劉秋華, 周維初
(南京工程學(xué)院,江蘇 南京 211167)
憑借結(jié)構(gòu)簡(jiǎn)單、控制靈活和適應(yīng)性強(qiáng)等優(yōu)點(diǎn),采用LC型低通濾波器濾波的電壓源逆變器在不間斷電源、動(dòng)態(tài)電壓恢復(fù)器、固態(tài)變壓器及獨(dú)立微電網(wǎng)等領(lǐng)域得到了廣泛應(yīng)用[1-4]。LC型逆變器的控制目標(biāo)是實(shí)現(xiàn)電壓指令值的精確跟蹤,同時(shí)快速響應(yīng)負(fù)載的變化。為此,專(zhuān)家學(xué)者們提出了很多控制策略,如比例積分控制、重復(fù)控制、滑模變結(jié)構(gòu)控制、模型參考自適應(yīng)控制、神經(jīng)網(wǎng)絡(luò)控制、模型預(yù)測(cè)控制和自抗擾控制等。
在這些控制方法中,基于傳遞函數(shù)模型的電壓電流雙環(huán)比例積分(proportional integral, PI)控制策略具有理論基礎(chǔ)完備、可靠性高和易于設(shè)計(jì)等優(yōu)點(diǎn),在工業(yè)界中取得了廣泛的應(yīng)用。然而,隨著新能源滲透率的提高和交直流微網(wǎng)技術(shù)的發(fā)展,電力系統(tǒng)的安全穩(wěn)定運(yùn)行將變得更依賴于逆變器的控制方式,這對(duì)逆變器的控制品質(zhì)提出了更高的要求。傳統(tǒng)雙環(huán)控制器無(wú)法兼顧超調(diào)與快速性指標(biāo),動(dòng)態(tài)響應(yīng)和抗擾性能不足,難以實(shí)現(xiàn)對(duì)逆變器的高質(zhì)量電壓控制。因此需要對(duì)傳統(tǒng)雙環(huán)PI控制器進(jìn)行改進(jìn)。
LC型逆變器的拓?fù)浣Y(jié)構(gòu)如圖1所示,交流側(cè)輸出經(jīng)LC濾波器濾波后向負(fù)載供電。
圖1 LC型逆變器的拓?fù)浣Y(jié)構(gòu)圖
圖1中:udc為直流母線電壓;L為濾波電感;R為濾波電感寄生電阻;C為濾波電容;ZL為三相負(fù)載;u為逆變器橋臂電壓,u=[ua,ub,uc];i為電感電流,i=[ia,ib,ic];uo為電容電壓,uo=[uoa,uob,uoc];io為負(fù)載電流,io=[ioa,iob,ioc]。
假設(shè)三相電路參數(shù)相同,根據(jù)圖1和基爾霍夫定律可得dq坐標(biāo)系的電壓電流方程分別為:
(1)
(2)
式中:id、iq為dq坐標(biāo)系下的電感電流;ud、uq為dq坐標(biāo)系下的橋臂電壓;uod、uoq為dq坐標(biāo)系下的電容電壓;iod、ioq為dq坐標(biāo)系下的負(fù)載電流;ω為基波角頻率。
為使系統(tǒng)具有良好的快速性和抗擾性能,并且對(duì)開(kāi)關(guān)管進(jìn)行限流保護(hù),采用帶前饋補(bǔ)償?shù)碾姼须娏鲀?nèi)環(huán)電容電壓外環(huán)雙環(huán)控制策略,其中,雙環(huán)均采用PI控制器以減小系統(tǒng)穩(wěn)態(tài)誤差和改善電壓跟蹤能力。逆變器雙環(huán)控制系統(tǒng)框圖如圖2所示。
圖2 逆變器雙環(huán)控制系統(tǒng)框圖
圖2中:uodref、uoqref為d、q軸指令電壓;idref、iqref為d、q軸指令電流;kPWM為逆變器橋路增益;Gu(s)為電壓環(huán)PI控制器,Gu(s)=kup+kui/s;kup為電壓環(huán)比例系數(shù);kui為電壓環(huán)積分系數(shù);Gi(s)為電流環(huán)PI控制器,Gi(s)=kip+kii/s;kip為電流環(huán)比例系數(shù);kii為電流環(huán)積分系數(shù)。
d、q軸控制結(jié)構(gòu)相同,以d軸為例分析傳統(tǒng)電流環(huán),由圖2得到解耦后的d軸電流環(huán)控制框圖,如圖3所示。
圖3 d軸電流解耦控制框圖
其開(kāi)環(huán)傳遞函數(shù)為:
(3)
令零點(diǎn)s=-kii/kip,以消去開(kāi)環(huán)傳遞函數(shù)的固有極點(diǎn)s=-R/L,從而降低系統(tǒng)階數(shù)。此時(shí),電流環(huán)閉環(huán)傳遞函數(shù)為:
(4)
式中:ωbi為電流環(huán)帶寬,ωbi=kip/L。ωbi越大,電流響應(yīng)速度越快,但ωbi要遠(yuǎn)小于逆變器的開(kāi)關(guān)角頻率。
同樣以d軸為例設(shè)計(jì)分析傳統(tǒng)電壓環(huán),由圖2得到解耦后的電壓環(huán)等效框圖,如圖4所示。
圖4 d軸電壓等效控制框圖
忽略電流環(huán)的動(dòng)態(tài),即Gci(s)=1,則電壓環(huán)閉環(huán)傳遞函數(shù)為:
(5)
令:
(6)
式中:ζ為阻尼比;ωn為無(wú)阻尼自然頻率。則電壓環(huán)傳遞函數(shù)可表示為:
(7)
由式(7)可求得:
(8)
式中:ωbu為電壓環(huán)帶寬;φm為電壓環(huán)相位裕度。根據(jù)控制理論[5]的知識(shí),為兼顧系統(tǒng)跟蹤性能和穩(wěn)定性要求,取φm=45°,代入式(8),可得此時(shí)ζ值為0.42。
一階理想系統(tǒng)如式(9)所示。
(9)
定義跟蹤誤差e=xref-x,其中xref為恒定參考值,x為給定值,由式(9)可得系統(tǒng)的跟蹤誤差狀態(tài)方程為:
(10)
采用線性比例積分反饋控制律,即:
(11)
式中:kp、ki分別為控制器的比例系數(shù)和積分系數(shù)。結(jié)合式(10)和式(11)可得控制量為:
τ=kpe+kiq
(12)
式中:q為積分器的狀態(tài)值。即
(13)
式(11)可轉(zhuǎn)化為如下所示的微分方程:
(14)
根據(jù)高等數(shù)學(xué)相關(guān)知識(shí)可知,若滿足:
(15)
式中:ωb為控制器的帶寬。此時(shí)方程(14)的通解為:
q(t)=(c1+c2t)exp(-ωbt)
(16)
由式(16)可得誤差的時(shí)域響應(yīng)為:
e(t)=(c2-ωbc1-ωbc2t)exp(-ωbt)
(17)
由式(16)和式(17)可知,對(duì)于任意時(shí)刻t,若滿足:
q(t)=-e(t)/ωb
(18)
則必有c2=0,于是:
e(t)=-ωbc1exp(-ωbt)
(19)
由式(19)可知,系統(tǒng)誤差按指數(shù)函數(shù)軌跡收斂,信號(hào)跟蹤無(wú)超調(diào)。
以d軸為例,采用3.1節(jié)所示的預(yù)測(cè)積分PI控制器對(duì)電流環(huán)進(jìn)行改進(jìn),將逆變器視為比例環(huán)節(jié),即uid=ud。式(1)中的d軸電壓方程可改寫(xiě)為如下形式:
(20)
采用線性比例積分反饋控制律,即:
(21)
式中:eid為d軸電流跟蹤誤差,eid=idref-id;qid為電流環(huán)積分器狀態(tài)值。電流環(huán)帶寬遠(yuǎn)大于電壓環(huán),因此可假設(shè)控制周期內(nèi)idref不變,由式(19)和式(20)可得控制律為:
uid=L(kipeid+kiiqid)+uod-ωLiq+Rid
(22)
電流環(huán)的控制目標(biāo)是實(shí)現(xiàn)指令電流的快速跟蹤,但是其性能受逆變器直流側(cè)電壓制約,為使電流環(huán)在指定直流電壓約束條件下達(dá)到較快的調(diào)節(jié)速度,同時(shí)減小抖振,在誤差較大時(shí),采用bangbang控制[6]以提高快速性,在誤差較小時(shí)采用PI控制,以克服頻繁切換的缺點(diǎn),以d軸為例,其控制電壓為:
(23)
ic為切換閾值,ic太小會(huì)導(dǎo)致控制量頻繁切換影響穩(wěn)態(tài)性能,ic太大則會(huì)降低電流環(huán)響應(yīng)速度,因此,需根據(jù)系統(tǒng)情況選擇合適的ic值,為了切換平滑,qid采用圖5所示的自適應(yīng)律。
圖5 qid自適應(yīng)律
為消除階躍響應(yīng)時(shí)的超調(diào),同樣采用預(yù)測(cè)積分PI控制器對(duì)電壓環(huán)進(jìn)行改進(jìn)(以d軸為例),忽略電流環(huán)的動(dòng)態(tài),即idref=id,式(2)中的d軸電流方程可改寫(xiě)為如下形式:
(24)
采用線性比例積分反饋控制律,即:
(25)
式中:eud為d軸電流跟蹤誤差,eud=uodref-uod;qud為電壓環(huán)積分器狀態(tài)值。由式(23)和式(24)可得控制律為:
idref=C(kupeud+kuiqud)+iod-ωCuod
(26)
階躍負(fù)載擾動(dòng)時(shí),受逆變器直流側(cè)電壓限制,電流環(huán)動(dòng)態(tài)無(wú)法忽略,系統(tǒng)處于飽和非線性狀態(tài),因此在電壓恢復(fù)過(guò)程中會(huì)產(chǎn)生退飽和超調(diào)。根據(jù)3.1節(jié)的分析結(jié)果,當(dāng)檢測(cè)到擾動(dòng)時(shí),通過(guò)一階低通濾波環(huán)節(jié)使積分器實(shí)際狀態(tài)值跟蹤電壓環(huán)積分器預(yù)測(cè)狀態(tài)值quds,即可消除這一超調(diào),電壓環(huán)積分器積分狀態(tài)值的自適應(yīng)律如圖6所示。
圖6 qud自適應(yīng)律
圖6中:ωbs為濾波器帶寬。
為驗(yàn)證本文所提改進(jìn)雙環(huán)控制策略的有效性,在MATLAB/Simulink平臺(tái)中搭建LC型逆變器的仿真模型。對(duì)采用傳統(tǒng)雙環(huán)以及改進(jìn)雙環(huán)控制策略時(shí)的系統(tǒng)性能進(jìn)行對(duì)比分析。初始時(shí),逆變器滿載啟動(dòng),系統(tǒng)穩(wěn)定運(yùn)行后,0.08 s時(shí)切除負(fù)載,待系統(tǒng)恢復(fù)穩(wěn)定后,0.16 s時(shí)重新投入負(fù)載。圖7和圖8給出了采用傳統(tǒng)雙環(huán)控制和改進(jìn)雙環(huán)控制時(shí)的仿真波形。對(duì)比可知,改進(jìn)雙環(huán)控制策略消除了階躍響應(yīng)時(shí)的電壓超調(diào),抑制了負(fù)載擾動(dòng)時(shí)突變,同時(shí)提高了系統(tǒng)的動(dòng)態(tài)響應(yīng)速度。圖9和圖10為兩種控制策略下逆變器帶非線性負(fù)載時(shí)的a相電壓波形。觀察圖9和圖10可知,采用本文所提改進(jìn)雙環(huán)控制策略時(shí),逆變器具有較高的穩(wěn)態(tài)精度和較低的諧波畸變率值。
圖7 傳統(tǒng)雙環(huán)控制策略下的d軸電壓暫態(tài)波形
圖8 改進(jìn)雙環(huán)控制策略下的d軸電壓暫態(tài)波形
圖9 帶非線性負(fù)載時(shí)傳統(tǒng)雙環(huán)控制策略下的a相電壓波形
圖10 帶非線性負(fù)載時(shí)改進(jìn)雙環(huán)控制策略下的a相電壓波形
針對(duì)LC型逆變器,本文提出了一種設(shè)計(jì)簡(jiǎn)單,適合工程應(yīng)用的改進(jìn)電壓電流雙環(huán)PI控制策略,MATLAB/Simulink平臺(tái)仿真試驗(yàn)表明該方法具有以下優(yōu)點(diǎn)。
(1) 采用線性比例積分反饋控制律后,電壓外環(huán)和電流內(nèi)環(huán)均可等效為純積分環(huán)節(jié),基于帶寬可以很容易地整定控制器參數(shù)。
(2) 階躍響應(yīng)和負(fù)載擾動(dòng)時(shí)電壓均不存在超調(diào),因此系統(tǒng)暫態(tài)時(shí)的電壓波形畸變較小,同時(shí)逆變器能夠快速響應(yīng)負(fù)載的變化。
(3) 穩(wěn)態(tài)運(yùn)行時(shí),逆變器的跟蹤誤差小,THD值低,輸出電壓波形質(zhì)量較高。