[60] Gilbert J A, Steele J A, Caporaso J G, et al. Defining seasonal marine microbial community dynamics [J]. The ISME Journal, 2012,6(2): 298-308.
[61] Vanwonterghem I, Jensen P D, Dennis P G, et al. Deterministic processes guide long-term synchronised population dynamics in replicate anaerobic digesters [J]. The Multidisciplinary Journal of Microbial Ecology Journal, 2014,8(10):2015-2028.
[62] Zhou J, Liu W, Deng Y, et al. Stochastic Assembly Leads to Alternative Communities with Distinct Functions in a Bioreactor Microbial Community [J]. mBio, 2013,4(2):e00584-12.
[63] Chase J M. Drought mediates the importance of stochastic community assembly [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007,104(44):17430-17434.
[64] Lan G, Quan F, Yang C, et al. Driving factors for soil fungal and bacterial community assembly in topical forest of China [J]. Applied Soil Ecology, 2022,177:104520.
[65] Dini-Andreote F, Stegen J C, van Elsas J D, et al. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(11):E1326-1332.
[66] Xun W, Li W, Xiong W, et al. Diversity-triggered deterministic bacterial assembly constrains community functions [J]. Nature Communications, 2019,10(1):3833.
Structure and assembly mechanism of bacterial communities in deep soil contaminated by chlorinated hydrocarbons.
FAN Yan-ling1,2, GOU Ya-ling1,3, WANG Hong-qi1*, LIU Zeng-jun2**, XU He-feng4, YANG Shuo2, LIANG Jing2
(1.College of Water Sciences, Beijing Normal University, Beijing 100875, China;2.Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China;3.Institute of Resources and Environment, Beijing 100095, China;4.Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China)., 2023,43(10):5550~5561
To study the structural characteristics and assembly mechanism of bacterial community in chlorinated hydrocarbons contaminated soil, unsaturated-zone soil within 2~10m was collected from different contaminated areas. Based on high-throughput sequencing technology, the bacterial community was analyzed and the main drivers, environmental influencing factors and assembly mechanism of the community structure changes were revealed. The results showed that the main driver of bacterial community structure change in the lightly polluted area was soil type. The β-diversity mainly influenced by species replacement with a contribution of 53.9%, and community composition significantly correlated with water-soluble sulfate(=0.61,=0.0002) and total organic carbon content(=0.42,=0.0005). Furthermore, the main driver of bacterial community structure change in the heavily polluted area was the degree of pollution. The β-diversity mainly influenced by the differences in abundance with a contribution of 52.9%, community composition was significantly correlated with trichloroethylene(=0.17,=0.0425), chloroform (=0.22,=0.0375), water-soluble sulfate (=0.36,=0.0074), total organic carbon (=0.29,=0.0168), and total nitrogen content (=0.20,=0.0130). Chlorinated hydrocarbons stress narrowed the niche width and reduced the niche overlap index of most species except adaptive ones, and led to an increase in the abundance of Proteobacteria, while that of Actinobacteriota, Firmicutes, and Chloroflexi decreased. In the soil with low pollutant concentration, the bacterial community assembly was dominated by random process, with a contribution of 65.6%. In the soil with high pollutant concentration, the random process decreased to 27.7%, and the assembly was dominated by deterministic process.
deep soil;bacterial community;structural characteristics;assembly mechanism
X53
A
1000-6923(2023)10-5550-12
2023-02-24
北京市生態(tài)環(huán)境保護學科研究院基金項目(Y2020-003)
* 責任作者, 教授, ambar@bnu.edu.cn, 副研究員, lzengj@126.com
樊艷玲(1984-),女,山東淄博人,高級工程師,北京師范大學博士研究生,主要從事污染土壤與地下水修復治理研究.發(fā)表論文20余篇.flylinger@163.com.
樊艷玲,茍雅玲,王紅旗,等.氯代烴污染深層土壤細菌群落結構及組裝機制 [J]. 中國環(huán)境科學, 2023,43(10):5550-5561.
Fan Y L,Gou Y L, Wang H Q, et al. Structure and assembly mechanism of bacterial communities in deep soil contaminated by chlorinated hydrocarbons [J]. China Environmental Science, 2023,43(10):5550-5561.