亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        壓縮載荷下不同微觀結(jié)構(gòu)浮力材料力學(xué)特性研究

        2023-10-25 11:42:04陳章蘭孫承猛王景澤崔維成
        船舶力學(xué) 2023年10期
        關(guān)鍵詞:微珠外徑浮力

        高 博,陳章蘭,孫承猛,王景澤,崔維成

        (1.集美大學(xué)輪機(jī)工程學(xué)院,福建廈門 361021;2.山東交通學(xué)院船舶與港口工程學(xué)院,山東威海 264209;3.西湖大學(xué)工學(xué)院,浙江省海岸帶環(huán)境與資源研究重點(diǎn)實(shí)驗(yàn)室,杭州 310024)

        0 引 言

        微珠復(fù)合泡沫材料是一種常見(jiàn)的固體浮力材料,主要由空心玻璃微珠、環(huán)氧樹脂組成,具有強(qiáng)度高、密度低、吸水率低、可機(jī)加工等優(yōu)異的特性,是深海無(wú)人/載人潛水器的一種重要材料[1]。在我國(guó)“十三五”期間開(kāi)展全海深無(wú)人/載人潛水器研制時(shí),發(fā)現(xiàn)國(guó)內(nèi)外所有的供應(yīng)商中沒(méi)有一家可以提供滿足潛水器設(shè)計(jì)規(guī)范要求的強(qiáng)度級(jí)別的浮力材料,這是因?yàn)楫?dāng)前玻璃微珠/環(huán)氧樹脂型的固體浮力材料基本上已經(jīng)優(yōu)化到了強(qiáng)度極限,不太可能指望生產(chǎn)廠家在短期內(nèi)能夠生產(chǎn)出滿足規(guī)范強(qiáng)度要求的新產(chǎn)品[2]。這就要求在全海深無(wú)人/載人潛水器中超規(guī)范使用現(xiàn)有的浮力材料。對(duì)浮力材料的有效彈性模量、破壞準(zhǔn)則等力學(xué)特性更深入的了解,將為浮力材料如何超規(guī)范使用,如安全措施標(biāo)準(zhǔn)選擇,提供一定的理論支撐。對(duì)微珠復(fù)合泡沫材料力學(xué)行為相關(guān)的研究,主要涉及模量和強(qiáng)度的理論和數(shù)值仿真預(yù)測(cè)、以及試驗(yàn)研究。例如:盧子興利用三相、四相、五相球模型預(yù)測(cè)了浮力材料的有效彈性模量[3-8];陳鹿等[9]利用ANSYS 軟件從微觀角度分析固體浮力材料的彈性模量;Marur 等[10]采用理論和數(shù)值方法研究了浮力材料的宏觀彈性行為;Yu 等[11]利用有限元軟件,從微觀結(jié)構(gòu)出發(fā),預(yù)測(cè)浮力材料的彈性力學(xué)行為;Bardella[12-16]通過(guò)建立包含多微珠三維有限元模型,分析和研究浮力材料的破壞準(zhǔn)則,以及涂層對(duì)浮力材料性能的影響。理論計(jì)算結(jié)果通常表示材料的平均水平,不能較好體現(xiàn)局部的不同;有限元模型通常對(duì)浮力材料細(xì)觀結(jié)構(gòu)進(jìn)行理想化,如假設(shè)微珠直徑(外徑)一樣,均勻分布在基體中,材料各向同性[17]。研究者對(duì)于含有不同微珠外徑、壁厚等浮力材料強(qiáng)度預(yù)測(cè)還較少報(bào)道。為了更好地了解由不同外徑、壁厚組成浮力材料的應(yīng)力分布,以及對(duì)于微珠破壞的影響,提出考慮微珠大小、壁厚和體積分?jǐn)?shù)等因素后材料有效彈性模量的預(yù)測(cè)公式、微珠彈性應(yīng)變能等。本文采用ANSYS 軟件,建立由多種微珠外徑、壁厚、體積分?jǐn)?shù)組合而成單胞有限元模型,分析壓縮載荷下浮力材料有效彈性模量的影響因素,相鄰微珠外徑不同、壁厚不同等的應(yīng)力分布,探討浮力材料的強(qiáng)度預(yù)測(cè)問(wèn)題,同時(shí)通過(guò)試驗(yàn)驗(yàn)證破壞準(zhǔn)則。

        1 彈性模量計(jì)算

        基于微分等效介質(zhì)理論,浮力材料中均勻加入等體積的空心玻璃微珠,可建立復(fù)合材料的有效模量與基體有效模量、玻璃微珠有效模量及其體積含量之間的微分關(guān)系,得到以下微分方程式[18]:

        式中,K、μ分別為浮力材料的體積模量和剪切模量,K2,、μ2分別表示空心玻璃微珠的體積模量和剪切模量,F(xiàn)為玻璃微珠的體積分?jǐn)?shù)。

        固體浮力材料在靜水壓力作用下,可簡(jiǎn)化成三相球模型的自洽模型,三相球模型如圖1 所示,微珠內(nèi)部為氣相,微珠壁材部分為增強(qiáng)相和外側(cè)基體相??傻玫讲A⒅榈牡刃w積模量[3],以及空心玻璃微珠的等效剪切模量分別為

        式中,Kg、μg分別表示玻璃微珠壁材的體積模量和剪切模量分別為空心玻璃微珠內(nèi)外徑,內(nèi)外徑之比η=ri/ro,如圖2所示。

        圖1 三相球模型(自洽模型)[7]Fig.1 Three-phase spherical model(self-consistent model)[7]

        圖2 浮力材料二維示意圖Fig.2 Two-dimensional schematic diagram of buoyancy materials

        在求解浮力材料的有效體積模型和剪切模量后,可利用公式(5)的彈性常數(shù)間的相互關(guān)系,來(lái)確定浮力材料的有效彈性模量,以及彈性模量隨空心微珠體積分?jǐn)?shù)的變化趨勢(shì)。

        從公式(1)~(5)可發(fā)現(xiàn)浮力材料的等效彈性模量與微珠的體積模量和剪切模量成正相關(guān),而微珠體積模量和剪切模量與微珠的內(nèi)外徑之比有關(guān)。

        以上方法是基于基體中加入的微珠外徑和壁厚都一樣。浮力材料通常由空心玻璃微珠、氣孔及基體三相組成,且制造過(guò)程中存在微珠破裂或者微珠與基體脫粘等缺陷。針對(duì)脫粘微珠和破裂微珠等缺陷部位可簡(jiǎn)化成氣孔[19]。同一批次的玻璃微珠大小和壁厚通常存在不同。因此,計(jì)算浮力材料彈性模量時(shí),應(yīng)充分考慮氣孔、微珠壁厚等因素。為解決浮力材料有效彈性模量問(wèn)題,可采用多次單相夾雜的思路。假設(shè)存在兩種壁厚空心玻璃微珠(即第一類壁厚微珠和第二類壁厚微珠),夾雜過(guò)程為:第一步將第一類微珠與基體組合,第二步以第一步組合成的浮力材料作為新的“基體”,將第二類HGM填充在新基體,第三步以第二步組合成的浮力材料再次作為“基體”將氣孔作為填充進(jìn)行添加。

        在基體中添加微量微珠或氣孔后,材料彈性模型的變化可通過(guò)微分形式表示,即dE與dφ關(guān)系式,考慮到微珠體積分?jǐn)?shù)增大后,顆粒之間的相互作用就會(huì)變得不可忽略。經(jīng)文獻(xiàn)[20-23]證明,將dφ用dφ(1-φ/φm)表示能較好地解決以上問(wèn)題。多次夾雜可通過(guò)下列微分方程解釋:

        式中,φ1、φ2、...φN為添加微珠的體積分?jǐn)?shù),φm為基體體積分?jǐn)?shù)。通過(guò)上式理論上可求解浮力材料的彈性模量,但較難確定不同外徑和壁厚的微珠的比例,第一次組合后,添加氣孔公式預(yù)測(cè)較好[19],但是對(duì)于后續(xù)多次添加不同壁厚、粒徑的微珠,結(jié)果有待驗(yàn)證。從上式中可發(fā)現(xiàn),微珠內(nèi)外徑之比η是影響浮力材料彈性模量的主要因素,計(jì)算過(guò)程中針對(duì)微珠微觀結(jié)構(gòu)可做一定等效簡(jiǎn)化。假設(shè)所有微珠外徑一樣,此時(shí)不同微觀結(jié)構(gòu)主要體現(xiàn)在微珠的壁厚(η不同)。此時(shí)在計(jì)算時(shí)可引入平均內(nèi)外徑之比ηˉ,平均內(nèi)外徑之比可通過(guò)微珠體積分?jǐn)?shù)、微珠壁材密度和微珠質(zhì)量求得。每一個(gè)微珠的內(nèi)外徑之比與平均值差可采用Δηi表示,即

        文獻(xiàn)[24]給出了基于平均壁厚和體積分?jǐn)?shù)的二階微分修正參考,并與試驗(yàn)結(jié)果相吻合。

        由于微珠尺寸小,工程中想要準(zhǔn)確知道浮力材料不同外徑和壁厚的微珠數(shù)量困難較大,可提出如下簡(jiǎn)化過(guò)程:以生產(chǎn)批次微珠內(nèi)外徑平均值為基準(zhǔn),第一次,基于平均差-- --Δηi,將微珠分為高于和低于平均值兩類,同時(shí)取各自類別中的平均值;第二次,以第一次的兩類微珠的新平均值為基準(zhǔn),再次將微珠分為新的高于和低于兩類。當(dāng)Δηi為負(fù)數(shù)時(shí),且數(shù)值越小,起到的增強(qiáng)效果越小,甚至對(duì)浮力材料彈性模量有減弱作用。

        2 壓縮強(qiáng)度及破壞準(zhǔn)則分析

        2.1 壓縮強(qiáng)度經(jīng)驗(yàn)公式

        Turcsanyi[25]對(duì)抗壓強(qiáng)度提出了一個(gè)半經(jīng)驗(yàn)的公式:

        式中,A為常數(shù),與填料形狀有關(guān),對(duì)于球形微珠,A=2.5。

        Nicolais和Narkis[26],Ahmed和Jones[27]在考慮玻璃微珠的孔隙影響的基礎(chǔ)上提出:

        式中,σcu為浮力材料極限強(qiáng)度應(yīng)力,σmu為基體極限強(qiáng)度應(yīng)力,Vs、Ve和Vg分別為玻璃微珠、基體和孔隙體積含量。

        從以上公式可發(fā)現(xiàn),針對(duì)強(qiáng)度的預(yù)測(cè)公式主要考慮基體極限強(qiáng)度應(yīng)力與各相體積含量之間的關(guān)系,并沒(méi)有考慮浮力材料的微觀結(jié)構(gòu)對(duì)壓縮強(qiáng)度和應(yīng)力分布的影響。

        2.2 破壞準(zhǔn)則

        通過(guò)閱讀已發(fā)表的文獻(xiàn)可發(fā)現(xiàn),壓縮載荷作用下,浮力材料的破壞模式主要有:包括不同加載方向在內(nèi)的平面分裂的脆性破壞[28-29]、準(zhǔn)脆性剪切破壞[30-31]、垂直于加載方向發(fā)生的局部“弱層”破壞[32]、在均勻體積載荷或其他普遍壓縮的載荷條件下微球的大規(guī)模斷裂、沒(méi)有宏觀斷裂和大的非彈性變形[33]。

        格里菲里提出理想晶體的理論斷裂強(qiáng)度公式為

        式中,γ表示單位面積上的斷裂表面能,a為平衡晶格常數(shù),σth為廣義破壞強(qiáng)度。通過(guò)上式說(shuō)明材料的破壞強(qiáng)度與γ平方根成正比,如果為球形材料,受到剪切破壞時(shí),可以得出:

        微珠為中空球,可根據(jù)比面積

        根據(jù)文獻(xiàn)[34],

        式中,K與材料的彈性模量(Em,Eg)、泊松比(μm,μg)、微珠中空度Vh和體積占比Vg等相關(guān),k為比例常數(shù),pth為破壞壓力。

        從上面公式中可以看出,當(dāng)微珠的體積分?jǐn)?shù)和內(nèi)外徑之比相同時(shí),則K值一樣,破壞壓力與微珠半徑平方根成反比,隨著壓力增大半徑較大的微珠將先發(fā)生破壞。實(shí)際浮力材料中玻璃微珠的大小和壁厚不統(tǒng)一,k和K值通常是不一樣的,兩個(gè)變量的值對(duì)于材料的破壞起源預(yù)測(cè)增加了難度和不確定性,因此,計(jì)算過(guò)程中為減少變量,可以結(jié)合能量入手,考慮微珠的彈性應(yīng)變能。

        式中,σij,εij分別為空間應(yīng)力和應(yīng)變值,S為微珠表面積,V為微珠體積。

        文獻(xiàn)[13]提出了破壞應(yīng)力和破壞彈性應(yīng)變能臨界值關(guān)系式,載荷作用下,應(yīng)變能超過(guò)臨界時(shí)微珠將發(fā)生破壞,

        公式(19)并未考慮微珠大小對(duì)破壞的影響,實(shí)際浮力材料中,存在不同大小的微珠,不同大小的微珠在浮力材料中各自占的體積分?jǐn)?shù)也不同,令

        若式(19)中p0為微珠的破壞壓力,則p0=pth,綜合公式(17)、(19)和(20),可得出U0與微珠外徑的關(guān)系:

        微珠的大小對(duì)彈性應(yīng)變能存在一定的影響,但不能簡(jiǎn)單地認(rèn)為是反比關(guān)系,彈性應(yīng)變能需要綜合考慮微珠壁厚、體積分?jǐn)?shù)和半徑的影響。

        3 數(shù)值計(jì)算

        材料在彈性變形階段,其應(yīng)力和應(yīng)變成正比例關(guān)系(即符合胡克定律),其比例系數(shù)稱為彈性模量。數(shù)值計(jì)算基于ANSYS 有限元分析軟件開(kāi)展,施加位移載荷,位移大小為基體邊長(zhǎng)1/100。通過(guò)軟件可提取載荷加載面的支反力,端面支反力之和除以表面積為端面的應(yīng)力。

        玻璃微珠/環(huán)氧樹脂固體浮力材料的微珠壁厚、微珠半徑、微珠體積分?jǐn)?shù)對(duì)材料的力學(xué)行為有較大影響,研究固體浮力材料細(xì)觀結(jié)構(gòu)在位移載荷作用下的楊氏模量、壓縮強(qiáng)度,對(duì)實(shí)際生產(chǎn)具有一定的指導(dǎo)意義。本文采用的基本假設(shè)是:微珠與樹脂基體完好粘結(jié),即相當(dāng)于剛性連接;微珠均勻分布于樹脂基體中;浮力材料中不存在雜質(zhì)和氣泡;浮力材料力學(xué)性能均為各向同性。

        3.1 有限元模型

        (1)模型概述

        基于上述假設(shè),建立了浮力材料的體心立方單胞模型,單胞模型由兩個(gè)玻璃微珠和樹脂基體組成,基于對(duì)稱原理和減少運(yùn)算量原則,將模型簡(jiǎn)化為1/8單胞模型,如圖3(b)所示。

        圖3 浮力材料單胞有限元模型Fig.3 Finite element model of buoyancy material

        (2)網(wǎng)格劃分

        模型單元選擇三維10 節(jié)點(diǎn)實(shí)體單元Solid187,材料參數(shù)如表1 所示,采用自由網(wǎng)格劃分,劃分網(wǎng)格后模型如圖4所示。

        (3)邊界條件

        分析彈性模量時(shí)的邊界條件:對(duì)A面施加固定約束,A1面為施加載荷面,施加位移載荷,B面、C面的法向位移為零[35],如圖5所示。

        分析壓縮強(qiáng)度時(shí)的邊界條件:A1面施加40 MPa載荷,A面、B面、C面施加位移約束,設(shè)置三個(gè)面的法向位移為零[36]。

        圖4 網(wǎng)格劃分圖Fig.4 Meshing

        表1 材料參數(shù)Tab.1 Material properties

        圖5 分析彈性模量時(shí)約束情況Fig.5 Constraints when analyzing elastic modulus

        3.2 計(jì)算工況

        本文建立了三維單胞有限元模型,Hobaica 和Cook[37]的測(cè)試結(jié)果表明,當(dāng)微珠體積占比超過(guò)67%時(shí),由于浮力材料中氣泡和污染物的增加以及微珠與基體界面的完整性變差,浮力材料的吸水率顯著增加,一般認(rèn)為67%為微珠體積占比的上限。基于微珠的體積分?jǐn)?shù)設(shè)計(jì)的20類工況(表2),分別對(duì)微珠體積分?jǐn)?shù)為10%、20%、30%、40%、50%和60%進(jìn)行計(jì)算和分析,不同微珠內(nèi)部結(jié)構(gòu)模型的平面投影如圖6所示。

        我們對(duì)不同微觀結(jié)構(gòu)的浮力材料彈性模量和壓縮強(qiáng)度情況進(jìn)行了分析,主要分析的工況如下:

        (1)兩個(gè)微珠外徑、壁厚一致,改變微珠的體積分?jǐn)?shù),同時(shí)改變兩個(gè)微珠外徑,分析微珠體積分?jǐn)?shù)、微珠大小與浮力材料的彈性模量的關(guān)系、基體和微珠應(yīng)力分布情況;

        (2)兩個(gè)微珠外徑一致,固定為20μm,改變微珠體積分?jǐn)?shù)、微珠的壁厚,分析壁厚與材料的彈性模量的關(guān)系、微珠應(yīng)力分布情況,驗(yàn)證破壞準(zhǔn)則;

        (3)兩個(gè)微珠半徑不一致,體積分?jǐn)?shù)相同和不同時(shí),微珠壁厚不同,分析基體和微珠應(yīng)力分布,以及加載方向?qū)Σ牧系膬?nèi)部應(yīng)力的影響,驗(yàn)證破壞準(zhǔn)則。本文計(jì)算工況如表2所示。

        表2 計(jì)算工況Tab.2 Calculation conditions

        圖6 不同微觀結(jié)構(gòu)模型示意圖Fig.6 Diagram of different microstructure models

        4 結(jié)果與討論

        4.1 試驗(yàn)結(jié)果

        選用Engineered Syntactic Systems(ESS)公司HZ-42 浮力材料,材料尺寸為610 mm×305 mm×100 mm,進(jìn)行靜水壓試驗(yàn),按2~3 MPa/min的速度均勻加壓至試驗(yàn)壓力值165 MPa,并保壓2小時(shí)。試驗(yàn)后取材料部分區(qū)域放大250 倍SEM 圖如圖7 所示。圖7 中可發(fā)現(xiàn)破壞的微珠存在半徑較大又存在較小的微珠,說(shuō)明微珠的破壞強(qiáng)度與微珠大小不是簡(jiǎn)單的反比關(guān)系,微珠的破壞需要同時(shí)考慮微珠的壁厚和大小等因素;從圖中還發(fā)現(xiàn)微珠的破壞通常在赤道位置開(kāi)始。

        4.2 微珠大小和體積分?jǐn)?shù)對(duì)浮力材料彈性模量的影響

        根據(jù)胡克定律,單軸應(yīng)力狀態(tài)下的應(yīng)力應(yīng)變關(guān)系如下:

        式中,σ為應(yīng)力,ε為應(yīng)變,d為加載位移載荷,l為三維模型基體邊長(zhǎng),S為施加載荷面表面積。

        環(huán)氧樹脂基體中加入的空心玻璃微珠組成浮力材料,當(dāng)空心玻璃微珠有效彈性模量大于基體彈性模量時(shí),微珠屬于材料的顆粒增強(qiáng)元素,此時(shí)加入越多,越有利于提高浮力材料的彈性模量,因此玻璃微珠的體積分?jǐn)?shù)和壁厚對(duì)于浮力材料的彈性模量具有重要影響。我們?cè)O(shè)計(jì)了A1-A6 工況(詳見(jiàn)表2),對(duì)單胞模型進(jìn)行有限元分析。發(fā)現(xiàn)浮力材料有效彈性模量與微珠體積分?jǐn)?shù)成正相關(guān),但是隨著內(nèi)外徑之比的變大(即壁厚變?。行椥阅A康淖兓S微珠體積分?jǐn)?shù)的變化趨于平緩,如圖8 所示,壁厚越薄玻璃微珠的有效彈性模量越低,可以預(yù)測(cè)當(dāng)玻璃微珠壁厚減小至某一值時(shí),浮力材料的有效彈性模量將等于基體的彈性模量,規(guī)律與文獻(xiàn)[9]的一致;微珠壁厚繼續(xù)變薄,浮力材料的有效彈性模量將低于基體的彈性模量,此時(shí),加入微珠將降低浮力材料的強(qiáng)度。

        為研究微珠大小對(duì)浮力材料彈性模量的影響,我們?cè)O(shè)計(jì)了A7-A10工況(見(jiàn)表2)進(jìn)行單胞模型有限元分析,發(fā)現(xiàn)當(dāng)微珠體積分?jǐn)?shù)一樣時(shí),A7-A10 工況浮力材料的有效彈性模量值與A2 工況的一樣。說(shuō)明,當(dāng)浮力材料中添加微珠的體積分?jǐn)?shù)一樣、內(nèi)外徑之比一樣,且一種浮力材料中的微珠大小相同(不同種浮力材料中微珠彼此間大小不一樣)時(shí),浮力材料的有效彈性模量值相同,此時(shí),不同材料間的有效彈性模量與微珠外徑大小無(wú)關(guān)。

        圖7 靜水壓力下微珠破壞250倍SEM圖Fig.7 Crack section of solid buoyancy material under hydrostatic pressure

        圖8 不同體積分?jǐn)?shù)材料的有效彈性模量Fig.8 Effective elastic modulus of materials with different volume fractions

        圖9 理論與數(shù)值計(jì)算所得彈性模量隨體積分?jǐn)?shù)變化Fig.9 Theoretical and numerical calculation of elastic modulus with different volume fractions

        基于表2中A1工況和表1數(shù)據(jù),利用式(3)、式(4)求得玻璃微珠的體積模量和剪切模量后并代入式(1)和式(2)求出浮力材料的K、μ,最后將K、μ代入式(5)可解出浮力材料的有效彈性模量,結(jié)果見(jiàn)表3,理論計(jì)算與數(shù)值計(jì)算結(jié)果隨體積分?jǐn)?shù)變化情況如圖9 所示。從計(jì)算結(jié)果可發(fā)現(xiàn):兩種情況算出的結(jié)果隨體積的變化都接近線性變化,且兩條線的斜率差值較??;數(shù)值計(jì)算值略大于理論計(jì)算值,差別在3%~6%區(qū)間內(nèi),由此可見(jiàn),兩種方法用于計(jì)算浮力材料的有效彈性模量是合理的。

        表3 有效彈性模量理論計(jì)算與數(shù)值計(jì)算比較Tab.3 Comparison between theoretical and numerical calculations of effective elastic modulus

        當(dāng)浮力材料中出現(xiàn)微珠破損、氣泡、脫粘等缺陷時(shí),可以將缺陷簡(jiǎn)化成氣孔,基于多次夾雜原理,通過(guò)式(6)和式(7)可計(jì)算材料的有效彈性模量?;诒?中A1部分工況,材料中存在缺陷時(shí),不同缺陷體積分?jǐn)?shù)的計(jì)算結(jié)果見(jiàn)表4。

        表4 浮力材料存在缺陷后有效彈性模量理論計(jì)算與數(shù)值計(jì)算比較Tab.4 Comparison between theoretical and numerical calculations of effective elastic modulus for buoyancy material with defects

        通過(guò)比較E3與E1差值比例,發(fā)現(xiàn)將缺陷簡(jiǎn)化成氣孔后,由于氣孔的體積模量和剪切模量都為0,所以當(dāng)缺陷所占體積分?jǐn)?shù)一樣時(shí),微珠的體積分?jǐn)?shù)對(duì)于浮力材料的彈性模量下降水平影響很小。

        通過(guò)對(duì)A2和A4工況進(jìn)行分析,當(dāng)浮力材料體積分?jǐn)?shù)一樣時(shí),浮力材料的有效彈性模量隨微珠厚度的增大而增大,與體積分?jǐn)?shù)成正相關(guān),浮力材料的有效彈性模量變化趨勢(shì)與微分法計(jì)算結(jié)果一致。在施加相同壓力載荷時(shí),當(dāng)較薄微珠遠(yuǎn)離載荷加載面,最大應(yīng)力值出現(xiàn)在較薄微珠上,且應(yīng)力值要遠(yuǎn)大于較薄微珠在載荷施加面時(shí)的;較薄微珠在載荷施加面時(shí),最大應(yīng)力隨著較薄微珠壁厚變薄,最大應(yīng)力值變大。這說(shuō)明隨著載荷的增加,較薄的微珠將先到達(dá)破壞應(yīng)力的臨界值,即先破壞,驗(yàn)證了2.2節(jié)中的破壞準(zhǔn)則,與文獻(xiàn)[12]的結(jié)果一致。

        4.3 兩個(gè)微珠內(nèi)外徑之比一樣時(shí),微珠大小對(duì)于浮力材料壓縮強(qiáng)度的影響

        浮力材料中,不同粒徑玻璃微珠,不僅對(duì)于微珠和基體粘結(jié)性有影響,而且對(duì)浮力材料的應(yīng)力分布情況也存在影響,在壓縮載荷下,微珠和基體的最大應(yīng)力位置及趨勢(shì)將影響材料的破壞強(qiáng)度。本文設(shè)計(jì)B1-B10 計(jì)算工況,選取其中兩個(gè)內(nèi)外徑之比一樣的微珠,包括:0.9、0.92、0.94、0.95 和0.96,分析加載方向和粒徑對(duì)浮力材料壓縮強(qiáng)度的影響,研究浮力材料的破壞。體積分?jǐn)?shù)較大時(shí),材料的破壞將以微珠破壞為主[28-33],本文重點(diǎn)關(guān)注微珠的失效,以微珠的失效強(qiáng)度來(lái)反應(yīng)浮力材料的強(qiáng)度,分析過(guò)程中微珠的應(yīng)力值為微珠壁材的強(qiáng)度。

        當(dāng)微珠體積分?jǐn)?shù)較大時(shí),最大應(yīng)力出現(xiàn)在內(nèi)側(cè)微珠,且應(yīng)力值明顯高于外側(cè)微珠,說(shuō)明材料中存在不同大小的微珠時(shí),最大應(yīng)力與載荷的施加位置有關(guān);隨著微珠內(nèi)外徑之比變大,材料的最大應(yīng)力值也變大,說(shuō)明材料的強(qiáng)度與微珠壁厚有關(guān)。

        外徑較小微珠在內(nèi)側(cè)時(shí),隨著兩個(gè)微珠外徑的接近,最大應(yīng)力的值逐漸變大,兩個(gè)微珠大小一樣時(shí),最大應(yīng)力值最大。外徑較大微珠在內(nèi)側(cè)時(shí),此時(shí)最大應(yīng)力值比外徑較小微珠在內(nèi)側(cè)時(shí)的值大,兩個(gè)微珠外徑相同時(shí),最大應(yīng)力的值最小。

        通過(guò)分析,最大應(yīng)力位置通常出現(xiàn)在內(nèi)側(cè)微珠(遠(yuǎn)離加載面)的赤道,如圖10 所示的內(nèi)側(cè)微珠外徑不同的應(yīng)力云圖,說(shuō)明微珠破壞從赤道位置開(kāi)始破壞,與圖7中顯示的結(jié)果一樣。圖11顯示的是微珠體積分?jǐn)?shù)為50%,外徑為15μm 和10μm 的兩個(gè)微珠在不同位置隨內(nèi)外徑之比變化的最大應(yīng)力值,從圖中可知較大微珠在內(nèi)部時(shí),最大應(yīng)力值較大。因此,當(dāng)微珠內(nèi)外徑之比一樣時(shí),相同載荷下,外徑較大的微珠先到達(dá)破壞臨界值,將先破壞,驗(yàn)證了2.2 節(jié)中的破壞準(zhǔn)則,即微珠內(nèi)外徑之比一樣,微珠的破壞速度與微珠的外徑成反比。

        圖10 浮力材料應(yīng)力云圖Fig.10 Stress clouds of buoyancy material

        圖11 微珠外徑不同時(shí)浮力材料最大應(yīng)力值隨內(nèi)外徑之比變化曲線Fig.11 Variation of maximum stress value of buoyancy materials with η at different outer diameters of HGMs

        4.4 兩個(gè)微珠內(nèi)外徑之比不一樣時(shí),微珠大小對(duì)于浮力材料壓縮強(qiáng)度的影響

        本文設(shè)計(jì)B1~B10 計(jì)算工況,選取微珠內(nèi)外徑之比分別為0.9、0.92、0.94、0.95 和0.96,且模型中兩個(gè)微珠的內(nèi)外徑之比彼此不一樣,對(duì)浮力材料的壓縮強(qiáng)度進(jìn)行分析。

        通過(guò)分析發(fā)現(xiàn),當(dāng)微珠體積分?jǐn)?shù)較大時(shí),最大應(yīng)力出現(xiàn)在內(nèi)側(cè)微珠赤道位置的內(nèi)表面。

        (1)外徑較小微珠在內(nèi)側(cè):當(dāng)微珠體積分?jǐn)?shù)較大時(shí),最大應(yīng)力出現(xiàn)在內(nèi)側(cè)微珠赤道位置的內(nèi)表面;當(dāng)外側(cè)微珠內(nèi)外徑之比不變時(shí),隨著內(nèi)側(cè)微珠壁厚變薄,微珠的最大應(yīng)力值變大;當(dāng)內(nèi)側(cè)微珠壁厚不變,改變外側(cè)微珠壁厚時(shí),最大應(yīng)力值變化幅度很小。

        (2)外徑大的微珠在內(nèi)部:當(dāng)微珠體積分?jǐn)?shù)較大時(shí),如一個(gè)微珠壁厚保持不變,則另一個(gè)微珠的最大應(yīng)力值會(huì)隨著微珠壁厚的變薄而變大,內(nèi)側(cè)微珠的最大應(yīng)力值隨兩個(gè)微珠的大小之比(外側(cè)微珠外徑/內(nèi)側(cè)微珠外徑)變小而變大。

        通過(guò)分析,最大應(yīng)力位置出現(xiàn)在內(nèi)部微珠赤道位置,外側(cè)微珠壁厚不變而改變內(nèi)側(cè)微珠壁厚(減小壁厚)時(shí),比僅改變外側(cè)微珠壁厚(減小壁厚)時(shí)最大應(yīng)力值更大;外徑較大微珠在內(nèi)側(cè)最大應(yīng)力值最大,說(shuō)明微珠的破壞與外徑和施加方向相關(guān),驗(yàn)證了破壞準(zhǔn)則。通過(guò)比較兩個(gè)不同大小微珠在內(nèi)側(cè)時(shí)的最大應(yīng)力可以發(fā)現(xiàn),外徑小的微珠壁厚比較大微珠壁厚薄時(shí),小微珠上的最大應(yīng)力也會(huì)大于較大微珠的,如圖12 所示,外側(cè)微珠內(nèi)外徑之比為0.9,內(nèi)側(cè)微珠內(nèi)外徑之比分別為0.9、0.92、0.94、0.95 和0.96,從圖中可看出小微珠在內(nèi)側(cè)時(shí)且內(nèi)外徑之比為0.95 時(shí)最大應(yīng)力值大于大微珠在內(nèi)側(cè)內(nèi)外徑為0.92 時(shí)的值,如果材料中存在上述兩種微珠,在相同載荷下,小微珠將先發(fā)生破壞。與圖7中顯示的一致,說(shuō)明壁厚和半徑對(duì)微珠的破壞都有影響。

        圖12 內(nèi)側(cè)微珠內(nèi)外徑、壁厚不同時(shí)最大應(yīng)力值Fig.12 Maximum stress values of inner HGM with different outer diameters and wall thicknesses

        5 結(jié) 論

        本文對(duì)壓縮載荷下不同微觀結(jié)構(gòu)浮力材料力學(xué)特性進(jìn)行了研究,給出了含不同規(guī)格微珠的浮力材料有效彈性模量微分計(jì)算公式,分析了微珠破壞準(zhǔn)則,利用ANSYS 軟件構(gòu)建的三維細(xì)觀單胞模型對(duì)浮力材料進(jìn)行了力學(xué)性能有限元分析,通過(guò)實(shí)驗(yàn)和有限元數(shù)值分析手段對(duì)破壞準(zhǔn)則進(jìn)行了驗(yàn)證,得到如下結(jié)論:

        (1)當(dāng)浮力材料中所有玻璃微珠的外徑大小一樣、壁厚一樣時(shí),浮力材料有效彈性模量?jī)H與微珠體積分?jǐn)?shù)有關(guān),而與外徑大小無(wú)關(guān);當(dāng)內(nèi)外徑之比小于某個(gè)值時(shí),浮力材料的有效彈性模量與微珠體積分?jǐn)?shù)成正相關(guān),此時(shí)玻璃微珠對(duì)浮力材料的剛度起到增強(qiáng)作用,但當(dāng)微珠內(nèi)外徑之比較大時(shí),浮力材料的有效彈性模量的變化會(huì)隨微珠體積分?jǐn)?shù)的變化趨于平緩。

        (2)微珠的破壞可以從彈性應(yīng)變能角度分析,破壞強(qiáng)度與微珠的壁厚和大小都存在關(guān)系,微珠的破壞通常從赤道處開(kāi)始。通過(guò)有限元分析,當(dāng)微珠大小和體積分?jǐn)?shù)不同時(shí),最大應(yīng)力通常出現(xiàn)在遠(yuǎn)離加載面的微珠赤道位置,說(shuō)明微珠的破壞與加載方向存在一定關(guān)系。

        (3)當(dāng)浮力材料中的微珠內(nèi)外徑之比相同、微珠大小不同時(shí),此時(shí)較大微珠將首先發(fā)生破壞,微珠的破壞速度與微珠的外徑成反比;浮力材料中的微珠外徑相同、內(nèi)外徑之比不同時(shí),較薄微珠將先發(fā)生破壞。

        (4)微珠內(nèi)外徑之比和微珠大小均不一樣時(shí),微珠的壁厚和大小將對(duì)微珠的應(yīng)力產(chǎn)生不同程度的影響,兩者的影響敏感度需要進(jìn)一步研究。

        猜你喜歡
        微珠外徑浮力
        ◆敷設(shè)線纜用材料
        空心微珠負(fù)載鈰或氮摻雜氧化亞銅光催化劑的制備方法
        敷設(shè)線纜用材料
        三角形邊長(zhǎng)與內(nèi)外徑之間的三個(gè)不等式
        “浮力”知識(shí)鞏固
        我們一起來(lái)“制服”浮力
        浮力大小由誰(shuí)定
        硅酸鋁微珠在人造花崗石中的應(yīng)用
        石材(2022年1期)2022-05-23 12:48:34
        一種便于連接的塑料管
        空心玻璃微珠對(duì)PMMA/SAN共混體系相分離的影響
        国产三级精品三级在线专区2| 国产精品乱一区二区三区| 欧美zozo另类人禽交| 隔壁人妻欲求不满中文字幕| 亚洲精品久久久久一区二区| 亚洲欧美一区二区三区在线| 99福利网| 成人性生交大片免费看7| 久久中文字幕人妻淑女| 伊人久久大香线蕉亚洲五月天 | 久久久亚洲熟妇熟女av| 成人网站免费看黄a站视频 | 无码免费一区二区三区| 91综合在线| 日本在线一区二区三区四区| 亚洲综合网国产精品一区| 伊人久久精品久久亚洲一区| 亚洲AV无码国产永久播放蜜芽 | 中文乱码字幕人妻熟女人妻| 4455永久免费视频| 欧美丰满熟妇aaaaa片| a午夜国产一级黄片| 国产性色av一区二区| 小辣椒福利视频导航| 人妻在卧室被老板疯狂进入国产 | 亚洲精品有码日本久久久| 亚洲第一页综合图片自拍| 福利一区二区三区视频午夜观看| 中文天堂一区二区三区| 久久国产精品一区二区三区| 乱人伦中文无码视频| 国产自在自线午夜精品视频在| 隔壁的日本人妻bd高清中字| 亚洲sm另类一区二区三区| 污污污污污污污网站污| 成人影院免费观看在线播放视频| 国产一区二区三区仙踪林| 欧美性受xxxx白人性爽| 亚洲无码夜夜操| av新型国产在线资源| 成人毛片av免费|