王科捷,王 樂,馮朋博,盧圓明,王曉蘋,柳雅倩,康建宏,梁 熠
配施控釋尿素對寧南山區(qū)春玉米生產(chǎn)的影響*
王科捷1,王 樂2,馮朋博1,盧圓明1,王曉蘋1,柳雅倩1,康建宏1**,梁 熠1**
(1.寧夏大學(xué)農(nóng)學(xué)院,銀川 750021;2.鄂爾多斯市種子工作站,鄂爾多斯 017000)
2016年和2018年在寧南山區(qū)開展春玉米大田試驗,采用單因素隨機區(qū)組設(shè)計。試驗設(shè)5個處理,分別為CK(不施氮),T1(基施常規(guī)尿素150kg·hm?2+大喇叭口期追施常規(guī)尿素75kg·hm?2)、T2(基施常規(guī)尿素75kg·hm?2+基施控釋尿素75kg·hm?2+大喇叭口期追施常規(guī)尿素75kg·hm?2)、T3(基施常規(guī)尿素75kg·hm?2+基施控釋尿素150kg·hm?2)、T4(基施控釋尿素225kg·hm?2),分析尿素配施對春玉米干物質(zhì)、氮素轉(zhuǎn)運及產(chǎn)量的影響,以探究當(dāng)?shù)剡m宜的春玉米施肥方案。結(jié)果表明,(1)常規(guī)尿素與控釋尿素配施較CK能顯著提高產(chǎn)量,在T3處理下,2a平均產(chǎn)量高于常規(guī)或控釋尿素單施處理,且在各處理中達最大值。(2)配施處理提高了玉米葉面積指數(shù)和生育前期葉面積指數(shù)增長速率,減緩了生育后期葉面積指數(shù)下降。(3)施控釋尿素處理較CK、T1顯著提高了成熟期的干物質(zhì)積累量和籽粒氮素積累量;施控釋尿素處理花前干物質(zhì)轉(zhuǎn)運量低,主要提高了花后干物質(zhì)積累量和花后干物質(zhì)積累量對籽粒干物質(zhì)積累量的貢獻率,且隨控釋尿素含量的增加呈先增后降趨勢。與單施常規(guī)尿素相比,控釋尿素處理提高了氮肥利用率、氮肥農(nóng)學(xué)利用率、氮肥偏生產(chǎn)力和肥料貢獻率,均以T3增加幅度最高。綜合2a試驗結(jié)果,將控釋尿素:常規(guī)尿素以2:1一次性基施,能節(jié)省人工又提高玉米產(chǎn)量,推薦寧南山區(qū)春玉米大田使用。
玉米;葉面積指數(shù);干物質(zhì)積累量;氮素積累量;產(chǎn)量
氮素是玉米干物質(zhì)積累和產(chǎn)量形成的關(guān)鍵因素[1?2],施氮肥可以顯著提高玉米產(chǎn)量[3]。在寧南山區(qū),農(nóng)戶在玉米種植過程中,為降低人工施肥成本、增加產(chǎn)量,常選擇一次性施入過量氮肥[4],不僅氮肥利用率低[5],阻礙玉米增產(chǎn)[6],還會導(dǎo)致空氣[7]、河流[8]、地下水污染[9]和土質(zhì)酸化[10]。
控釋尿素是一種在氮肥表面涂裹一層保護性復(fù)合材料來控制水分滲入,從而控制肥料內(nèi)部養(yǎng)分溶解和釋放速率的肥料[11],具有養(yǎng)分供應(yīng)時間長[5],氮肥利用率高,增產(chǎn)效果顯著[12],降低環(huán)境污染等優(yōu)點[13],但單施控釋尿素成本較高[2],玉米種植過程中,將常規(guī)尿素與控釋尿素配合基施,不僅氮素供應(yīng)充足、釋放速率與玉米需肥規(guī)律相吻合,還能降低成本,減少施氮量。為降低人工成本,增加玉米產(chǎn)量,提高收益,因此,挖掘適宜的常規(guī)與控釋尿素配施方式對節(jié)能、增產(chǎn)意義重大。
劉詩璇等[14]研究表明,在總施氮量240kg·hm?2下,以控釋尿素︰普通尿素=3︰7基施,氮肥利用率、氮肥農(nóng)學(xué)效率和氮肥偏生產(chǎn)力均高于控釋尿素、常規(guī)尿素單施處理,與單施控釋尿素相比,產(chǎn)量顯著提高。金容等[15]研究表明,將常規(guī)尿素與控釋尿素配施,225kg·hm?2一次性基施,與常規(guī)尿素2次施入相比,玉米成熟期的氮素積累量、產(chǎn)量、肥料貢獻率顯著提高,且各項產(chǎn)量指標(biāo)隨控釋尿素含量的提高而先增后降,以控釋尿素?普通尿素=3︰1下最高。在同等施氮量下,黨翼等[16]研究表明,將控釋尿素︰普通尿素=7︰3基施,成熟期單株干物質(zhì)積累量和產(chǎn)量在各處理間最大。郭金金等[17]研究表明,以控釋尿素/普通尿素=7︰3基施,施氮水平180kg·hm?2,玉米全生育期全株氮素積累量均最高,且顯著高于240kg·hm?2施氮水平。除施氮量和肥料配比,施肥方式還因控釋尿素種類[18]、降水量[15,19]等因素而異。由此看來,氮肥配比試驗應(yīng)考慮多種因素,才能更科學(xué)地篩選出合理的施肥方式。前人對控釋尿素與常規(guī)尿素配施研究多針對氮素吸收利用方面,而對干物質(zhì)和氮素轉(zhuǎn)移去向以及和產(chǎn)量內(nèi)在關(guān)聯(lián)研究報道較少。為此,在寧南地區(qū)春玉米大田開展常規(guī)與控釋尿素配比試驗,以不施尿素為對照,揭示控釋尿素與普通尿素不同配比下玉米干物質(zhì)和氮素運移規(guī)律,綜合對比選出最佳氮肥配施方式,以期為當(dāng)?shù)赜衩自霎a(chǎn)、優(yōu)化氮肥配施提供理論支持和技術(shù)幫助。
試驗于2016年和2018年在寧夏回族自治區(qū)固原市彭陽縣城陽鄉(xiāng)旱作節(jié)水農(nóng)業(yè)技術(shù)示范園區(qū)(106°46'E,35°48'N)進行,彭陽縣地處溫帶半干旱區(qū),屬典型的大陸性季風(fēng)氣候,海拔1382m,年平均氣溫7.4~8.5℃,無霜期140~170d,年平均日照時數(shù)為2518.1h。試驗地前茬作物均為傳統(tǒng)耕作旱地春玉米,試驗地耕層土壤(0?20cm)基礎(chǔ)肥力值如表1所示,生育期月平均降水量和月平均氣溫如圖1所示。
表1 土壤基礎(chǔ)肥力水平
圖1 2016年和2018年玉米生育期月平均降水量和氣溫
選用當(dāng)?shù)刂髟源河衩灼贩N‘先玉698’,控釋尿素(聚氨酯包膜尿素)釋放期為施入后60~65d,由寧夏農(nóng)林科學(xué)院農(nóng)業(yè)資源與環(huán)境研究所提供(總氮量≥45%);常規(guī)尿素選擇當(dāng)?shù)仄毡槭┯媚蛩兀偟俊?6%)。
試驗按尿素的施用時間和種類分5個處理,每個處理總施氮量均為225kg·hm?2,施入時間分基施(播種前施入)和追施(拔節(jié)中期)兩種,尿素種類分常規(guī)和控釋兩種。所有處理中基施時加入同等數(shù)量的磷肥(過磷酸鈣,P2O5含量≥16%)和鉀肥(硫酸鉀,K2O含量≥50%),分別為120kg·hm?2和60kg·hm?2。
以不施任何氮肥為對照(CK)。基肥全部為常規(guī)尿素,不配施控釋氮肥為T1處理,T2處理在基肥中配施等量控釋氮肥,T3處理在基肥中配施2倍控釋氮肥,T4處理在基肥中全部施用控釋氮肥,各處理追肥時期均為大喇叭口期,各處理施氮肥時間和氮肥量見表2。
玉米于2016年、2018年4月18日播種,10月6日收獲。種植密度為60000株·hm?2,玉米全生育期無灌溉。每個處理3次重復(fù),共15個小區(qū),每個小區(qū)長8m,寬5.5m(10行,行距0.55m),隨機區(qū)組排列。
1.4.1 生長發(fā)育指標(biāo)
當(dāng)玉米生長至苗期(5月23日,玉米長到5葉1心)時,選出長勢均勻的3株掛牌定株,固定測量3株玉米拔節(jié)期、大喇叭口期、抽雄期、灌漿期、蠟熟期全展綠葉的面積,用卷尺(最小刻度為mm)測量。
式中,L為葉舌至葉尖的長度,即葉長(cm);B為葉片最寬處長度,即葉寬(cm);S為單片葉面積(cm2)。
葉面積指數(shù)(LAI)計算式為。
表2 各處理氮肥(尿素)施入時間和施入量(kg·hm?2)
注:U表示普通尿素,CRU表示控釋尿素。
Note: U stands for ordinary urea. CRU stands for controlled release urea.
式中,A為單位面積內(nèi)玉米葉面積之和(cm2);G為單位土地面積(cm2)。
1.4.2 產(chǎn)量指標(biāo)
成熟期各小區(qū)的總穗數(shù):取出小區(qū)中間4行果穗,用電子秤稱量除去苞葉的果穗質(zhì)量(單位kg,精確到0.1),將果穗手工脫粒,用手持谷物水分測定儀測定籽粒含水量,并換算為14%含水量下的產(chǎn)量,按平均穗重從所收果穗中隨機選取10穗進行室內(nèi)考種。
穗重:稱量單個脫去苞葉的果穗質(zhì)量。
穗粒重:將果穗籽粒全部脫下稱重。
百粒重:用數(shù)粒機隨機數(shù)出已脫下的100粒玉米并稱重。
1.4.3 干物質(zhì)積累和氮素利用率[20?21]
在玉米拔節(jié)期、大喇叭口期、開花期、灌漿期和成熟期取樣測定。每個處理選擇3株長勢均勻且有代表性的植株,在拔節(jié)?灌漿期將玉米各器官按葉、莖鞘和穗部三個部分、成熟期按葉、莖鞘、穗軸+苞葉和籽粒四個部分分解后裝袋放入烘箱內(nèi)105℃殺青30min,于80℃下烘干至恒重,得到各器官干物質(zhì)量。將烘干樣品稱重后粉碎過篩,裝入消煮管加入硫酸充分消煮,待消煮管冷卻后放置KDY-9830型全自動凱氏定氮儀蒸餾滴定測得滴入的酸量,得到各部位全氮含量(自動加硫酸,達到設(shè)定pH停止加酸,單位mL,精確到0.001)。按以下公式計算各部位干物質(zhì)積累和氮素利用率。
式中,DMT為花前干物質(zhì)轉(zhuǎn)移量(dry matter transfer pre-bloom,kg);DFS為開花期營養(yǎng)器官干物質(zhì)積累量即玉米抽雄吐絲期葉片與莖鞘干物質(zhì)量之和(nutritive organ dry matter accumulation of flowering stage,kg);DMS為成熟期營養(yǎng)器官干物質(zhì)積累量,即玉米成熟期葉片、莖鞘干物質(zhì)量之和(nutritive organ dry matter accumulation of maturing stage,kg)。
式中,DMTR為花前干物質(zhì)轉(zhuǎn)移率(dry matter transfer rate pre-bloom,%)。
式中,DMTCG為花前營養(yǎng)器官干物質(zhì)轉(zhuǎn)移對籽粒干物質(zhì)積累貢獻率(contribution of nutritive organ dry matter transfer to grain pre-bloom,%);DMG為籽粒干物質(zhì)積累量(dry matter accumulation of grain,kg)。
式中,DMA為花后干物質(zhì)積累量(dry matter accumulation post-bloom,kg);DMM為成熟期總干物質(zhì)積累量(total dry matter accumulation at maturing stage,kg);DMF為開花期總干物質(zhì)積累量(total dry matter accumulation at flowering stage,kg)。
式中,DMAC為花后干物質(zhì)積累對籽粒干物質(zhì)積累貢獻率(contribution of dry matter accumulation to grain post-bloom,%)。
式中,NT為花前氮素轉(zhuǎn)移量(nitrogen transfer pre-bloom,kg);NFS為開花期營養(yǎng)器官氮素積累量(nutritive organ nitrogen accumulation of flowering stage,kg);NMS為成熟期營養(yǎng)器官氮素積累量(nutritive organ nitrogen accumulation of maturing stage,kg)。
式中,NTE為花前氮素轉(zhuǎn)移率(nitrogen transfer pre-bloom rate,%)。
式中,NTCG為花前營養(yǎng)器官氮素轉(zhuǎn)移對籽粒氮素積累貢獻率(contribution of nutritive organ nitrogen transfer to grain pre-bloom,%);NG為籽粒氮素積累量(nitrogen accumulation of grain,kg)。
式中,NA花后氮素積累量(nitrogen accumulation post-bloom,kg);NM為成熟期總氮素積累量(total nitrogen accumulation at maturing stage,kg);NF為開花期總氮素積累量(total nitrogen accumulation at flowering stage,kg)。
式中,NAC花后氮素積累對籽粒氮素積累貢獻率(nitrogen accumulation post-bloom,%)。
式中,REN為氮肥利用率(recovery efficiency of applied nitrogen,%);NZN為施氮區(qū)氮素積累量(nitrogen accumulation in nitrogen application zone,kg);NNZN為不施氮區(qū)氮素積累量(nitrogen accumulation in none nitrogen application zone,kg);NAR施氮量(nitrogen application rate,kg)。
式中,AEN為氮肥農(nóng)學(xué)利用率(agronomic efficiency of applied nitrogen,kg·kg?1);NZG施氮區(qū)籽粒產(chǎn)量(grain yield in nitrogen application zone,kg);NNZG為不施氮區(qū)氮素積累量(grain yield in none nitrogen application zone,kg)。
式中,PFPN為氮肥偏生產(chǎn)力(partial factor productivity from applied N,kg·kg?1)。
式中,F(xiàn)CR為肥料貢獻率(fertilizer contribution rate,%)
使用Microsfort365APPExcel錄入并整理數(shù)據(jù),采用IBMSPSSStatistics26進行數(shù)據(jù)統(tǒng)計分析,方差分析選用最小顯著差數(shù)法,顯著水平P = 0.05,通過字母標(biāo)記法表示數(shù)據(jù)分析結(jié)果,并用Origin2021繪制數(shù)據(jù)圖。
由圖2可見,2a試驗期內(nèi),各施尿素處理全生育期玉米葉面積指數(shù)(LAI)高于CK,說明施氮可以提高玉米LAI;隨生育期推進所有處理均表現(xiàn)為抽雄期以前LAI遞增,抽雄期以后逐漸減小的趨勢,說明配施控釋尿素未改變玉米葉面積指數(shù)的變化趨勢,但配施控釋尿素后改變了各生育時期LAI的大小,以及生育時期之間LAI的變化幅度。
2016年抽雄?灌漿期配施控釋尿素和單施控釋尿素處理的LAI下降幅度均大于CK和T1,而2018年降幅低于CK,但全生育期LAI降幅均高于CK和T1,且T3顯著高于CK和T1,表明配施控釋尿素較單施常規(guī)尿素可以提高玉米全生育期LAI。
2a試驗期內(nèi),灌漿?熟期LAI在CK至T4間依次遞增,T3、T4處理全生育期LAI差異不顯著,拔節(jié)?抽雄期T3高于T4,但隨生育進程推進至成熟期,T3處理LAI下降幅度高于T4。灌漿?成熟期LAI下降幅度以CK最大,T1次之,在含控釋尿素處理間,LAI下降幅度隨控釋尿素增加而增加,由此表明施氮可以降低玉米生育后期LAI下降幅度,延緩葉片衰老進程,而控釋尿素比普通尿素對葉片衰老的延緩效果要更好,但控釋尿素施用過量會起反作用(T4),因此適宜的控釋尿素施用量尤為重要。
圖2 兩試驗?zāi)旮魈幚碛衩咨谌~面積指數(shù)(LAI)變化比較
注:ns表示差異不顯著。*、**分別表示相關(guān)系數(shù)通過0.05、0.01水平的顯著性檢驗。V6為拔節(jié)期,V12為大喇叭口期,VT為抽雄期,R2為灌漿初期,R3為乳熟期。下同。
Note: ns is no significant difference between treatments.*is P<0.05,**is P<0.01. V6 is jointing stage, V12 is large bell stage, VT is tasseling stage, R2 is filling stage, R3 is ratooning buds. The same as below.
由圖3可知,2a各處理玉米干物質(zhì)積累量(DMA)總體隨生育期推進而逐漸增加,在成熟期達最大值。2016年各施氮處理較CK(不施氮)顯著提高了玉米DMA,T2、T3、T4(含控釋尿素)較T1(常規(guī)尿素)也提高了玉米DMA,全生育期DMA表現(xiàn)為T3>T4>T2>T1>CK,成熟期T3較CK、T1、T2和T4分別顯著高23.69%、17.32%、8.59%和4.92%。2018年拔節(jié)期?大喇叭口期以T1較高;灌漿期、蠟熟期以T2的DMA最高,較CK、T1、T3分別顯著高11.28%、3.98%、19.50%和36.02%、10.29%、10.05%。成熟期T3的DMA在各處理間最大,較CK、T1、T2和T4分別顯著高11.15%、12.06%、5.93%和9.59%。
由圖4可知,施加控釋尿素(T2、T3和T4)較不施尿素(CK)、單施常規(guī)尿素(T1)提高了成熟期籽粒和全株DMA。在各處理當(dāng)中,2016年成熟期最大、最小玉米籽粒DMA分別在T3、CK,T3較CK、T1、T2和T4分別顯著高30.73%、23.30%、10.92%和6.91%;2018年最大、最小玉米籽粒DMA分別在T2和T1,T3與T2差異不顯著,T3較T1、CK和T4分別顯著高7.11%、7.00%和5.76%。在各施氮處理間,總DMA隨控釋尿素含量增加先增后降;2a玉米各器官DMA總體以T1最低,T3最高,2016年和2018年T3葉片、莖鞘、穗軸+苞葉DMA較CK分別顯著提高13.06%、12.07%、31.17%和19.15%、13.50%、15.41%。
由表3可知,各施氮組合對玉米干物質(zhì)分配造成顯著影響。2016年花前干物質(zhì)轉(zhuǎn)移量(DMT)隨控釋尿素增加先增后降,表現(xiàn)為T3>T4>T2>T1>CK,T3與T1、T2、T4差異不顯著,比CK顯著高30.36%;而2018年卻以T3最低,較各處理顯著低41.22%~56.63%。2016年花前干物質(zhì)轉(zhuǎn)移率(DMTR)、花前干物質(zhì)轉(zhuǎn)移對籽粒干物質(zhì)積累貢獻率(DMTCG)均以T1最大,CK最小,2018以T2、T1最大,均以T3最?。?a內(nèi)在含有常規(guī)尿素的T1(單施常規(guī)尿素)、T2、T3處理間,DMTR、DMTCG總體隨常規(guī)尿素增加而增加,表現(xiàn)為T1>T2>T3,說明增施常規(guī)尿素傾向于增加花前干物質(zhì)轉(zhuǎn)運,而在含有控釋尿素的T2、T3、T4(單施控釋尿素)處理間,DMTR、DMTCG隨控釋尿素增加先降后增,表現(xiàn)為T2>T4>T3;所有施氮處理中,DMTR、DMTCG均以T3最低,表明單施常規(guī)尿素或控釋尿素均高于配施處理T3。2016年和2018年DMA、DMAC在各施氮處理間均表現(xiàn)為T3>T4>T2>T1,各年T3較T1分別顯著高24.98%、8.14%和60.48%、58.751%,由此表明,增施控釋尿素傾向于增加花后干物質(zhì)積累,以及提高花后干物質(zhì)積累對籽粒干物質(zhì)積累的貢獻程度。
注:短線表示標(biāo)準(zhǔn)差。小寫字母表示同一生育期處理間在0.05水平上的差異顯著性。R4為蠟熟期,R6為成熟期。下同。
Note: The short line is the standard deviation. Lowercase indicates the difference significance at the same growth stage among treatments at 0.05 level. R4 is ripening period, R6 is mature period. The same as below.
圖4 玉米成熟期處理間各器官干物質(zhì)積累量比較
表3 處理間玉米開花前后營養(yǎng)器官干物質(zhì)積累量及其轉(zhuǎn)移率的比較
注:DMT為花前干物質(zhì)轉(zhuǎn)移量,DMTR為花前干物質(zhì)轉(zhuǎn)移率,DMTCG為花前干物質(zhì)轉(zhuǎn)移對籽粒干物質(zhì)積累貢獻率;DMA為花后干物質(zhì)積累量,DMAC為花后干物質(zhì)積累對籽粒干物質(zhì)積累貢獻率。方差一行數(shù)值代表 F 值,***表示P < 0.001。下同。
Note: DMT is dry matter transfer at pre-bloom period, DMTR is dry matter transfer rate at pre-bloom period, DMTCG is contribution of dry matter transfer to grain at pre-bloom period. DMA is dry matter accumulation at post-bloom period, DMAC is contribution of dry matter accumulation to grain at post-bloom period. Variance in table represents the F-value, *** is P<0.001. The same as below.
由圖5可知,增施尿素較不施尿素提高了各器官氮素積累量,且玉米氮素積累量隨控釋尿素的增加先增后降。2016年全株、籽粒和其他器官氮素積累量(葉片、莖鞘、穗軸+苞葉之和)排序均表現(xiàn)為T3>T4>T2>T1>CK,T3較其他處理分別高9.20%~64.84%、11.05%~63.34%和6.82%~66.88%。2018年最大全株、籽粒和其他器官氮素積累量分別為T3、T2、T1,較其他處理分別高1.149%~28.51%、4.13%~16.06%和0.68%~72.73%。
由表4可知,素配施組合間NT(花前氮素轉(zhuǎn)移量)、NTE(花前氮素轉(zhuǎn)移率)、NTCG(花前氮素轉(zhuǎn)移對籽粒氮素積累貢獻率)、NA(花后氮素積累量)和NAC(花后氮素積累對籽粒氮素積累貢獻率)差異顯著。2016年NT隨控釋尿素增加先增后降,以T3最高,與T4差異不顯著,T3較CK、T1和T2顯著高46.11%、80.63%和46.11%;2018年以T2最高,較各處理顯著高41.22%~56.63%。2016年和2018年NTE、NTCG均以T3最低,較各處理低41.22%~56.63%和41.22%~56.63%。2016年和2018年NA、NAC均以T3最高,2016年以T1最低,2018年以CK最低,兩年試驗期T3較CK和T1分別顯著高41.22%、56.63%和41.22%、56.63%,在施氮處理間,NA、NAC隨控釋尿素含量增加先增后降。各施氮處理對玉米REN(氮肥利用率)、AEN(氮肥農(nóng)學(xué)利用率)、PFPN(氮肥偏生產(chǎn)力)和FCR(肥料貢獻率)影響顯著;2016年各氮素利用指標(biāo)隨控釋尿素含量增加先增后降,均以T3最大,T1最小,T3較各處理分別顯著高27.27%~266.83%、55.45%~97.89%、8.62%~12.37%、42.92%~77.20%;2018年REN、AEN、PFPN和FCR各氮素利用指標(biāo)最大值分別在T3、T1、T2、T1,最小值分別在T4、T2、T1、T2,最大值較其他處理分別高4.06%~28.83%、12.40%~65.91%、1.31%~7.29%、11.66%~62.51%。以上結(jié)果綜合表明,T3處理表現(xiàn)最優(yōu)。
表4 處理間玉米開花前后營養(yǎng)器官氮素積累表現(xiàn)的比較
注:NT為花前氮素轉(zhuǎn)移量,NTE為花前氮素轉(zhuǎn)移率,NTCG為花前氮素轉(zhuǎn)移對籽粒氮素積累貢獻率;NA為花后氮素積累量,NAC為花后氮素積累對籽粒氮素積累貢獻率;REN為氮肥利用率,AEN為氮肥農(nóng)學(xué)利用率,PFPN為氮肥偏生產(chǎn)力,F(xiàn)CR為肥料貢獻率。
Note: NT is nitrogen transfer at pre-bloom period, NTE is nitrogen transfer rate at pre-bloom period, NTCG is contribution rate of nitrogen transfer to grain nitrogen at pre-bloom period. NA is nitrogen accumulation at post-bloom period, NAC is contribution of nitrogen accumulation to grain nitrogen at post-bloom period. REN is nitrogen utilization rate, AEN is nitrogen agronomic utilization rate, PFPN is nitrogen partial productivity, FCR is fertilizer contribution rate.
由表5可知,2a各施氮處理較CK均顯著提高了穗重、穗粒重、百粒重和產(chǎn)量。在2a試驗各處理中,2016年T3處理達最大產(chǎn)量,較各處理顯著提高產(chǎn)量8.62%~28.61%,2018年在T1下達最大產(chǎn)量,與T2、T3、T4差異不顯著,較CK顯著提高7.29%;2a平均產(chǎn)量以T3最大,CK最小,T3較各處理高4.97%~16.37%。2016年穗重、穗粒重均以T3最大,CK最小,T3較其他處理顯著高8.77%~27.85%、8.62%~28.61%,百粒重排序為T2>T3>T4>T1>CK,T2較T1、CK分別顯著高5.80%、15.27%。2018年最大穗重、穗粒重、百粒重分別在T1、T1、T2,最小值均在CK,各指標(biāo)最大值較CK分別顯著高6.58%、7.29%、5.70%。綜合2a數(shù)據(jù)來看,添施控釋尿素較單施普通尿素產(chǎn)量構(gòu)成因素表現(xiàn)較好,減產(chǎn)風(fēng)險低。
表5 處理間玉米產(chǎn)量及其構(gòu)成因素的比較
葉片是作物光合作用的決定性器官,對大多數(shù)作物來說,植株體95%的干物質(zhì)來源于葉片光合作用[22]。研究表明,施氮可以提高垂穗披堿草[23]、苜蓿[24]、小麥[25]、玉米[26]、冬油菜[27]等作物生殖生長關(guān)鍵時期光合器官面積,對于玉米,施氮可以增加吐絲期植株下部葉片功能持續(xù)時間,增大灌漿期葉面積,延緩葉面積峰值下降速率[28],且在一定施氮范圍內(nèi),玉米葉面積隨施氮量的增加而增大[29]。本研究發(fā)現(xiàn),2016年施氮處理較CK提高了全生育期葉面積指數(shù),配施處理和單施控釋尿素處理較單施常規(guī)尿素處理顯著提高了抽雄期和乳熟期葉面積指數(shù),降低了灌漿初?乳熟期葉面積下降速率。本研究還發(fā)現(xiàn),2a灌漿初?乳熟期,葉面積指數(shù)下降速率隨著控釋尿素比例減少而放慢,且在配施尿素處理下生育后期葉面積指數(shù)保持較高值,說明控釋與常規(guī)尿素配施可以延長生育后期葉片功能持續(xù)期,延緩葉片衰老。
DMA(干物質(zhì)積累量)是作物產(chǎn)量形成的物質(zhì)基礎(chǔ)[30],而作物籽粒中DMA主要來源于花后形成同化物和花前營養(yǎng)器官貯存同化物向籽粒的轉(zhuǎn)移與分配,提升植株花后干物質(zhì)積累水平是增產(chǎn)的有效途徑。金容等[15]研究表明,與常規(guī)尿素相比,含控釋氮肥處理提高了花前和花后DMA、成熟期總DMA、成熟期籽粒干物質(zhì)分配比例,隨控釋尿素比例的增加均呈先增后降趨勢。與金容等[15]研究結(jié)果相似,本試驗中,與T1(常規(guī)尿素)相比,各含控釋尿素處理顯著提高了玉米花后DMA,并隨著控釋尿素含量的增加而先增后降;2a各含控釋尿素處理與CK(不施氮肥)和T1相比,DMT(花前干物質(zhì)轉(zhuǎn)移量)差異表現(xiàn)不規(guī)律,成熟期籽粒干物質(zhì)占全株比例差異不顯著,這與金容研究結(jié)果不相符。本研究還發(fā)現(xiàn),2a含控釋尿素處理總體較CK、T1提高了玉米花后干物質(zhì)積累速率,提高了成熟期全株DMA,且最大值均在T3,這與王旭敏等[31?33]研究得出的控釋氮處理較常規(guī)施氮提高了灌漿?成熟期地上部干物質(zhì)重的結(jié)果一致;2a平均花后DMA和花后DMA對籽粒DMA的貢獻率以T3處理最大,分別為10.61t·hm?2、70.80%,這與武鵬等[34]研究指出玉米花后干物質(zhì)積累量對籽粒干物質(zhì)積累量貢獻率達到74.60%~87.63%的結(jié)論接近。
本研究發(fā)現(xiàn),施氮處理較不施氮處理顯著提高了玉米成熟期氮素積累量(NA),2a各處理間花前氮素轉(zhuǎn)移量(NT)以T2表現(xiàn)最好,2a平均NT、轉(zhuǎn)移率和花前氮素轉(zhuǎn)移量對籽粒NA的貢獻率隨控釋尿素含量增加而降低。雖控釋尿素處理花前NA低,但控釋尿素通過控制養(yǎng)分釋放完成氮素后移,滿足了花后氮素需求,提高了花后NA占總NA比重[33];試驗中,T3較T1和CK增加了花后NA,提高了花后NA對籽粒NA的貢獻率,促進了氮素向籽粒的轉(zhuǎn)移,進而提高了成熟期籽粒NA。在國內(nèi)氮素利用研究方面,于飛等[35]調(diào)查結(jié)果顯示,近年中國玉米氮肥用量在180~240kg·hm?2的氮肥利用率(REN)和氮肥偏生產(chǎn)力(PFPN)分別為31.0%和45.5kg·kg?2,而Chen等[36]在中國大規(guī)模定點田間試驗中,在土壤?作物復(fù)合系統(tǒng)處理下PFPN高達56kg·kg?1;在本試驗中,總體上控釋氮素下REN、氮肥農(nóng)學(xué)利用率(AEN)、PFPN和肥料貢獻率(FCR)顯著高于T1(常規(guī)尿素),在總施氮量225kg·hm?2下,將控釋與常規(guī)尿素以2:1配施,2a平均REN、PFPN分別為30.87%和55.62kg·kg?1,這與于飛等統(tǒng)計得出的REN相近[35],而PFPN明顯高于其統(tǒng)計的結(jié)果,卻與Chen等[36]試驗結(jié)果相近;具體分析發(fā)現(xiàn),2018年控釋尿素處理REN低于2016年,而T1下REN高于2016年,原因可能是2018年全生育前期降水量,加快了T1的釋放速率和玉米的吸收速率,提高了CK、T1下的玉米成熟期NA,而控釋尿素氮素在生育后期才能釋放充分,但生育后期降水過量,從而造成控釋尿素過度淋失[37],最終降低了控釋尿素含量高的處理(T3、T4)的玉米成熟期NA、REN。
適宜的施肥量和氮肥配比則為增產(chǎn)、增效提供了有效途徑。張杰等[38]研究表明,在常規(guī)/控釋尿素為2:1時,產(chǎn)量、百粒重和穗粒重隨總施氮量的增加而呈先增后降趨勢,在240kg·hm?2下產(chǎn)量達最大值;Liu等[39]研究表明,黃土旱塬區(qū)覆膜玉米施氮量在0~240kg·hm?2時,產(chǎn)量隨施氮量的增加而顯著提高;解文艷等[40]在3a田間定點研究中發(fā)現(xiàn),黃土高原東部玉米施氮量為240kg·hm?2時,玉米產(chǎn)量隨控釋尿素含量的增加呈先增后降趨勢。本研究結(jié)果表明,2a內(nèi)T2、T3(尿素配施處理)產(chǎn)量較高且變化幅度小,說明常規(guī)尿素與控釋尿素配施增產(chǎn)、穩(wěn)產(chǎn)效果好,但T2需要在拔節(jié)中期追肥,與T3相比增加了人工成本,2016年T4(單施控釋尿素)或T1(單施常規(guī)尿素)產(chǎn)量顯著低于T3,2018年與T3差異不顯著,這與前人研究結(jié)果一致。本研究還發(fā)現(xiàn),隨控釋尿素含量增加,2a平均穗重、穗粒重和產(chǎn)量均呈先增后降趨勢,以T3產(chǎn)量最高。綜合各處理在干物質(zhì)積累量、氮素積累量、氮素利用和產(chǎn)量方面的表現(xiàn),以T3處理表現(xiàn)最佳。
(1)不施氮肥處理玉米生長發(fā)育較差,施氮能提高玉米干物質(zhì)量和LAI,配施控釋尿素(T2、T3)比單施常規(guī)尿素(T1)或單施控釋尿素(T4)的干物質(zhì)增益高,各處理中以基施常規(guī)尿素75kg·hm?2+基施控釋尿素150kg·hm?2的T3處理全生育期干物質(zhì)積累量較高,同時T3處理下玉米全生育期葉面積指數(shù)有效提高,葉片衰老進程得以延緩。
(2)配施控釋尿素可以提高玉米氮肥利用率、氮肥農(nóng)學(xué)利用率和氮肥偏生產(chǎn)力。
(3)配施控釋尿素及單施控釋尿素有利于花后干物質(zhì)積累,為產(chǎn)量形成提供了充足的物質(zhì)基礎(chǔ)。
[1] 紀(jì)德智,王端,趙京考,等.不同氮肥形式對玉米氮、磷、鉀吸收及氮素平衡的影響[J].水土保持學(xué)報,2014,28(4):104- 109.
Ji D Z,Wang D,Zhao J K,et al.Effects of different forms of nitrogen fertilizer on nitrogen, phosphorus and potassium uptake and nitrogen balance of maize[J].Journal of Soil and Water Conservation,2014,28(4):104-109.(in Chinese)
[2] 王樂,康建宏,梁熠,等.控釋/普通尿素配施對春玉米籽粒灌漿特性及產(chǎn)量的影響[J].核農(nóng)學(xué)報,2018,32(10):2054- 2061.
Wang L,Kang J H,Liang Y,et al.Effects of controlled release/common urea combined application on grain filling characteristics and yield of spring maize[J].Acta Agriculturae Nucleatae Sinica,2018,32(10):2054-2061.(in Chinese)
[3] Hu H,Ning T,Li Z,et al.Coupling effects of urea types and subsoiling on nitrogen-water use and yield of different varieties of maize in northern China[J].Field Crops Research,2013,142:85-94.
[4] 王浩,梁熠,康建宏,等.旱區(qū)土壤無機氮素與春玉米根系時空分布對控釋尿素輸入的響應(yīng)[J].玉米科學(xué),2022,30 (4):130-141.
Wang H,Liang Y,Kang J H,et al.Response of soil inorganic nitrogen and spring maize root to controlled release urea input in arid region[J].Journal of Maize Sciences,2022, 30(4):130-141.(in Chinese)
[5] 趙營,劉曉彤,羅健航,等.緩/控釋肥條施對春玉米產(chǎn)量、吸氮量與氮平衡的影響[J].中國土壤與肥料,2020(5):34-39.
Zhao Y,Liu X T,Luo J H,et al.Effects of slow/controlled release fertilizer strip application on yield,nitrogen uptake and nitrogen balance of spring maize[J].Soil and Fertilizer Sciences in China,2020(5):34-39.(in Chinese)
[6] 梁熠,康建宏,朱榮,等.控釋、常規(guī)尿素配施對雨養(yǎng)區(qū)春玉米產(chǎn)量及氮素利用的影響[J].水土保持學(xué)報,2017,31(6): 237-241.
Liang Y,Kang J H,Zhu R,et al.Effects of controlled release and conventional urea combined application on yield and nitrogen utilization of spring maize in rain-fed area[J]. Journal of Soil and Water Conservation,2017,31(6):237- 241.(in Chinese)
[7] Maior Bono J A,dos Santos H W,Pereira S R,et al.Nitrogen coated fertilizer with controlled release for the maize crop[J].Bioscience Journal,2020,36(6):1890-1899.
[8] Chen J S,He D W,Zhang N,et al.Characteristics of and human influences on nitrogen contamination in Yellow River system,China[J].Environmental Monitoring and Assessment, 2004,93(1-3):125-138.
[9] Jungers J M,de Haan L H,Mulla D J,et al.Reduced nitrate leaching in a perennial grain crop compared to maize in the upper midwest,USA[J].Agriculture Ecosystems & Environment, 2019,272:63-73.
[10] Guo J H,Liu X J,Zhang Y,et al.Significant acidification in major Chinese croplands[J].Science,2010,327(5968): 1008- 1010.
[11] 劉俊松,吳雅萍,左思杰,等.控釋肥養(yǎng)分釋放機理及其影響因素研究進展[J].湖北大學(xué)學(xué)報(自然科學(xué)版),2020, 42(4):464-470.
Liu J S,Wu Y P,Zuo S J,et al.Research progress on nutrient release mechanism and influencing factors of controlled release fertilizer[J].Journal of Hubei University (Natural Science),2020,42(4):464-470.(in Chinese)
[12] 邵國慶,李增嘉,寧堂原,等.灌溉和尿素類型對玉米氮素利用及產(chǎn)量和品質(zhì)的影響[J].中國農(nóng)業(yè)科學(xué),2008(11): 3672-3678.
Shao G Q,Li Z J,Ning T Y,et al.Effects of irrigation and urea types on nitrogen utilization,yield and quality of maize[J].Scientia Agricultura Sinica,2008(11):3672-3678. (in Chinese)
[13] Shoji S,Gandeza A T,Kimura K.Simulation of crop response to polyolefin-coated ureaII.Nitrogen uptake by corn[J].Soil Science Society of America Journal,1991, 55(5):1468-1473.
[14] 劉詩璇,陳松嶺,蔣一飛,等.控釋氮肥與普通氮肥配施對東北春玉米氮素利用及土壤養(yǎng)分有效性的影響[J].生態(tài)環(huán)境學(xué)報,2019,28(5):939-947.
Liu S X,Chen S L,Jiang Y F,et al.Effects of controlled release nitrogen fertilizer combined with common nitrogen fertilizer on nitrogen utilization and soil nutrient availability of spring maize in Northeast China[J].Ecology and Environment, 2019,28(5):939-947.(in Chinese)
[15] 金容,李蘭,郭萍,等.控釋氮肥比例對土壤氮含量和玉米氮素吸收利用的影響[J].水土保持學(xué)報,2018,32(6): 214- 221.
Jin R,Li L,Guo P,et al.Effects of controlled release nitrogen ratio on soil nitrogen content and nitrogen uptake and utilization of maize[J].Journal of Soil and Water Conservation, 2018,32(6):214-221.(in Chinese)
[16] 黨翼,張建軍,趙剛,等.控釋尿素和普通尿素配施對旱地玉米產(chǎn)量和水氮利用效率的影響[J].中國農(nóng)業(yè)科技導(dǎo)報,2022,24(6):156-165.
Dang Y,Zhang J J,Zhao G,et al.Effects of controlled release urea and common urea combined application on yield and water and nitrogen use efficiency of maize in dryland[J].J Agric Sci Technol,2022,24(6):156-165.(in Chinese)
[17] 郭金金,張富倉,閆世程,等.緩釋氮肥與尿素摻混對玉米生理特性和氮素吸收的影響[J].植物營養(yǎng)與肥料學(xué)報, 2018,24(5):1194-1204.
Guo J J,Zhang F C,Yan S C,et al.Effects of slow-release nitrogen fertilizer and urea mixture on physiological characteristics and nitrogen uptake of maize[J].Journal of Plant Nutrition and Fertilizer,2018,24(5):1194-1204.(in Chinese)
[18] 解文艷,周懷平,楊振興,等.不同緩控釋氮肥對連作春玉米產(chǎn)量及氮肥去向的影響[J].水土保持學(xué)報,2019,33(3): 207-214.
Xie W Y,Zhou H P,Yang Z X,et al.Effects of different slow and controlled release nitrogen fertilizers on yield and whereabouts of spring maize under continuous cropping[J]. Journal of Soil and Water Conservation,2019,33(3):207- 214.(in Chinese)
[19] 任寧,汪洋,王改革,等.不同降雨年份控釋尿素與普通尿素配施對夏玉米產(chǎn)量、氮素利用及經(jīng)濟效益的影響[J].植物營養(yǎng)與肥料學(xué)報,2020,26(4):681-691.
Ren N,Wang Y,Wang G G,et al.Effects of combined application of controlled release urea and common urea on yield,nitrogen utilization and economic benefits of summer maize[J].Journal of Plant Nutrition and Fertilizer,2020,26 (4):681-691.(in Chinese)
[20] 紀(jì)朋濤,郭斌,肖凱,等.普通與緩釋尿素配施對夏玉米干物質(zhì)積累與氮素利用的影響[J].河北農(nóng)業(yè)大學(xué)學(xué)報,2021, 44(3):8-14.
Ji P T,Guo B,Xiao K,et al.Effects of common and slow-release urea combined application on dry matter accumulation and nitrogen utilization of summer maize[J]. Journal of Agricultural University of Hebei,2021,44(3): 8-14.(in Chinese)
[21] 張倩,韓本高,張博,等.控失尿素減施及不同配比對夏玉米產(chǎn)量及氮肥效率的影響[J].作物學(xué)報,2022,48(1): 180- 192.
Zhang Q,Han B G,Zhang B,et al.Effects of loss control urea reduction and different proportions on yield and nitrogen efficiency of summer maize[J].Acta Agronomica Sinica, 2022,48(1):180-192.(in Chinese)
[22] Li Y,Ming B,Fan P,et al.Quantifying contributions of leaf area and longevity to leaf area duration under increased planting density and nitrogen input regimens during maize yield improvement[J].Field Crops Research,2022,283:108551.
[23] 陳鑫,焦婷,牧仁,等.氮添加對高寒人工草地垂穗披堿草()生長及光合特性的影響[J].草地學(xué)報, 2022,30(8):1964-1971.
Chen X,Jiao T,Mu R,et al.Effects of nitrogen addition on growth and photosynthetic characteristics ofin alpine artificial grassland[J].Acta Agrestia Sinica,2022, 30(8):1964-1971.(in Chinese)
[24] 孫延亮,趙俊威,劉選帥,等.施氮對苜蓿初花期光合日變化、葉片形態(tài)及干物質(zhì)產(chǎn)量的影響[J].草業(yè)學(xué)報,2022,31 (9):63-75.
Sun Y L,Zhao J W,Liu X S,et al.Effects of nitrogen application on diurnal variation of photosynthesis, leaf morphology and dry matter yield of alfalfa in early flowering period[J].Acta Prataculturae Sinica,2022,31(9): 63-75.(in Chinese)
[25] 馬永鑫,王西娜,韋廣源,等.減氮節(jié)水對寧夏引黃灌區(qū)春小麥光合特性與產(chǎn)量的影響[J].農(nóng)業(yè)工程學(xué)報,2022,38 (10):75-84.
Ma Y X,Wang X N,Wei G Y,et al.Effects of nitrogen and water saving on photosynthetic characteristics and yield of spring wheat in Ningxia irrigated area of Yellow river diversion[J].Transactions of the Chinese Society of Agricultural Engineering,2022,38(10):75-84.(in Chinese)
[26] 熊偉仡,徐開未,劉明鵬,等.不同氮用量對四川春玉米光合特性、氮利用效率及產(chǎn)量的影響[J].中國農(nóng)業(yè)科學(xué), 2022,55(9):1735-1748.
Xiong W Z,Xu K W,Liu M P,et al.Effects of different nitrogen dosages on photosynthetic characteristics,nitrogen use efficiency and yield of spring maize in Sichuan[J]. Scientia Agricultura Sinica,2022,55(9):1735-1748.(in Chinese)
[27] 李靜,周楊果,陸志峰,等.氮鉀配施對冬油菜角果皮光合作用及光合器官氮分配的影響[J].植物營養(yǎng)與肥料學(xué)報, 2022,28(5):869-879.
Li J,Zhou Y G,Lu Z F,et al.Effects of combined application of nitrogen and potassium on photosynthesis and nitrogen allocation in photosynthetic organs of winter oilseed rape [J].Plant Nutrition and Fertilizer Journal,2022,28(5):869- 879.(in Chinese)
[28] 溫立玉,薛艷芳,張慧,等.不同氮效率玉米品種親本自交系花粒期氮素轉(zhuǎn)運特性[J].植物營養(yǎng)與肥料學(xué)報,2019, 25(4):568-578.
Wen L Y,Xue Y F,Zhang H,et al.Nitrogen transport characteristics of parent inbred lines of maize varieties with different nitrogen efficiency during flowering grain stage[J].Journal of Plant Nutrition and Fertilizer,2019,25(4): 568-578.(in Chinese)
[29] 蔡曉,王東,吳祥運,等.氮肥減施對夏玉米生長及水氮利用效率的影響[J].玉米科學(xué),2022,30(1):158-165.
Cai X,Wang D,Wu X Y,et al.Effects of nitrogen reduction on growth and water and nitrogen use efficiency of summer maize[J].Journal of Maize Sciences,2022,30(1): 158-165.(in Chinese)
[30] 陳國平.玉米的干物質(zhì)生產(chǎn)與分配(綜述)[J].玉米科學(xué),1994(1):48-53.
Chen G P.Dry matter production and distribution of maize [J].Journal of Maize Sciences,1994(1):48-53.(in Chinese)
[31] 王旭敏,雒文鶴,劉朋召,等.節(jié)水減氮對夏玉米干物質(zhì)和氮素積累轉(zhuǎn)運及產(chǎn)量的調(diào)控效應(yīng)[J].中國農(nóng)業(yè)科學(xué),2021, 54(15):3183-3197.
Wang X M,Luo W H,Liu P Z,et al.Regulation effect of water saving and nitrogen reduction on accumulation and transport of dry matter and nitrogen and yield of summer maize[J].Scientia Agricultura Sinica,2021,54(15):3183-3197. (in Chinese)
[32] 尹彩俠,李前,孔麗麗,等.控釋氮肥減施對春玉米產(chǎn)量、氮素吸收及轉(zhuǎn)運的影響[J].中國農(nóng)業(yè)科學(xué),2018,51(20):3941-3950.
Yin C X,Li Q,Kong L L,et al.Effects of controlled release nitrogen reduction on yield,nitrogen uptake and transport of spring maize[J].Scientia Agricultura Sinica,2018,51(20): 3941-3950.(in Chinese)
[33] 張建軍,黨翼,趙剛,等.控釋氮肥全量基施對旱地玉米產(chǎn)量形成和水肥利用效率的影響[J].水土保持學(xué)報,2021, 35(2):170-177.
Zhang J J,Dang Y,Zhao G,et al.Effects of total base application of controlled release nitrogen fertilizer on yield formation and water and fertilizer utilization efficiency of maize in dryland[J].Journal of Soil and Water Conservation, 2021,35(2):170-177.(in Chinese)
[34] 武鵬,王玉鳳,張翼飛,等.不同氮素形態(tài)及配比對玉米生長、氮素利用及產(chǎn)量的影響[J].中國土壤與肥料,2020(2): 123-132.
Wu P,Wang Y F,Zhang Y F,et al.Effects of different nitrogen forms and ratio on maize growth,nitrogen utilization and yield[J].Soil and Fertilizer Sciences in China, 2020(2): 123-132.(in Chinese)
[35] 于飛,施衛(wèi)明.近10年中國大陸主要糧食作物氮肥利用率分析[J].土壤學(xué)報,2015,52(6):1311-1324.
Yu F,Shi W M.Analysis of nitrogen use efficiency of main grain crops in mainland China in recent 10 years[J]. Acta Pedologica Sinica,2015,52(6):1311-1324.(in Chinese)
[36] Chen X,Cui Z,Fan M,et al.Producing more grain with lower environmental costs[J].Nature,2014,514(7523):486- 489.
[37] 周曉楠,劉影,杜承航,等.優(yōu)化氮肥配置提高冬小麥-夏玉米貯墑旱作栽培水氮利用效率[J].中國農(nóng)業(yè)大學(xué)學(xué)報, 2022,27(1):14-25.
Zhou X N,Liu Y,Du C H,et al.Improvement of water and nitrogen use efficiency in winter wheat-summer maize storage and upland cultivation[J].Journal of China Agricultural University,2022,27(1):14-25.(in Chinese)
[38] 張杰,徐芳蕾,薄其飛,等.常規(guī)尿素摻混控釋尿素一次施用對旱作春玉米產(chǎn)量及氮素利用的影響[J].植物營養(yǎng)與肥料學(xué)報,2021,27(6):969-979.
Zhang J,Xu F L,Bo Q F,et al.Effects of single application of conventional urea mixed controlled release urea on yield and nitrogen utilization of spring maize in dry farming[J]. Journal of Plant Nutrition and Fertilizer,2021,27(6):969- 979.(in Chinese)
[39] Liu J,Bu L,Zhu L,et al.Optimizing plant density and plastic film mulch to increase maize productivity and water-use efficiency in semiarid areas[J].Agronomy Journal,2014,106 (4):1138-1146.
[40] 解文艷,周懷平,楊振興,等.控釋尿素與普通尿素配施對春玉米產(chǎn)量、氮肥利用及經(jīng)濟效益的影響[J].干旱地區(qū)農(nóng)業(yè)研究,2020,38(5):31-38.
Xie W Y,Zhou H P,Yang Z X,et al.Effects of combined application of controlled release urea and common urea on yield, nitrogen utilization and economic benefits of spring maize[J].Agricultural Research in the Arid Areas,2020, 38(5):31-38.(in Chinese)
Effects of Combined Application of Controlled Release Urea on Spring Maize Production in Mountainous Area of Southern Ningxia
WANG Ke-jie1, WANG Le2, FENG Peng-bo1, LU Yuan-ming1, WANG Xiao-ping1, LIU Ya-qian1, KANG Jian-hong1, LIANG Yi1
(1.College of Agriculture, Ningxia University, Yinchuan 750021, China;2.Seed Work Station, Erdos City, Erdos 017000)
The experimental purpose is through investigating the effects of combined application of urea on dry matter, nitrogen accumulation, transport and yield of maize, to provide a theoretical basis for mining a reasonable nitrogen fertilizer for high yield of maize. The field experiment was conducted in 2016 and 2018 with a single factor randomized block design. Five treatments were set in the southern mountainous area of Ningxia. CK has no nitrogen application during whole growth season of maize. T1 was applied with 150kg·ha?1conventional urea base and 75kg·ha?1conventional urea topdressing in large bell stage. T2 was based on 75kg·ha?1conventional urea and 75kg·ha?1controlled-release urea and 75kg·ha?1conventional urea in large bell stage. T3 consists of 75kg·ha?1conventional urea based and 150kg·ha?1controlled-release urea based, T4 is a basal application of controlled release urea of 225kg·ha?1. The results showed that the combined application of conventional urea and controlled-release urea could significantly increase the yield compared with CK. Under T3 treatment, the 2-year average yield was higher than that of single application of conventional or controlled-release urea, and reached the maximum in each treatment. Combined application increased the growth rate of leaf area index (LAI) and leaf area index (LAI) in early growth period, but slowed down the decline rate of LAI in late growth period. Compared with CK and T1, controlled release urea treatment significantly increased dry matter accumulation and grain nitrogen accumulation at mature stage. The dry matter transfer before anthesis was low in the treatment with controlled release urea, but it mainly increased the dry matter accumulation after anthesis and the contribution rate of dry matter accumulation after anthesis to the dry matter accumulation of grain, and it increased first and then decreased with the increase of controlled release urea content. Compared with single application of conventional urea, controlled release urea treatment increased nitrogen utilization rate(REN), nitrogen agronomic utilization rate(AEN), nitrogen partial productivity(PFPN) and fertilizer contribution rate(FCR), and T3 had the highest increase. Based on two years experiment results, applying controlled release urea to conventional urea at a ratio of 2:1 may save labor and increase maize yield.
Corn; Dry matter accumulation; Nitrogen accumulation; Production
10.3969/j.issn.1000-6362.2023.09.002
王科捷,王樂,馮朋博,等.配施控釋尿素對寧南山區(qū)春玉米生產(chǎn)的影響[J].中國農(nóng)業(yè)氣象,2023,44(9):769-781
2022?10?19
寧夏高質(zhì)量發(fā)展與生態(tài)保護科技創(chuàng)新示范項目(NGSB?2021?3?02);寧夏自然科學(xué)基金(2021AAC03072);寧夏區(qū)重點研發(fā)項目(2019BBF02003)
康建宏,教授,主要從事作物高產(chǎn)生理研究,E-mail:kangjianhong@163.com;梁熠,副教授,主要從事高產(chǎn)栽培和生理研究,E-mail:liangmeng0122@126.com
王科捷,E-mail:wkj15648078215@163.com