耿 濤,趙立欣,姚宗路,申瑞霞,于佳動,羅 娟
水熱炭特性及強化厭氧發(fā)酵潛力研究進展
耿 濤,趙立欣*,姚宗路,申瑞霞,于佳動,羅 娟
(中國農業(yè)科學院農業(yè)環(huán)境與可持續(xù)發(fā)展研究所,農業(yè)農村部華北平原農業(yè)綠色低碳重點實驗室,北京 10081)
厭氧發(fā)酵技術可以對作物秸稈,畜禽糞便,市政污泥等有機廢棄物進行清潔轉化,生成的沼氣,沼渣和沼液在能源,農業(yè),環(huán)保等領域有極大的應用價值.但目前厭氧發(fā)酵技術仍存在停滯期長,發(fā)酵過程中微生物活性受氨氮和有機酸等代謝產物與微塑料,酚類等有毒物質抑制,沼氣中甲烷含量低等問題.水熱炭是生物質在高溫密閉環(huán)境以及亞臨界水的作用下發(fā)生熱化學反應得到的固體產物,具有豐富的孔隙結構和表面含氧官能團,是一種新興的多功能炭基材料.厭氧發(fā)酵體系中適量添加水熱炭能夠有效縮短停滯期,緩解不同物質的抑制效應,促進微生物種間電子傳遞,增強甲烷生成等,具有綜合的強化效果.對水熱炭理化特性以及水熱炭強化厭氧發(fā)酵的作用方式與機理進行了解,有利于進一步開展水熱炭強化厭氧發(fā)酵以及農業(yè)廢棄物高效厭氧處理的研究與應用.
農業(yè)廢棄物;生物質;厭氧發(fā)酵;水熱炭;產甲烷
厭氧發(fā)酵是一種用于處理作物秸稈,畜禽糞便,廚余垃圾等有機廢棄物的成熟技術,有機物在微生物的協(xié)同代謝作用下經過水解、酸化、產乙酸、乙酸裂解和氫營養(yǎng)型產甲烷實現(xiàn)穩(wěn)定化[1].發(fā)酵產物沼渣,沼液,沼氣,可用于清潔能源生產,土壤改良等[2-4].厭氧發(fā)酵技術為實現(xiàn)能源的可再生與廢棄物的有效管理提供技術支持.作為一種以微生物為驅動主體的生化反應,微生物代謝活性決定了厭氧發(fā)酵體系的運行效率,發(fā)酵過程中底物降解難易程度,發(fā)酵環(huán)境,功能菌豐度等因素都會對厭氧發(fā)酵產生重要影響[5].
水熱炭是一種以生物質材料為原料,制備工藝溫和簡單的新興炭基材料,具有一定的酸堿性,表面孔隙結構復雜多樣,官能團種類及數量豐富,在土壤改良,污染物吸附,儲能材料制備等領域有較大應用潛力.厭氧發(fā)酵體系中添加水熱炭可以縮短停滯期,構建功能菌種間電子傳遞途徑,有效增強厭氧發(fā)酵過程中產酸細菌與產甲烷古菌間的互營代謝,提高功能菌豐度,增強體系穩(wěn)定性,強化甲烷生成,對厭氧發(fā)酵體系有綜合強化效果[6-8].
本文主要聚焦廢棄生物質制備水熱炭,對水熱炭理化特性以及水熱炭強化厭氧發(fā)酵的研究現(xiàn)狀進行總結和梳理,進一步指出目前水熱炭在厭氧發(fā)酵強化的局限性并對未來發(fā)展方向進行展望,旨在對有機廢棄物的高效處理以及水熱炭在厭氧發(fā)酵強化方向的研究與應用提供一定助力.
水熱炭化指將廢棄生物質原料(作物秸稈,畜禽糞污,市政污泥等)投入到密封反應裝置中,生物質在相對溫和的溫度條件(180~250℃),自生壓力(2~8MPa)以及亞臨界水的作用下經過水解,解聚,縮合等關鍵步驟實現(xiàn)炭化[9-10].亞臨界狀態(tài)下,水的極性,酸堿性,黏度發(fā)生明顯改變,傳熱與傳質能力顯著增強,可對生物質原料進行深度滲透與炭化[11].與傳統(tǒng)炭化技術比較,水熱炭化無需對反應原料進行提前干燥,反應介質簡單易得,溫和的反應條件在降低能耗的同時使得材料表面官能團種類與數量更為豐富,具有較大的應用潛力.
反應溫度,停留時間,升溫速率,反應物濃度等因素都會對生物質水熱炭化過程,最終產物分布與品質產生影響[12].溫度是其中的關鍵參數,對反應過程與產物特性起著主導作用.隨反應溫度升高,水熱炭產率顯著降低,材料炭化程度,熱穩(wěn)定性,芳香化程度與能量密度皆隨溫度升高逐漸提高[13-16].
種植廢棄物是水熱炭制備的重要原料來源,木質纖維素是種植廢棄物的主要成分,由木質素(9%~29%),纖維素(33%~47%)和半纖維素(21%~ 32%)組成[17].其中纖維素與半纖維素熱穩(wěn)定性較差,在較低的溫度條件(200℃)即開始炭化.木質素作為一種非晶態(tài)雜聚物,其復雜成分與結構需要300℃以上的溫度才開始炭化,并且木質素的組成分子廣泛交聯(lián)形成植物細胞壁的穩(wěn)定骨架,對纖維素和半纖維素形成包裹,阻礙木質纖維素的炭化反應[18].木質纖維素材料這種組成與結構特性使得水熱炭化過程中不同成分與反應途徑相互作用,水熱炭的形成機理更加復雜(圖1).
圖1 木質纖維素生物質水熱炭化演化路徑[19]
木質纖維素水熱炭比表面積一般在1.09~ 52.86m2/g,孔隙度0.02~0.97cm3/g,平均孔徑0.086~ 17.48nm,主要以介孔為主.木質纖維素原料在水熱反應過程中,表面成分不斷溶出并與其他物質反應,對材料表面形成剝蝕,覆蓋并產生碳微球結構,塑造水熱炭表面形貌[20];水熱反應過程中揮發(fā)性物質產生氣體排放效應使得水熱炭表面形成孔隙[21].水熱炭的表面形貌與孔隙特征主要受反應溫度與停留時間的影響(圖2).隨著反應溫度升高,炭材料表層會逐漸破碎,材料孔隙度增大并且表面碳微球增多[15,22];碳微球的直徑隨溫度升高先增大后減小,隨溫度升高或停留時間的延長水熱炭表面碳微球發(fā)生黏連,形態(tài)也逐漸不規(guī)則[23].高溫下生物油中組分沉積會掩埋材料表面孔隙,阻礙材料表面孔隙結構發(fā)展,使水熱炭表面變得平滑致密[24].
圖2 松樹皮,秸稈,纖維素水熱炭SEM圖像[10,16,23]
生物質原料不完全炭化以及水熱反應過程中物質的生成使得水熱炭表面官能團的種類和數量得到豐富,底物類型與工藝條件都對水熱炭表面官能團起影響作用(表1).水熱炭化后材料表面的含氧官能團數目較原材料增加,并且含氧官能團的數量隨溫度升高呈現(xiàn)先增加后減少的趨勢[25-28].Liu等[29]發(fā)現(xiàn)松木經過300℃水熱炭化后,水熱炭表面含氧官能團可增加95%.炭化過程中,纖維素,半纖維素熱穩(wěn)定性較差,在較低溫度下即發(fā)生分解并進行反應,隨著脫水脫羧發(fā)生,—OH,—CO等官能團減少;木質素熱穩(wěn)定性較強,在高溫下才開始反應,形成水熱炭骨架,隨著芳構化反應的進行,材料表面C=C,C=O官能團增多[24].水熱炭表面官能團在污染物吸附,土壤結構調控,材料儲能等方面都發(fā)揮重要作用,選取合適原料與炭化工藝實現(xiàn)功能性材料的獲取是水熱炭應用的關鍵.
木質纖維素材料在水熱炭化過程中生成有機酸與碳酸,同時高溫下木質素分解產生酚類物質也會影響水熱炭的pH值.水熱炭的pH值受原料特性及制備溫度影響[30].水熱炭化過程中,溫度升高導致材料脫水脫羧作用加劇,同時高溫下水相中OH-與水熱炭表面酸性官能團加速結合,導致水熱炭表面酸性含氧官能團脫落轉移,液相中的酸性物質的合成增加,水熱炭pH值升高.李金銘等[31]發(fā)現(xiàn)水熱炭表面弱酸性與材料表面含氧官能團含量有關.Liu等[29]認為水熱炭的pH值與材料表面豐富的羧基官能團有關.
為了更好地增強水熱炭的功能性,可采用不同改性手段對水熱炭理化特性進行優(yōu)化.目前,水熱炭改性的方式按照改性步驟可分為一步法或兩步法,按照改性方法可分為物理改性,化學改性和生物改性.
2.4.1 物理法 物理改性具有廉價,不使用化學藥劑,沒有二次污染的優(yōu)點,改性方法包括高溫氣體活化,球磨,高溫或凍融循環(huán)等.謝偉玲,劉宇等[27]和謝偉玲[32]發(fā)現(xiàn)水熱炭經高溫活化后比表面積與孔隙度顯著增大且孔徑縮小,含氧官能團豐度一定程度上降低. Huang等[33]發(fā)現(xiàn)水熱炭經過混合氣體高溫活化以后,水熱炭材料微孔與比表面積增加,比表面積從7.5m2/g增至618.02m2/g.球磨法則通過物料間研磨與碰撞使炭材料粒徑細化至納米級別,增大材料比表面積并且通過破壞或者拉伸大分子化學鍵,在材料表面增加新的官能團[34].He等[35]使用球磨法對水熱炭改性后,發(fā)現(xiàn)表面O—H,C—O官能團增加.關俊杰[36]將稻殼和玉米秸稈分別在70℃和-25℃進行高溫和凍融循環(huán)老化,發(fā)現(xiàn)兩種老化方法都可以使水熱炭表面—OH,C=C,C—OH顯著增多,其中凍融老化效果更加顯著.
2.4.2 化學法 化學改性按照使用化學試劑類型可以分為酸堿改性,金屬鹽改性,有機物改性,過氧化物改性;按照處理方式則可以分為化學處理,水熱添加劑,水熱后處理等.化學改性可以有效改變水熱炭材料表面形貌,官能團特性并且實現(xiàn)金屬,氮,磷等元素的摻雜,顯著增強水熱炭功能性.
(1)酸堿改性.酸改性可以溶解水熱炭表面金屬鹽等無機成分,降低水熱炭灰分,在材料表面引入酸性官能團并對表面形貌有一定改良作用.謝偉玲[32]通過H3PO4對水熱炭進行一步改性,使得水熱炭表面官能團種類與數量得以豐富,水熱炭對水體中Pb(Ⅱ)的去除率提高28.3%;分別以鹽酸,硝酸,硫酸和毛竹共混合進行水熱炭化,發(fā)現(xiàn)改性水熱炭孔隙結構并未優(yōu)化但是在材料表面發(fā)現(xiàn)氯元素,氮元素和硫元素.Li等[41]用硝酸對楊木屑水熱炭進行浸漬改性后,材料比表面積最高提高5.6倍且含氧官能團豐度提高.堿改性通過強堿物質腐蝕,清除水熱炭表面覆蓋物,促進材料孔隙發(fā)育,增強材料芳構化程度.劉宇等[27]使用KOH對水熱炭進行改性,優(yōu)化材料表面形貌與孔隙結構,改性后水熱炭對水體中PFOS的吸附量最高提升近1000倍.
表1 水熱炭官能團特性變化
(2)金屬鹽改性.使用金屬鹽對水熱炭進行改性,不僅優(yōu)化材料表面形貌及官能團特性,而且金屬元素的附著可以增強水熱炭的功能性,例如通過鐵鹽改性實現(xiàn)水熱炭表面鐵元素附著,增強材料在污水處理,厭氧強化等方面的效果,并且在外加磁場的作用下實現(xiàn)材料的分離與再利用[42].段佳男[43]以FeCl3溶液為反應介質制備稻殼改性水熱炭,鐵鹽改性水熱炭比表面積和孔容明顯增加.孫暢[44]以FeCl3溶液為反應介質進行米糠改性水熱炭制備,材料比表面積和孔隙度分別提高60.49%與32.71%,表面碳微球更加豐富同時實現(xiàn)了鐵元素附著.嚴偉等[45]發(fā)現(xiàn)KMNO4改性后水熱炭表面存在錳氧化物.王曦等[46]使用NH4H2PO4溶液作水熱反應介質進行改性水熱炭制備,改性后,水熱炭表面N元素增加,總孔體積顯著縮小;—COOH,C=O, C=C,C—O官能團增多,—CH減少,在水熱炭表面摻入含氮官能團.
(3)有機物改性.有機物改性使水熱炭表面形貌發(fā)生改變,增強水熱炭芳香性,增加材料碳元素含量并且可以通過交聯(lián)等方式引入新的元素.孫迎超[47]以檸檬酸溶液為反應介質對玉米芯與松子殼進行水熱炭化,改性后材料含氧官能團與表面碳微球都有所增加.楊正武[48]以丙酮溶液為反應介質對小麥秸稈進行水熱改性,改性后水熱炭孔隙結構得到優(yōu)化.段佳男等[43]以葡萄糖對水熱炭進行改性,改性后水熱炭表面C=C,C—O官能團增加.謝偉玲[32]以聚乙烯亞胺對水熱炭進行改性,兩者發(fā)生交聯(lián)作用,在水熱炭表面引入含氮官能團.
(4)過氧化物改性.過氧化物具有強氧化性,對水熱炭材料改性可以增加水熱炭的氧含量并且豐富水熱炭表面含氧官能團.Xue等[49]使用H2O2對花生殼水熱炭進行浸漬改性,發(fā)現(xiàn)水熱炭表面羧基,羰基等含氧官能團增多且氧元素含量增加.關俊杰等[50]發(fā)現(xiàn)H2O2改性可以在水熱炭表面引入大量含氧官能團,增加材料中氧含量并降低碳含量.王曦[46]對木屑水熱炭進行H2O2浸漬改性,改性水熱炭C元素含量顯著減少,O元素含量明顯增加,材料親水性與極性增強且內部形成大量不規(guī)則孔道,表面積與平均孔徑增加,表面官能團種類與數量得到豐富.
2.4.3 生物法 生物改性也稱“微生物陳化”,指微生物吸收利用水熱炭表面有機物質并產生分泌物,使水熱炭表面官能團與表面形貌發(fā)生變化.花昀[51]將麥稈和楊樹鋸末水熱炭加入到厭氧發(fā)酵體系中陳化后發(fā)現(xiàn)水熱炭孔隙結構,pH值,表面含氧官能團增加,水熱炭的碳元素減少,而氧元素所占比例增加.胡子瑛[52]使用好氧細菌枯草芽孢桿菌對水熱炭進行生物改性,發(fā)現(xiàn)改性后水熱炭表面形成了許多非均質的裂縫和空洞,同時碳微球萎縮甚至消失,C—O—C,C=O等含氧官能團減弱.
2.4.4 混合法 除以上3種單一的改性手段,諸多研究將不同改性手段結合使得水熱炭材料理化特性明顯改善.混合改性可以在增強材料特性的同時減小改性造成的環(huán)境或成本負擔.嚴偉[45]將毛竹與不同堿性試劑共水熱后進行高溫熱解,材料比表面積與孔徑顯著增大,混合改性在減少強堿使用量的同時得到優(yōu)質吸附性炭材料.郭大川[10]使用尿素溶液為反應介質進行松樹皮水熱炭制備后進行高溫熱解活化,所得改性材料平均孔徑與氮元素明顯增加,在表面氧元素含量基本不變的情況下將部分C—O鍵轉化為C—N鍵,進一步增強了材料對溶液中鎘的吸附性能.
近年來,水熱炭在生物領域的應用成為新興熱點.厭氧發(fā)酵體系中添加適量水熱炭可以縮短厭氧發(fā)酵的啟動期,提高厭氧發(fā)酵沼氣中甲烷的含量,增強發(fā)酵系統(tǒng)對酸,氨抑制等不良發(fā)酵環(huán)境的耐受性,有明顯的強化厭氧發(fā)酵產甲烷效果(表2).Shi等[7], Leithaeuser等[53],Xu等[54]分別以玉米秸稈,污泥等為原料制備熱解炭與水熱炭進行比較研究,發(fā)現(xiàn)水熱炭強化厭氧發(fā)酵產甲烷效果優(yōu)于熱解炭.為了探明水熱炭強化厭氧發(fā)酵的作用機理,有研究借助代謝組學分析,宏基因組分析,元基因組分箱算法,同位素標記,熒光標記等技術和手段進行探索,提出水熱炭對厭氧發(fā)酵的強化作用與炭材料表面含氧官能團豐度,供受電子能力等特性相關.目前水熱炭強化厭氧發(fā)酵的主要作用途徑包括:(1)緩解厭氧發(fā)酵體系物質抑制;(2)促進互營微生物間電子傳遞;(3)富集厭氧發(fā)酵功能微生物.
表2 水熱炭對厭氧消化性能的影響
水熱炭孔隙結構復雜且表面官能團豐富,可以和發(fā)酵體系中氨氮,酚類,微塑料等物質發(fā)生作用并進行吸附,同時刺激微生物產生胞外聚合物,減少微生物與抑制因子的接觸,削弱其對發(fā)酵微生物的毒害,緩解發(fā)酵體系中的抑制效應(圖3).
圖3 水熱炭對厭氧體系抑制效應的緩解作用
3.1.1 緩解氨抑制 畜禽胴體以及糞便等高含氮量底物在發(fā)酵過程中產生大量銨離子(NH4+)和游離氨(NH3),不僅對發(fā)酵過程中酶活性有抑制作用,而且游離氨進入細胞內改變細胞代謝過程,會對微生物產生毒害[55].水熱炭可以對發(fā)酵體系中氨氮進行吸附并促進微生物對氨氮的轉化.徐杰等[6]發(fā)現(xiàn)發(fā)酵體系中每克水熱炭吸附約1.0~17.5mg氨氮,促進微生物對氨氮的轉化同時提高發(fā)酵體系氨氮抑制的閾值. Usman等[5]發(fā)現(xiàn)厭氧發(fā)酵體系中水熱炭對氨氮的吸附量達到40.98mg/g. Leithaeuser等[53]發(fā)現(xiàn)氨抑制體系中水熱炭添加組甲烷產量較對照組增加17.30%.Wang等[56]發(fā)現(xiàn)KOH改性水熱炭降低發(fā)酵體系中NH4+-N的含量并促進含氮化合物的降解.
3.1.2 緩解微塑料毒害作用 污水中微塑料(粒徑<5mm)會抑制顆粒污泥胞外聚合物的分泌并導致污泥顆粒破碎,使發(fā)酵體系中微生物總量與功能菌相對豐度降低,發(fā)酵系統(tǒng)COD去除率與甲烷產率下降[63-64].水熱炭可以吸附并累積發(fā)酵體系中的微塑料,促進厭氧微生物分泌腐殖酸,增加胞外聚合物生成,減少微塑料與微生物的直接接觸,阻止微塑料對厭氧顆粒污泥中微生物產生毒性,增強發(fā)酵體系穩(wěn)定性[65].
3.1.3 緩解酚類物質毒害作用 酚類有機物對厭氧發(fā)酵體系的抑制作用是當今有機廢棄物高效處理的一個發(fā)展障礙.酚類物質具有毒性和腐蝕性,可以破壞微生物細胞膜并改變細胞通透性,抑制微生物活性.酚濃度過高甚至會導致體系中甲烷生成完全停止.He等[60]發(fā)現(xiàn)水熱炭對厭氧發(fā)酵體系中酚類物質有明顯的吸附作用并且可以刺激微生物分泌胞外聚合物,增強細胞結構,減少酚類物質對微生物的毒害,同時水熱炭加強微生物對苯酚的降解作用,緩解發(fā)酵體系中酚抑制.
厭氧發(fā)酵產甲烷是多種微生物協(xié)同實現(xiàn)的復雜生化反應,提高微生物胞外電子傳遞效率可以有效增強厭氧發(fā)酵過程中底物轉化與甲烷生成(圖4).發(fā)酵初期或體系有機負荷過高時,丙酸,丁酸等揮發(fā)酸無法及時消耗形成累積,發(fā)酵體系pH值下降,產甲烷功能菌活性受到抑制進而破壞整個體系的穩(wěn)定性.水熱炭可以增強發(fā)酵體系中微生物種間電子傳遞,促進微生物對底物的降解與轉化,緩解厭氧發(fā)酵酸抑制.Shi等[7-8]發(fā)現(xiàn)水熱炭對發(fā)酵體系中揮發(fā)酸降解與轉化有促進效果并增強甲烷的生成,對發(fā)酵體系酸抑制有一定的緩解作用.Xu等[54]發(fā)現(xiàn)水熱炭有效促進發(fā)酵體系中丙酸鹽降解.
圖4 厭氧發(fā)酵體系中微生物種間電子轉移方式[72]
種間氫轉移(IHT)曾被認為是厭氧發(fā)酵種間電子傳遞的主要方式,即在極低的氫分壓(約0.1~10Pa)環(huán)境中,產甲烷菌消耗發(fā)酵性細菌產生的H2,還原環(huán)境中CO2并生成甲烷[66-67].但發(fā)酵體系中H2分子主要依靠擴散進行轉移,電子轉移效率極低,通過IHT產生的甲烷僅占總甲烷的4.7%[68].
厭氧發(fā)酵體系中微生物種間電子直接轉移(DIET)是目前厭氧發(fā)酵領域的研究熱點.已知的DIET構建途徑主要有3種:①借助微生物導電鞭毛(Electrically conductive pili)與細胞外表面相關色素(Cytochrome C);②向體系中添加導電物質;③構建微生物電解池[1,5,69-70].DIET的電子傳遞效率可達IHT的106~108倍,是更加高效且穩(wěn)定的電子傳遞方式,可以有效增強厭氧發(fā)酵體系性能[71].
水熱炭借助表面含氧官能團發(fā)揮電子介體作用,構建厭氧發(fā)酵體系中功能菌DIET途徑,加速產酸細菌與厭氧發(fā)酵功能菌對揮發(fā)酸的互營代謝,促進厭氧發(fā)酵體系甲烷生成[68].Shi等[7-8]結合微生物轉錄與代謝組學分析發(fā)現(xiàn)水熱炭添加促進了厭氧發(fā)酵體系內維生素B6的代謝,使得微生物群落的代謝過程和活動受到了干擾;通過以基因組為中心的元轉移組學對水熱炭構建厭氧發(fā)酵DIET途徑的方式進行探索,發(fā)現(xiàn)水熱炭添加體系中和富集程度最高,這兩種微生物可以參與DIET強化甲烷生成.Ren等[57]通過無標記蛋白質組學分析揭示參與DIET,進一步提出水熱炭強化效果厭氧發(fā)酵與炭材料表面含氧官能團豐度呈正相關.He等[35]發(fā)現(xiàn)水熱炭進行球磨改性后,材料表面C—O,O—H含氧官能團進一步豐富,對甲烷生成的促進效果優(yōu)于未改性水熱炭并且對和等可能參與DIET的微生物有富集作用.
表3 水熱炭對厭氧發(fā)酵體系中功能微生物群落演替作用
水熱炭表面孔隙與官能團可以作為結合位點對厭氧發(fā)酵體系中功能微生物進行固定與富集,增強體系穩(wěn)定性(表3).Xu等[62]探究水熱炭對厭氧發(fā)酵不同環(huán)節(jié)的強化效果,發(fā)現(xiàn)水熱炭顯著富集與有機物水解,產酸,產甲烷相關的功能菌,明顯改變發(fā)酵體系中微生物群落結構.He等[60]通過宏基因組分箱手段發(fā)現(xiàn)水熱炭富集厭氧發(fā)酵功能微生物并促進甲烷生成的相關基因表達.Hurst等[61]發(fā)現(xiàn)水熱炭使得厭氧發(fā)酵體系中Bacteroidetes與Firmicutes顯著富集.Usman等[58]通過三維熒光激發(fā)發(fā)射矩陣分析發(fā)現(xiàn)水熱炭添加后厭氧發(fā)酵體系中腐殖質,黃腐酸等難降解物質的濃度降低并推測水熱炭改變厭氧發(fā)酵體系中微生物群落結構,實現(xiàn)對這些物質的降解.Yang等[72]發(fā)現(xiàn)水熱炭使得發(fā)酵體系中Bacteroidetes,Firmicutes和Proteobacteria等微生物一定程度富集.
作為一種厭氧發(fā)酵外源添加劑,水熱炭原料來源豐富,較納米零價鐵,活性炭等材料,制備成本低,工藝對環(huán)境影響小;而且水熱炭表面孔隙,含氧官能團,電導率等特性在厭氧發(fā)酵體系中能夠吸附毒害物質,富集功能微生物,提高微生物種間電子傳遞效率,有效縮短發(fā)酵停滯期,增強體系穩(wěn)態(tài)并改善厭氧發(fā)酵產甲烷效果,有利于實現(xiàn)有機廢棄物的高效消納與利用.深入了解水熱炭強化厭氧發(fā)酵的作用方式,探索厭氧發(fā)酵過程中物質轉化路徑與關鍵微生物間互營機制,實現(xiàn)對發(fā)酵過程及產物分布的有效調控,促進有機廢棄物向甲烷等產物轉化,提高厭氧發(fā)酵技術對自然環(huán)境中復雜混合物和毒害廢棄物的處理水平,擴大厭氧發(fā)酵技術的應用規(guī)模,增強有機廢棄物消納與利用能力.生物質厭氧發(fā)酵與水熱炭化一體化工藝具有良好的經濟可行性和環(huán)境效益,有助于構建有機廢棄物清潔處理的循環(huán)經濟模式,沼氣,水熱炭等產物在環(huán)境,能源等發(fā)面都有良好的應用價值,能夠實現(xiàn)有機廢棄物的高效清潔處理與多元高值利用.
目前,水熱炭強化厭氧發(fā)酵的作用機制與相關應用工藝仍無明確定論,建議在以下幾點對水熱炭強化厭氧發(fā)酵進行研究:
(1)從水熱炭表面形貌,孔隙結構,表面官能團,供受電子能力,可降解性等角度對水熱炭強化厭氧發(fā)酵的關鍵理化特性進行探索,進一步明確實現(xiàn)并強化該類特性的相關工藝與手段,為開發(fā)低成本高效率的厭氧發(fā)酵外源添加劑提供支持.
(2)結合水熱炭添加體系中功能微生物群落演變情況與微生物種間電子傳遞不同途徑對甲烷生成的貢獻程度深入探索水熱炭強化厭氧發(fā)酵產甲烷機制.
(3)結合厭氧發(fā)酵體系中水熱炭添加量,材料老化與可重復利用性,沼液沼渣營養(yǎng)成分變化等方面對水熱炭強化厭氧發(fā)酵的可持續(xù)利用性與后端產物應用途徑進行探索.
(4)現(xiàn)有研究主要針對實驗室規(guī)模水熱炭強化批式厭氧發(fā)酵效果進行探究,需加強對水熱炭強化中試規(guī)模以及實際沼氣工程中連續(xù)厭氧發(fā)酵的效果研究以及水熱炭結合其他厭氧發(fā)酵調控策略的耦合效果及作用方式研究.
(5)綜合經濟利益與環(huán)境效益等角度借助生命周期,技術經濟評估等手段對生物質水熱炭化與厭氧發(fā)酵技術結合處理有機廢棄物的效果進行充分的評估,為水熱炭強化厭氧發(fā)酵技術的推廣應用提供充足理論支撐.
[1] Cavali M, Libardi Junior N, Mohedano R D A, et al. Biochar and hydrochar in the context of anaerobic digestion for a circular approach: An overview [J]. Science of The Total Environment. 2022,822: 153614.
[2] 曾 謙,倪 哲,陳 君,等.有機固廢沼渣特性及其資源化探究[J]. 環(huán)境工程, 2022,40(12):61-70. ZengQ, Ni Z, Chen J, et al. Treatment of organic waste with anaerobic digestion:a review on characteristics and resources recovery [J]. Environmental Engineering, 2022,40(12):61-70.
[3] 褚 晉,閆 晗,韓 濤,等.沼液對稻瘟病的防治效果及內生拮抗細菌篩選與鑒定[J]. 中國生物防治學報, 2022,38(6):1516-1525. Chu J, Yan H, Han T, et al. Control effect of biogas slurry on rice blast and screening, identification of endophytic antagonistic bacteria [J]. Chinese Journal of Biological Control. 2022,38(6):1516-1525.
[4] 柴彥君,張 睿,江建鋒,等.沼液化肥配施對蘆筍地土壤肥力及蘆筍品質的影響[J]. 農業(yè)工程學報, 2023,39(5):120-127. Chai Y J, Zhang R, Jiang J F, et al. Effects of the combined biogas slurry with chemical fertilizer on soil fertility and asparagus quality in field [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023,39(5):120-127.
[5] Usman M, Shi Z, Ji M, et al. Microbial insights towards understanding the role of hydrochar in alleviating ammonia inhibition during anaerobic digestion [J]. Chemical Engineering Journal, 2021,419: 129541.
[6] 徐 杰.病死豬水熱處理及厭氧消化過程參數與基于水熱炭的氨氮調控機理研究[D]. 杭州:浙江大學, 2018.Xu J. The study of process parameters during anaerobic digestion of pig carcass after hydrothermal pretreatment and the mechanism for ammonium recovery by hydrochar addition [D]. Hangzhou: Zhejiang University, 2018.
[7] Shi Z, Usman M, He J, et al. Combined microbial transcript and metabolic analysis reveals the different roles of hydrochar and biochar in promoting anaerobic digestion of waste activated sludge [J]. Water Research, 2021,205:117679.
[8] Shi Z, Campanaro S, Usman M, et al. Genome-Centric Metatranscriptomics Analysis Reveals the Role of Hydrochar in Anaerobic Digestion of Waste Activated Sludge [J]. Environ Sci Technol, 2021,55(12):8351-8361.
[9] Cao Y, He M, Dutta S, et al. Hydrothermal carbonization and liquefaction for sustainable production of hydrochar and aromatics [J]. Renewable and Sustainable Energy Reviews, 2021,152:111722.
[10] 郭大川.制備溫度對松樹皮水熱炭和生物炭性質的影響及尿素改性生物炭對鎘吸附效果研究[D]. 重慶:西南大學, 2021.GUO D C. Study on the effect of preparation temperature on the properties of pine bark hydrochar/biochar and the cadmium adsorption effect onto urea modified biochar [D]. Chongqing: South-west University, 2021.
[11] Kumar M, Olajire Oyedun A, Kumar A. A review on the current status of various hydrothermal technologies on biomass feedstock [J]. Renewable and Sustainable Energy Reviews, 2018,81:1742-1770.
[12] Wang T, Zhai Y, Zhu Y, et al. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties [J]. Renewable and Sustainable Energy Reviews, 2018,90:223-247.
[13] 郭淑青,董向元,范曉偉,等.玉米秸稈水熱炭化產物特性演變分析[J]. 農業(yè)機械學報, 2016,47(4):180-185.Guo S Q, Dong X Y, Fan X W, et al. Characteristics of products from hydrothermal carbonization of corn stover [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016,47(4):180-185.
[14] 王雨婷,陳冠益,李 磊,等.旱傘草水熱炭的穩(wěn)定性特征及固碳潛能[J]. 農業(yè)環(huán)境科學學報, 2022,41(3):639-647.Wang Y T, Chen G Y, LI L, et al. Stability and carbon sequestration potential of hydrochar derived from[J]. Journal of Agro-Environment Science, 2022,41(3):639-647.
[15] 周蒙蒙.水熱炭的制備及其對無機氮和有機污染物的吸附機理研究[D]. 長春:吉林農業(yè)大學, 2021.Zhou M M. Study on the preparation of hydrochar and its adsorption mechanism for inorganic nitrogen and organic pollutants [D]. Changchun: Jilin Agricultural University, 2021.
[16] 周蒙蒙,張忠慶,趙慶慧,等.玉米秸稈水熱炭制備及其對水中阿特拉津吸附[J]. 吉林大學學報(理學版), 2021,59(4):993-1002.Zhou M M, Zhang Z Q, Zhao Q H, et al. Preparation of corn straw hydrothermal carbon and its adsorption of atrazine in water [J]. Journal of Jilin University ( Science Edition ), 2021,59(4):993-1002.
[17] Shen R, Lu J, Yao Z, et al. The hydrochar activation and biocrude upgrading from hydrothermal treatment of lignocellulosic biomass [J]. Bioresource Technology, 2021,342:125914.
[18] Volpe M, Messineo A, M?kel? M, et al. Reactivity of cellulose during hydrothermal carbonization of lignocellulosic biomass [J]. Fuel Processing Technology, 2020,206:106456.
[19] Zhuang X, Zhan H, Song Y, et al. Insights into the evolution of chemical structures in lignocellulose and non-lignocellulose biowastes during hydrothermal carbonization (HTC) [J]. Fuel, 2019,236:960- 974.
[20] Wang R, Jin Q, Ye X, et al. Effect of process wastewater recycling on the chemical evolution and formation mechanism of hydrochar from herbaceous biomass during hydrothermal carbonization [J]. Journal of Cleaner Production, 2020,277:123281.
[21] Mendoza Martinez C L, Sermyagina E, Saari J, et al. Hydrothermal carbonization of lignocellulosic agro-forest based biomass residues [J]. Biomass & bioenergy, 2021,147:106004.
[22] 范方宇.玉米秸稈水熱炭化和熱解法制備生物炭研究[D]. 合肥:合肥工業(yè)大學, 2017.Fan F Y.Study on preparation of biochar based on hydrothermal carbonization and pyrolysis of corn straw [D]. Hefei:Hefei University of Technology, 2017.
[23] Romero-Anaya A J, Ouzzine M, Lillo-Ródenas M A, et al. Spherical carbons: Synthesis, characterization and activation processes [J]. Carbon (New York), 2014,68:296-307.
[24] He Q, Cheng C, Raheem A, et al. Effect of hydrothermal carbonization on woody biomass: From structure to reactivity [J]. Fuel., 2022, 330:125586.
[25] 向天勇,單勝道,張正紅,等.水熱、熱裂解制備稻秸炭的表征與吸附特性[J]. 環(huán)境污染與防治, 2019,41(1):72-76.Xiang T Y, Shan S D, Zhang Z H, et al. Characterization and adsorption properties of rice straw carbon prepared by hydrothermal and pyrolytic treatment [J]. Environmental pollution and control, 2019,41(1):72-76.
[26] 吳 瓊.木質纖維素水熱炭化制備炭材料:結構控制與機理研究[D]. 哈爾濱:東北林業(yè)大學, 2016.Wu Q. Hydrothermal carbonization of lignocellulose for carbon materials: structure control and mechanism study [D]. Harbin: Northeast Forestry University, 2016.
[27] 劉 宇,郭會琴,顏流水,等.油茶籽殼炭微球及其改性物對水中全氟辛烷磺酸鹽(PFOS)的吸附[J]. 環(huán)境化學, 2016,35(10):2172-2182.Liu Y, Guo H Q, Yan L S, et al. Adsorption of perfluorooctanesulfonate (PFOS) by carbon microspheres and their modified products prepared from Camellia oleifera seed shell [J]. Environmental Chemistry, 2016,35(10):2172-2182.
[28] Jain A, Balasubramanian R, Srinivasan M P. Tuning hydrochar properties for enhanced mesopore development in activated carbon by hydrothermal carbonization [J]. Microporous and Mesoporous Materials, 2015,203:178-185.
[29] Liu Z, Zhang F, Wu J. Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment [J]. Fuel., 2010,89(2):510-514.
[30] Nzediegwu C, Naeth M A, Chang S X. Carbonization temperature and feedstock type interactively affect chemical, fuel, and surface properties of hydrochars [J]. Bioresource Technology, 2021,330: 124976.
[31] 李金銘.玉米秸稈水熱炭的理化結構調控及鉛吸附機理研究[D]. 長春:吉林農業(yè)大學, 2021.Li J M. Study on the physicochemical structure regulation and lead adsorption mechanism of corn stalk hydrothermal charcoal [D]. Changchun: Jilin Agricultural University, 2021.
[32] 謝偉玲.不同改性水熱炭制備及其對水溶液中Pb(Ⅱ)吸附行為研究[D]. 哈爾濱:東北農業(yè)大學, 2019. Xie W L. Preparation of different modified hydrochar and their adsorption behavior of Pb (II) in aqueous solution [D]. Harbin: Northeast Agricultural University, 2019.
[33] Huang H, Niu Z, Shi R, et al. Thermal oxidation activation of hydrochar for tetracycline adsorption: the role of oxygen concentration and temperature [J]. Bioresource Technology, 2020,306:123096.
[34] 王 博,艾 丹,孟 陽,等.球磨改性生物炭在環(huán)境修復中的應用進展[J]. 精細化工, 2022,39(2):217-224. Wang B, Ai D, Meng Y, et al. Application advances of ball milling modified biochar in environmental remediation [J]. Fine Chemicals, 2022,39(2):217-224.
[35] He J, Ren S, Zhang S, et al. Modification of hydrochar increased the capacity to promote anaerobic digestion [J]. Bioresource technology, 2021,341:125856.
[36] 關俊杰,劉雨嫣,劉思源,等.高溫與凍融循環(huán)對水熱炭和生物炭吸附污染物的影響[J]. 現(xiàn)代地質, 2021,35(4):931-939. Guan J J, Liu Y Y, Liu S Y, et al. Effects of high temperature and freeze-thaw cycle aging on adsorption performance of hydrochar and biochar on pollutants [J]. Geoscience, 2021,35(4):931-939.
[37] 葉 聰.玉米秸稈水熱炭制備及其與城市污泥混合燃燒特性研究[D]. 合肥:合肥工業(yè)大學, 2020. Ye C. Study on preparation of corn stalk hydrochar and its co-combustion characteristics with municipal sludge [D]. Hefei: Hefei University of Technology, 2020.
[38] Wang C, Zhang S, Huang S, et al. Effect of hydrothermal treatment on biomass structure with evaluation of post-pyrolysis process for wood vinegar preparation [J]. Fuel. 2021,305:121513.
[39] 張 灝.核桃殼水熱活性炭的制備及其吸附性能的研究[D]. 大連:大連理工大學, 2016. Zhang H. Preparation of walnut shell hydrothermal activated carbon and its adsorption properties [D]. Dalian: Dalian University of Technology, 2016.
[40] 巫 丹,范方宇,趙國瑜,等.油茶殼水熱炭基活性炭的制備與表征[J]. 應用化工, 2022:1-10. Wu D, Fan F Y, Zhao G Y, et al.Preparation and characterization of hydrothermal carbon-based activated carbon from Camellia oleifera shell [J]. Application Chemical Industry, 2022:1-10.
[41] Li D, Cui H, Cheng Y, et al. Chemical aging of hydrochar improves the Cd2+adsorption capacity from aqueous solution [J]. Environmental Pollution, 2021,287:117562.
[42] Sun X, Yu K, He J, et al. Multiple roles of ferric chloride in preparing efficient magnetic hydrochar for sorption of methylene blue from water solutions [J]. Bioresource Technology, 2023,373:128715.
[43] 段佳男,葉志偉,王 曦,等.改性稻殼水熱炭對苯酚的吸附[J]. 應用化工, 2022,51(1):17-21. Duan J N, Ye Z W, Wang X, et al. Adsorption of phenol by modified rice husk hydrochar [J]. Applications Chemical, 2022,51(1):17-21.
[44] 孫 暢.FeCl3改性水熱炭用于生物滯留池脫氮除磷效果[D]. 天津:天津大學, 2018. Sun C. FeCl3modified hydrochar and its effect on nitrogen and phosphorus removal in bioretention tank [D]. Tianjin: Tianjin University, 2018.
[45] 嚴 偉.毛竹水熱功能炭材料的制備、表征與性能研究[D]. 浙江:浙江大學, 2018. Yan W. Preparation, characterization and properties od functional hydrochar materials derived from moso bamboo [D]. Zhejiang: Zhejiang Univerisity, 2018.
[46] 王 曦.不同改性木屑水熱炭對土壤中鉻穩(wěn)定性研究[D]. 上海:東華大學, 2020. Wang X. Study on the stability of chromium in soil eith different modified sawdust hydrochar [D]. Shanghai: Donghua University, 2020.
[47] 孫迎超.水熱炭化廢棄農林生物質及對含Cr(Ⅵ)廢液吸附特性的研究[D]. 大連:大連理工大學, 2016. Sun Y C. Adsoption Characteristics of hydrothermal carbon of agricultural and forestery residues for wastewater containing Cr(Ⅵ) [D]. Dalian: Dalian University of Technology, 2016.
[48] 楊正武,安天一,李雨澤,等.原位改性丙酮水熱炭對四環(huán)素的吸附特性[J]. 山東化工, 2021,50(14):10-12. Yang Z W, An T Y, Li Y Z, et al. Adsorption characteristics of tetracycline by in-situ modified acetone hydrochar [J]. Shandong Chemical Industry, 2021,50(14):10-12.
[49] Xue Y, Gao B, Yao Y, et al. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests [J]. Chemical Engineering Journal (Lausanne, Switzerland: 1996), 2012,200-202:673-680.
[50] 關俊杰.不同老化作用對水熱炭性質及吸附Cu2+和諾氟沙星的影響[D]. 北京:中國地質大學(北京), 2021. Guan J J. Effects of different aging processes on hydrochar properties and the sorption of Cu2+and norfloxacin [D]. Beijing: China University of Geosciences (Beijing), 2021.
[51] 花 昀.改良水熱炭對鎘的吸附及水稻土壤鎘生物有效的影響[D]. 南京:南京農業(yè)大學, 2020. Hua Y. Effects of modified hydrochar on cadmium adsorption and cadmium bioavailability in paddy soil [D]. Nanjing: Nanjing Agricultural University, 2020.
[52] 胡子瑛.核桃殼水熱炭釋放溶解性有機物的化學性質和生物利用性的關系[D]. 合肥:安徽大學, 2021.HU Z Y. Relationship between the chemical properties and bioavailability of dissolved organic matter released from hydrochar of walnut shells [D]. Hefei: Anhui University, 2021.
[53] Leithaeuser A, Gerber M, Span R, et al. Comparison of pyrochar, hydrochar and lignite as additive in anaerobic digestion and NH4+adsorbent [J]. Bioresource Technology, 2022,361:127674.
[54] Xu S, Wang C, Duan Y, et al. Impact of pyrochar and hydrochar derived from digestate on the co-digestion of sewage sludge and swine manure [J]. Bioresource Technology, 2020,314:123730.
[55] Rajagopal R, Massé D I, Singh G. A critical review on inhibition of anaerobic digestion process by excess ammonia [J]. Bioresource Technology, 2013,143:632-641.
[56] Wang R, Peng P, Qi S, et al. Chemical modification of straw hydrochar as additive to improve the anaerobic digestion performance of sludge hydrothermal carbonization wastewater [J]. Fuel, 2023, 340:127506.
[57] Ren S, Usman M, Tsang D C W, et al. Hydrochar-facilitated anaerobic digestion: evidence for direct interspecies electron transfer mediated through surface oxygen-containing functional groups [J]. Environmental Science & Technology, 2020,54(9):5755-5766.
[58] Usman M, Shi Z, Ren S, et al. Hydrochar promoted anaerobic digestion of hydrothermal liquefaction wastewater: Focusing on the organic degradation and microbial community [J]. Chemical Engineering Journal, 2020,399:125766.
[59] Zhao K, Li Y, Zhou Y, et al. Characterization of hydrothermal carbonization products (hydrochars and spent liquor) and their biomethane production performance [J]. Bioresource Technology, 2018,267:9-16.
[60] He J, Luo T, Shi Z, et al. Microbial shifts in anaerobic digestion towards phenol inhibition with and without hydrochar as revealed by metagenomic binning [J]. Journal of Hazardous Materials, 2022,440: 129718.
[61] Hurst G, Ruiz-Lopez S, Rivett D, et al. Effect of hydrochar from acid hydrolysis on anaerobic digestion of chicken manure [J]. Journal of Environmental Chemical Engineering, 2022,10(5):108343.
[62] Xu Q, Luo L, Li D, et al. Hydrochar prepared from digestate improves anaerobic co-digestion of food waste and sewage sludge: Performance, mechanisms, and implication [J]. Bioresource Technology, 2022,362: 127765.
[63] Zhang Y, Wei W, Huang Q, et al. Insights into the microbial response of anaerobic granular sludge during long-term exposure to polyethylene terephthalate microplastics [J]. Water Research, 2020, 179:115898.
[64] Zhang Y, Wei W, Sun J, et al. Long-term effects of polyvinyl chloride microplastics on anaerobic granular sludge for recovering methane from wastewater [J]. Environmental Science & Technology, 2020, 54(15):9662-9671.
[65] Wei W, Wang C, Shi X, et al. Multiple microplastics induced stress on anaerobic granular sludge and an effectively overcoming strategy using hydrochar [J]. Water Research, 2022,222:118895.
[66] Lovley D R, Ueki T, Zhang T, et al. Geobacter: The microbe electric's physiology, ecology, and practical applications [J]. Advances in microbial physiology, 2011,59:1.
[67] 倪水松.沼氣發(fā)酵過程中的種間氫轉移[J]. 中國沼氣, 1985,(3):2-7.NI S S. Interspecific hydrogen transfer during biogas fermentation [J]. China Biogas, 1985,(3):2-7.
[68] Conrad R, Phelps T J, Zeikus J G. Gas metabolism evidence in support of the juxtaposition of hydrogen-producing and methanogenic bacteria in sewage sludge and lake sediments [J]. Appl Environ Microbiol, 1985,50(3):595-601.
[69] Cruz V C, Rossetti S, Fazi S, et al. Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation [J]. Environ. Sci. Technol., 2014,48(13):7536- 7543.
[70] Zhao Z, Li Y, Zhang Y, et al. Sparking Anaerobic Digestion: Promoting Direct Interspecies Electron Transfer to Enhance Methane Production [J]. iScience, 2020,23(12):101794.
[71] Jin H, He Z, Ren Y, et al. Current advances and challenges for direct interspecies electron transfer in anaerobic digestion of waste activated sludge [J]. Chemical Engineering Journal, 2022,450:137973.
[72] Yang Y, Wang M, Yan S, et al. Effects of hydrochar and biogas slurry reflux on methane production by mixed anaerobic digestion of cow manure and corn straw [J]. Chemosphere, 2023,310:136876.
Characteristics and potential to strengthen anaerobic digestion of hydrochar.
GENG Tao, ZHAO Li-xin*, YAO Zong-lu, SHEN Rui-xia, YU Jia-dong, LUO Juan
(Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs P. R. China. Beijing 100081, China)., 2023,43(10):5170~5180
Anaerobic digestion (AD) offers an attractive method to reduce the negative impact of organic waste existing in the environment such as stalk, animal manure and municipal sludge. The biogas, digestate and slurry generated have great application value in energy, agriculture, environmental protection and other fields. However, AD has some problems such as the lag phase, the inhibition effect caused by ammonia nitrogen, VFA and so on, and low methane content in biogas. Hydrochar is the solid product of hydrothermal carbonization of biomass which is converted to porous multi-functional carbon-based material with the presence of subcritical water in the sealed equipment under the effect of heat and pressure. The potential benefits and applications of hydrochar have received significant attention with complex pore structures and high density of oxygen-containing functional groups. There is a comprehensive strengthening effect on AD including shortening the lag phase, alleviating the inhibition, favoring electron transfer between microbes, and enhancing the CH4production with the addition of hydrochar. Specifically, it was brought together recent advances made in the area through a systematic and critical review of the characteristics, modification, and strengthening effect on AD of hydrochar. The potential and limitations involved in the hydrochar application on AD were pointed out with suggestions for further research to exploit the great potential of AD on treating agricultural wastes.
agricultural wastes;biomass;anaerobic digestion;hydrochar;methanogenesis
X705;S216.4;TK6
A
1000-6923(2023)10-5170-11
2023-02-23
國家重點研發(fā)計劃(2022YFD2002100);中央級公益性科研院所基本科研業(yè)務費專項(BSRF202221);中國農業(yè)科學院科技創(chuàng)新工程
* 責任作者, 研究員, zhaolixincaae@163.com
耿 濤(1995-),男,山西太原人,中國農業(yè)科學院研究生院碩士研究生,主要從事農業(yè)廢棄物厭氧生物處理技術研究.發(fā)表論文1篇.gt0502@126.com.
耿 濤,趙立欣,姚宗路,等.水熱炭特性及強化厭氧發(fā)酵潛力研究進展 [J]. 中國環(huán)境科學, 2023,43(10):5170-5180.
Geng T, Zhao L X, Yao Z L, et al. Characteristics and potential to strengthen anaerobic digestion of hydrochar [J]. China Environment Science, 2023,43(10):5170-5180.