薛美貴,柴欣生,李偉,李小東,陳潤(rùn)權(quán)
紙質(zhì)食品包裝制品中揮發(fā)性MOSH組分SPME-HSGC-MS追蹤檢測(cè)
薛美貴1,柴欣生2,李偉1,李小東1,陳潤(rùn)權(quán)3
(1.東莞職業(yè)技術(shù)學(xué)院,廣東 東莞 523808;2.華南理工大學(xué),廣州 510641; 3.東莞質(zhì)量監(jiān)督檢測(cè)中心,廣東 東莞 523808)
對(duì)一次性紙質(zhì)食品包裝制品(盒、袋、桶、杯等)中揮發(fā)性飽和烴礦物油(MOSH)組分的含有情況進(jìn)行檢測(cè)分析,以確定紙質(zhì)食品包裝材料及制品中各揮發(fā)性MOSH組分向外揮發(fā)的性能以及對(duì)所包裝食品(食品模擬物)的潛在危害性。將樣品裁切(5 mm×5 mm)后,取適量樣品采用固相微萃取法進(jìn)行萃取富集,然后使用頂空氣相色譜-質(zhì)譜進(jìn)行檢測(cè),通過(guò)NIST質(zhì)譜庫(kù)檢索、特征離子碎片檢索以及標(biāo)準(zhǔn)樣品比較相結(jié)合的方法進(jìn)行定性。同時(shí),為確定各樣品中揮發(fā)性MOSH組分的遷移性能,在時(shí)隔6個(gè)月之后,對(duì)以上樣品采用同樣的方法進(jìn)行取樣、檢測(cè)、分析。最后,根據(jù)2次檢測(cè)的結(jié)果,判斷市售一次性紙質(zhì)食品包裝材料及制品中揮發(fā)性MOSH組分的遷移性,以確定其對(duì)食品安全性的影響情況。結(jié)果表明,所測(cè)的16種樣品中均含有揮發(fā)性MOSH組分,并且其含量隨著時(shí)間而降低;同時(shí)發(fā)現(xiàn),沒(méi)有印刷圖文或印刷圖文面積極小的紙質(zhì)包裝制品中揮發(fā)性MOSH組分向外遷移的速度較低。SPME-HSGC-MS適用于紙質(zhì)包裝材料或制品中揮發(fā)性(半揮發(fā)性)MOSH組分的檢測(cè)與分析。為降低由紙質(zhì)食品包裝材料及制品中揮發(fā)性MOSH組分對(duì)人體產(chǎn)生的危害性,建議紙質(zhì)包裝材料或制品制作完成后,在不增加倉(cāng)儲(chǔ)壓力的情況下,放置一段時(shí)間,并加大其存儲(chǔ)空間的通風(fēng),再用于食品包裝。
紙質(zhì)食品包裝制品;飽和烴礦物油;固相微萃取-頂空氣相色譜-質(zhì)譜聯(lián)用法;食品安全
礦物油(Mineral Oil Hydrocarbons,MOH)是源自石油的烴類混合物,具有非常廣泛的用途,其成分構(gòu)成非常復(fù)雜,主要包含飽和烴礦物油(Mineral Oil Saturated Hydrocarbons,MOSH)及芳香烴礦物油(Mineral Oil Aromatic Hydrocarbons,MOAH),常見(jiàn)于工業(yè)礦物油[1-2]。由于印刷用膠印油墨中含有礦物油組分,以及再生食品包裝用紙和紙板中會(huì)含有未徹底脫除的油墨,所以印刷紙質(zhì)食品包裝材料及制品會(huì)增加人群遭受礦物油危害的程度[3]。
針對(duì)礦物油的動(dòng)物毒性評(píng)估顯示,MOAH具有潛在的基因毒性和致癌性,其導(dǎo)致的食品安全風(fēng)險(xiǎn)已引起了廣泛重視[4-5]。近年來(lái),關(guān)于MOSH的毒理學(xué)數(shù)據(jù)顯示,MOSH具有生物蓄積性,長(zhǎng)期攝入受到MOSH污染的食品,將會(huì)在體內(nèi)大量累積,對(duì)人體健康造成嚴(yán)重的危害[6-7],目前已引起各國(guó)的關(guān)注。歐洲食品安全局(European Food Safety Authority,EFSA)、德國(guó)聯(lián)邦風(fēng)險(xiǎn)評(píng)估研究所(BfR)、瑞士、法國(guó)等相關(guān)機(jī)構(gòu)相繼對(duì)食品包裝用紙與紙板中MOSH的含量及向食品的遷移量進(jìn)行了限制規(guī)定。有研究表明,在國(guó)內(nèi)市場(chǎng),食品以及食品包裝紙和紙板中礦物油含量和遷移水平不容忽視。國(guó)家食品接觸材料檢測(cè)重點(diǎn)實(shí)驗(yàn)室對(duì)食品包裝紙的一項(xiàng)抽調(diào)結(jié)果顯示,有37.6%的樣品中MOSH含量超標(biāo)(>2 mg/kg),最高遷移量為364 mg/kg,需要引起政府和相關(guān)行業(yè)的關(guān)注。因此,進(jìn)一步加強(qiáng)食品以及食品包裝材料及制品中MOSH含量數(shù)據(jù)監(jiān)測(cè)和膳食暴露評(píng)價(jià)工作,并采取措施降低食品中礦物油含量和安全風(fēng)險(xiǎn),是亟待解決的問(wèn)題。
國(guó)內(nèi)外關(guān)于紙質(zhì)材料中礦物油組分檢測(cè)與分析的方法主要有液相色譜-氣相色譜-質(zhì)譜檢測(cè)(LC-GC-MS)法[8-9]、高效液相色譜-氣相色譜-火焰離子化檢測(cè)器(HPLC-GC-FID)法[4,10-13]、固相萃取-氣相色譜法和全二維氣相色譜法[14]、固相萃取-GC-FID法[15-16]、離線固相萃取-GC-FID法[17]。然而,沒(méi)有完整的體系,也沒(méi)有對(duì)實(shí)驗(yàn)條件和環(huán)境要求較低且準(zhǔn)確可靠、操作簡(jiǎn)單的方法可循。目前,關(guān)于紙質(zhì)包裝材料及制品中MOSH的研究主要集中于分析檢測(cè)方法的選擇及優(yōu)化、直接接觸情況下向食品的遷移研究、溯源以及遷移模型的研究等[9-18]。
本文采用固相微萃取-頂空氣相色譜-質(zhì)譜(SPME-HSGC-MS)聯(lián)用的方法[19]檢測(cè)一次性紙質(zhì)食品包裝制品中C9-C18 MOSH向外界的揮發(fā)、擴(kuò)散性,并進(jìn)一步跟蹤其組分的變化情況,以探究非直接接觸情形下紙質(zhì)食品包裝制品中揮發(fā)性MOSH向所包裝食品的遷移性能,以期為一次性紙質(zhì)食品包裝材料及制品的安全使用提供一定的理論及數(shù)據(jù)參考。
主要材料:紙樣為2021年10月底從廣東、廣西、海南等地的印刷包裝企業(yè)收集剛制作完成的16種一次性紙質(zhì)食品包裝制品,具體信息見(jiàn)表1。
主要試劑:C8-C40正構(gòu)烷烴混合標(biāo)準(zhǔn)溶液,質(zhì)量濃度為500 μg/mL,默克SUPELCO;二氯甲烷,色譜純,天津市科密歐化學(xué)試劑有限公司。
TQ8040頂空氣相色譜-質(zhì)譜聯(lián)用儀(HSGC- MS),日本島津;50/30 μm DVB/CAR on PDMS固相微萃取頭,默克supelco;FA2004B電子天平,北京印聯(lián);FT3精密測(cè)厚儀,英國(guó)HANATEK。
表1 實(shí)驗(yàn)用紙樣情況
Tab.1 Paper samples in the test
HSGC條件:進(jìn)樣口為SPL1,進(jìn)樣口溫度為250 ℃,色譜柱為DB-5 ms(30 m×0.25 mm, ID*0.25 μm,美國(guó)安捷倫公司)毛細(xì)管柱,離子源溫度為230 ℃,手動(dòng)、不分流進(jìn)樣,進(jìn)樣時(shí)間5 min;載氣(氦氣)流速為1 mL/min;柱子升溫程序?yàn)橐猿跏紲囟?0 ℃保持1 min,按照10 ℃/min的速度升溫到250 ℃,并保持2 min。
GC-MS連接端口溫度為250 ℃。
MS條件:MS為三重四極桿型,電子轟擊電離源(EI),電離能量為70 eV,掃描方式為全掃描,質(zhì)荷比(/)為30~500,溶劑延遲時(shí)間為1 min。
取100 μL C8-C40正構(gòu)烷烴混合標(biāo)準(zhǔn)溶液,用二氯甲烷稀釋至10 mL后,取1 μL,采用液體進(jìn)樣方式至GC-MS,得到C8-C40正構(gòu)烷烴標(biāo)準(zhǔn)樣品色譜,確定C9-C18 MOSH各組分的保留時(shí)間。采用線性升溫公式計(jì)算樣品中各組分的保留指數(shù),用于準(zhǔn)確定性[20],保留指數(shù)的計(jì)算公式見(jiàn)式(1)。
由于在廣東地區(qū)前一年的11月到第2年的4月這個(gè)時(shí)間段內(nèi),平均溫度為20 ℃,所以,本研究分別在前一年的11月和第2年的4月進(jìn)行。
實(shí)驗(yàn)前,將從印刷包裝企業(yè)收集的16種剛制作完成的一次性紙質(zhì)食品包裝制品裁切成0.5 cm×0.5 cm的小片,混合均勻,備用。第1次實(shí)驗(yàn)時(shí),稱取1 g紙樣,置于20 mL頂空瓶中,用固相微萃取頭在98 ℃恒溫條件下,萃取富集30 min,然后在250 ℃條件下解吸3 min后置于頂空氣相色譜-質(zhì)譜儀進(jìn)行檢測(cè)。每個(gè)樣品取3個(gè)平行樣進(jìn)行檢測(cè)。第2次實(shí)驗(yàn)時(shí),采取以上相同的方法對(duì)16種紙樣進(jìn)行檢測(cè)、分析。
對(duì)以上實(shí)驗(yàn)所測(cè)得的結(jié)果采用NIST檢索庫(kù)(14、14s、20、20 s)聯(lián)合特征離子碎片檢索(質(zhì)荷比為43、57、71)[21],以及標(biāo)準(zhǔn)樣品保留時(shí)間比較的方法,對(duì)其中C9-C18 MOSH的組分進(jìn)行定性分析。
使用GC-MS對(duì)C8-C40正構(gòu)烷烴混合標(biāo)準(zhǔn)溶液進(jìn)行檢測(cè),得到C8-C40正構(gòu)烷烴混合標(biāo)準(zhǔn)溶液的色譜圖如圖1所示。對(duì)圖1進(jìn)行分析,確定C9-C18 MOSH各組分的保留時(shí)間,并根據(jù)式(1)計(jì)算保留指數(shù)。
100 μm PDMS與50/30 μm DVB/CAR on PDMS萃取纖維均可用于揮發(fā)性物質(zhì)的萃取。比較2種萃取纖維對(duì)樣品S1的萃取效果,結(jié)果表明,100 μm PDMS共萃取出3種MOSH,而50/30 μm DVB/CAR on PDMS共萃取出5種MOSH。因此,本實(shí)驗(yàn)選擇DVB/CAR on PDMS萃取纖維對(duì)樣品進(jìn)行萃取。
2.3.1 第1次檢測(cè)結(jié)果分析
對(duì)16種紙樣進(jìn)行檢測(cè),采用NIST檢索庫(kù)聯(lián)合特征離子碎片檢索以及標(biāo)準(zhǔn)樣品保留時(shí)間比較的方法進(jìn)行分析、定性。典型樣品S1與S2第1次檢測(cè)的總離子流色譜圖如圖2所示,MOSH某組分的質(zhì)譜圖如圖3所示,所有樣品中C9-C18 MOSH檢出情況如表2所示。
對(duì)表2進(jìn)行分析,發(fā)現(xiàn)所有樣品中均含有一定量的C9-C18 MOSH組分,說(shuō)明大多數(shù)一次性紙質(zhì)食品包裝制品均對(duì)人體MOSH的暴露有一定的貢獻(xiàn)度。同時(shí)發(fā)現(xiàn),大多數(shù)MOSH組分集中于C13-C18,這可能是由于C原子數(shù)較低(<13)的MOSH具有較強(qiáng)的揮發(fā)性,在紙張儲(chǔ)存以及印刷制作過(guò)程中發(fā)生了揮發(fā)。
圖1 C8-C40正構(gòu)烷烴標(biāo)準(zhǔn)樣品色譜圖
圖2 樣品S1-1、S2-1中MOSH檢測(cè)總離子流色譜圖
圖3 樣品中MOSH某組分的質(zhì)譜圖
對(duì)不同紙樣的檢測(cè)結(jié)果進(jìn)行分析,發(fā)現(xiàn)樣品S4、S5、S6、S7中MOSH的組分種類達(dá)7~8種;樣品S1、S2、S3、S8、S9、S11、S15、S16中的種類為5~6種;S10、S12、S13、S14中的種類有3~4種。說(shuō)明不同紙樣中揮發(fā)性MOSH的含有情況差別較大,這與各紙樣造紙?jiān)戏N類、制作過(guò)程以及印刷所用油墨類型有關(guān)[3,17]。
2.3.2 追蹤檢測(cè)結(jié)果分析
6個(gè)月之后對(duì)16種紙樣進(jìn)行再次取樣,采用相同方法進(jìn)行檢測(cè)、分析與定性。典型樣品S1與S2第2次檢測(cè)的總離子流色譜圖如圖4所示,所有樣品中C9-C18 MOSH檢出情況如表3所示。
表2 第1次檢測(cè)各紙樣中揮發(fā)性C9-C18 MOSH的檢出情況
Tab.2 Content of volatile C9-C18 MOSH in paper samples in the first test
注:S1-1表示樣品S1初次檢測(cè);“×”表示未檢出,“√”表示有檢出。
圖4 樣品S1-2、S2-2中MOSH檢測(cè)總離子流色譜圖
表3 第2次檢測(cè)各紙樣中揮發(fā)性C9-C18 MOSH的檢出情況
Tab.3 Content of volatile C9-C18 MOSH in paper samples in the second test
注:S1-2表示樣品S1第2次檢測(cè);“×”表示未檢出;“√”表示有檢出。
對(duì)表2和表3中相同樣品在不同時(shí)間的檢測(cè)結(jié)果進(jìn)行對(duì)比,發(fā)現(xiàn)時(shí)隔6個(gè)月之后紙樣中的C9-C18 MOSH組分的種類明顯減少,且減少的種類主要為C原子數(shù)較低的MOSH。說(shuō)明樣品在6個(gè)月的儲(chǔ)存期內(nèi),其中C原子數(shù)低的MOSH組分發(fā)生了向外界的擴(kuò)散。然而,S5、S8、S15這3個(gè)沒(méi)有或有極少部分印刷圖案的樣品中MOSH種類的減少卻不明顯,這可能是因?yàn)槠渲械腗OSH組分主要來(lái)自造紙工藝過(guò)程[22-24],大部分吸附于紙張內(nèi)部纖維上,從而阻礙了其向外界的擴(kuò)散;除此之外,樣品S8、S15的厚度較大,也會(huì)使其中揮發(fā)性MOSH組分向外遷移受到影響,這與已有的研究結(jié)果相符[25]。
以上實(shí)驗(yàn)結(jié)果表明,碳數(shù)低的MOSH組分在室溫或更高溫下易揮發(fā),不易在紙質(zhì)包裝材料或制品中殘留,幾乎不會(huì)對(duì)包裝食品造成較大的污染;然而C原子數(shù)較大(>C13)的揮發(fā)性MOSH組分在室溫條件下,會(huì)在紙質(zhì)食品包裝材料或制品中有部分殘留。因此,當(dāng)紙質(zhì)包裝制品用于高溫食品包裝時(shí),仍然存在其中MOSH組分向食品遷移的潛在風(fēng)險(xiǎn)。
由于MOSH具有生物蓄積性,所以即使包裝材料或制品中的MOSH含量較低,經(jīng)常食用這種材料包裝的食品,也會(huì)對(duì)身體產(chǎn)生危害。由于再生纖維的應(yīng)用已成為造紙行業(yè)節(jié)能減排的重要舉措,在造紙過(guò)程中減少或不使用再生纖維將會(huì)大幅提高紙張的成本,同時(shí)也不利于紙張的回收再利用。所以,如何降低因印刷油墨以及再生纖維對(duì)包裝食品造成的污染風(fēng)險(xiǎn),已經(jīng)成為礦物油檢測(cè)的主要目的。
有研究表明,無(wú)阻隔層的再生紙制品存在加大礦物油遷移污染的可能性[26-28]。因此,目前解決紙質(zhì)食品包裝材料中礦物油組分遷移的問(wèn)題,最常用的方法是使用功能阻隔層(鋁箔、PET)有效阻擋或降低食品包裝材料,特別是再生紙制品中礦物油向食品的遷移。然而,阻隔層的使用又會(huì)引入新的問(wèn)題,比如膜層中小分子物質(zhì)向食品的遷移。
對(duì)比本文的2次實(shí)驗(yàn)結(jié)果發(fā)現(xiàn),即使經(jīng)過(guò)6個(gè)月之后,紙制品中仍含有一定量的MOSH組分,因此,建議在紙制品包裝裝潢設(shè)計(jì)過(guò)程中,盡量減小印刷圖案面積,使用環(huán)保型水性油墨進(jìn)行印刷,以減少M(fèi)OSH組分材料的使用。同時(shí)發(fā)現(xiàn),在室溫條件下,紙質(zhì)包裝材料中揮發(fā)性MOSH礦物油組分的種類會(huì)隨著時(shí)間而降低,因此,建議紙質(zhì)食品包裝材料或制品,尤其是有較大印刷圖文面積的制品,在制作完成后,不增加倉(cāng)儲(chǔ)壓力的情況下,于室溫條件下靜置一段時(shí)間,并加大其存儲(chǔ)空間的通風(fēng),待其中揮發(fā)性MOSH組分的含量降低后,再用于食品的包裝。這樣可以有效降低其中礦物油組分對(duì)所包裝食品的危害。另外,對(duì)于儲(chǔ)存環(huán)境溫度較低的情況,可以基于時(shí)溫等效性原理,適當(dāng)提高紙質(zhì)包裝制品的儲(chǔ)存環(huán)境溫度,以加快其中揮發(fā)性MOSH組分向外遷移的速度。
采用固相微萃取-頂空氣相色譜-質(zhì)譜聯(lián)用法檢測(cè)一次性紙質(zhì)食品包裝制品中的揮發(fā)性MOSH組分,與已有的檢測(cè)方法,如液相色譜-氣相色譜-質(zhì)譜檢測(cè)法、高效液相色譜-氣相色譜-火焰離子化檢測(cè)器法等相比較,實(shí)驗(yàn)步驟少、操作簡(jiǎn)單、溶劑用量少,可以在很大程度上降低實(shí)驗(yàn)成本以及由于實(shí)驗(yàn)造成的環(huán)境污染。
所檢測(cè)的紙質(zhì)包裝制品中均含有一定量的揮發(fā)性MOSH,但是,C原子數(shù)低的MOSH組分在室溫或更高溫下易揮發(fā),不易在紙質(zhì)包裝材料或制品中殘留,幾乎不會(huì)對(duì)包裝食品造成較大的污染;然而,C原子數(shù)較高(>C13)的揮發(fā)性MOSH組分在室溫條件下,僅有部分發(fā)生了向外的揮發(fā)。當(dāng)紙質(zhì)包裝制品用于高溫食品包裝時(shí),其中MOSH組分仍然有向所包裝食品遷移的風(fēng)險(xiǎn)。紙質(zhì)食品包裝材料及制品中揮發(fā)性MOSH在常溫下即可向外遷移,因此,為降低由紙質(zhì)食品包裝材料及制品對(duì)人體造成的MOSH暴露風(fēng)險(xiǎn),建議紙質(zhì)包裝材料或制品制作完成后,在不增加倉(cāng)儲(chǔ)壓力的情況下,靜置一段時(shí)間,并加大其存儲(chǔ)空間的通風(fēng),再用于食品包裝。
[1] European Food Safety Authority (EFSA). Scientific Opinion on Mineral Oil Hydrocarbons in Food[R]. Parma: EF SA, 2012.
[2] BIEDERMANN M, GROB K. On-Line Coupled High Performance Liquid Chromatography-Gas Chromatography for the Analysis of Contamination by Mineral Oil. Part 2: Migration from Paperboard into Dry Foods: Interpretation of Chromatograms[J]. Journal of Chromatography A, 2012, 1255: 76-99.
[3] 楊春艷, 鄭濤, 柯潤(rùn)輝, 等. 固相萃取柱凈化-氣相色譜法定量測(cè)定食用植物油中飽和烴類礦物油[J]. 食品安全質(zhì)量檢測(cè)學(xué)報(bào), 2017, 8(3): 1041-1046.
YANG Chun-yan, ZHENG Tao, KE Run-hui, et al. Quantitative Determination of Mineral Oil Saturated Hydrocarbons in Edible Vegetable Oils by Solid Phase Extraction Column-Gas Chromatography[J]. Journal of Food Safety & Quality, 2017, 8(3): 1041-1046.
[4] DIEHL H, WELLE F. How to Determine Functional Barrier Performance towards Mineral Oil Contaminants from Recycled Cardboard[J]. Food Packaging & Shelf Life, 2015, 5: 41-49.
[5] FIORINI D, PACIARONI A, GIGLI F, et al. A Versatile Splitless Injection GC-FID Method for the Determination of Mineral Oil Paraffins in Vegetable Oils and Dried Fruit[J]. Food Control, 2010, 21(8): 1155-1160.
[6] GURDENIZ G, OZEN B. Detection of Adulteration of Extra-Virgin Olive Oil by Chemometric Analysis of Mid-Infrared Spectral Data[J]. Food Chemistry, 2009, 116(2): 519-525.
[7] 武彥文, 王穎, 李冰寧, 等. 定量分析食品中的礦物油污染物[J]. 食品安全質(zhì)量檢測(cè)學(xué)報(bào), 2015, 6(6): 2145-2150.
WU Yan-wen, WANG Ying, LI Bing-ning, et al. Quantitative Analysis of Mineral Oil Hydrocarbons in Food[J]. Journal of Food Safety & Quality, 2015, 6(6): 2145-2150.
[8] FISELIER K, GROB K. Determination of Mineral Oil Paraffins in Foods by On-Line HPLC-GC-FID: Lowered Detection Limit; Contamination of Sunflower Seeds and Oils[J]. European Food Research and Technology, 2009, 229(4): 679-688.
[9] 朱麗嫻, 林勤保, 陳勝, 等. 再生紙與原紙中礦物油成分的LC-GC-MS檢測(cè)及鑒別[J]. 分析測(cè)試學(xué)報(bào), 2020, 39(5): 569-576.
ZHU Li-xian, LIN Qin-bao, CHEN Sheng, et al. Detection of Mineral Oils in Recycled and Virgin Papers by LC-GC-MS and Their Discrimination[J]. Journal of Instrumental Analysis, 2020, 39(5): 569-576.
[10] BIEDERMANN M, UEMATSU Y, GROB K. Mineral Oil Contents in Paper and Board Recycled to Paperboard for Food Packaging[J]. Packaging Technology and Science, 2011, 24(2): 61-73.
[11] BIEDERMANN M, GROB K. On-Line Coupled High Performance Liquid Chromatography-Gas Chromatography for the Analysis of Contamination by Mineral Oil. Part 2: Migration from Paperboard into Dry Foods: Interpretation of Chromatograms[J]. Journal of Chromatography A, 2012, 1255: 76-99.
[12] WAGNER M, OELLIG C. Screening for Mineral Oil Saturated and Aromatic Hydrocarbons in Paper and Cardboard Directly by Planar Solid Phase Extraction and by Its Coupling to Gas Chromatography[J]. Journal of Chromatography A, 2019, 1588: 48-57.
[13] VAN HEYST A, VANLANCKER M, VERCAMMEN J, et al. Analysis of Mineral Oil in Food: Results of a Belgian Market Survey[J]. Food Additives & Contaminants: Part A, 2018, 35(10): 2062-2075.
[14] 錢沙沙, 楊洋, 張玉萍, 等. 固相萃取-氣相色譜法和全二維氣相色譜法測(cè)定食品接觸用紙制品中飽和烴礦物油的遷移量[J]. 食品科學(xué), 2019, 40(20): 305-310.
QIAN Sha-sha, YANG Yang, ZHANG Yu-ping, et al. Comparative Determination of Migration of Mineral Oil Saturated Hydrocarbons from Food Contact Paper-Based Products by Solid Phase Extraction-Gas Chromatography and Comprehensive Two Dimensional Gas Chromatography[J]. Food Science, 2019, 40(20): 305-310.
[15] 李克亞, 鐘懷寧, 胡長(zhǎng)鷹, 等. SPE-GC-FID法檢測(cè)食品包裝紙中的礦物油[J]. 食品工業(yè)科技, 2015, 36(19): 280-285.
LI Ke-ya, ZHONG Huai-ning, HU Chang-ying, et al. Determination of Mineral Oil in Food Packaging Paper by Solid Phase Extraction- Gas Chromatographyflame Ionization Detector[J]. Science and Technology of Food Industry, 2015, 36(19): 280-285.
[16] 李克亞, 胡長(zhǎng)鷹, 鐘懷寧, 等. 食品包裝紙中的飽和烴礦物油向食品模擬物Tenax的遷移和安全評(píng)估[J]. 現(xiàn)代食品科技, 2016, 32(2): 302-308.
LI Ke-ya, HU Chang-ying, ZHONG Huai-ning, et al. Migration and Safety Assessment of Mineral Oil Saturated Hydrocarbons from Food Packaging Paper into Tenax[J]. Modern Food Science and Technology, 2016, 32(2): 302-308.
[17] 張宜彩, 林勤保, 陳勝, 等. 餐盤紙中礦物油的檢測(cè)及溯源分析[J]. 食品科學(xué), 2021, 42(12): 261-267.
ZHANG Yi-cai, LIN Qin-bao, CHEN Sheng, et al. Quantitation and Source Analysis of Mineral Oil Hydrocarbons in Traymates[J]. Food Science, 2021, 42(12): 261-267.
[18] 聞?wù)\, 諸葛海濤, 毛凱, 等. 食品接觸用紙中飽和烴礦物油遷移模型研究[J]. 現(xiàn)代食品, 2019, 12(23): 133-137.
WEN Cheng, ZHUGE Hai-tao, MAO Kai, et al. Research on the Migration Mathematical Model of Mineral Oil Saturated Hydrocarbons in Food Contact Paper[J]. Modern Food, 2019, 12(23): 133-137.
[19] 趙子青, 楊青華, 林勤保, 等. 固相微萃取-氣相色譜-質(zhì)譜聯(lián)用法分析石蠟中的揮發(fā)性成分[J]. 包裝與食品機(jī)械, 2022, 40(4): 39-43.
ZHAO Zi-qing, YANG Qing-hua, LIN Qin-bao, et al. Determination of Volatile Compounds in Paraffin by SPME-GC-MS[J]. Packaging and Food Machinery, 2022, 40(4): 39-43.
[20] 景波, 楊青華, 林勤保. 頂空/氣相色譜-質(zhì)譜聯(lián)用結(jié)合化學(xué)計(jì)量學(xué)分析金屬油墨印刷紙制品中氣味物質(zhì)[J]. 分析測(cè)試學(xué)報(bào), 2022, 41(6): 873-881.
JING Bo, YANG Qing-hua, LIN Qin-bao. Determination of Odour Substances in Metallic Ink-Printed Paper?boards by Headspace Gas Chromatography-Mass Spectrometry with Chemometrics Approach[J]. Journal of Instrumental Analysis, 2022, 41(6): 873-881.
[21] SPACK L W, LESZCZYK G, VARELA J, et al. Understanding the Contamination of Food with Mineral Oil: The Need for a Confirmatory Analytical and Procedural Approach[J]. Food Additives & Contaminants: Part A, 2017, 34(6): 1052-1071.
[22] BIEDERMANN M, INGENHOFF J E, DIMA G, et al. Migration of Mineral Oil from Printed Paperboard into Dry Foods: Survey of the German Market. Part II: Advancement of Migration during Storage[J]. European Food Research and Technology, 2013, 236(3): 175-182.
[23] BIEDERMANN M, INGENHOFF J, BARBANERA M, et al. Migration of Mineral Oil into Noodles from Recycled Fibres in the Paperboard Box and the Corrugated Board Transport Box as well as from Printing Inks: A Case Study[J]. Packaging Technology and Science. 2011, 24(5): 281-290.
[24] BIEDERMANN M, GROB K. Is Recycled Newspaper Suitable for Food Contact Materials? Technical Grade Mineral Oils from Printing Inks[J]. European Food Research and Technology, 2010, 230(5): 785-796.
[25] BIEDERMANN M, GROB K. Advantages of Comprehensive Two-Dimensional Gas Chromatography for Comprehensive Analysis of Potential Migrants from Food Contact Materials[J]. Analytica Chimica Acta, 2019, 1057: 11-17.
[26] GUAZZOTTI V, LIMBO S, PIERGIOVANNI L, et al. A Study into the Potential Barrier Properties Against Mineral Oils of Starch-based Coatings on Paperboard for Food Packaging[J]. Food Packaging and Shelf Life, 2015, 3: 9-18.
[27] DIMA G, VERZERA A, GROB K. Migration of Mineral Oil from Party Plates of Recycled Paperboard into Foods: 1. is Recycled Paperboard Fit for the Purpose? 2. Adequate Testing Procedure[J]. Food Additives & Contaminants Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2011, 28(11): 1619- 1628.
[28] RICHTER L, BIEDERMANN-BREM S, SIMAT T J, et al. Internal Bags with Barrier Layers for Foods Packed in Recycled Paperboard: Recent Progress[J]. European Food Research and Technology, 2014, 239(2): 215-225.
Detection and Tracking Analysis of Volatile Mineral Oil Saturated Hydrocarbons Components in Paper Food Packaging Products by SPME-HSGC-MS
XUE Mei-gui1, CHAI Xin-sheng2, LI Wei1, LI Xiao-dong1, CHEN Run-quan3
(1. Dongguan Polytechnic, Guangdong Dongguan 523808, China; 2. South China University of Technology, Guangzhou 510641, China; 3. Dongguan Quality Supervision and Testing Center, Guangdong Dongguan 523808, China)
The work aims to detect and analyze the content of volatile mineral oil saturated hydrocarbons (MOSH) components in paper food packaging products (such as boxes, bags, buckets, cups, etc.), so as to determine the volatility of volatile MOSH components in paper food packaging materials and products and the potential harm to packaged food (simulants). Samples were cut to small pieces (5 mm×5 mm), then extracted by solid phase microextraction, and lastly detected by headspace chromatography-mass spectrometry (HSGC-MS). The NIST mass spectral library, characteristic ion fragment and standard sample comparison were combined to conduct qualitative analysis. In order to determine the migration performance of the volatile MOSH components in each sample, the samples were taken, detected and analyzed by the method mentioned above after 6 months. Finally, the results of the two tests were compared, and the migration of the volatile MOSH components in the disposal paper food packaging materials and products on the market was judged to determine the impact on food safety. The results showed that all the 16 samples tested contained volatile MOSH components and their content decreased with time. The migration velocity of volatile MOSH components was lower in paper packaging products without printed graphic or with minimal graphic area. SPME-HSGC-MS is suitable for the detection and analysis of volatile (semi-volatile) MOSH components in paper packaging materials or products. In order to reduce the harm of volatile MOSH components to the human body in the paper food packaging materials and products, it is recommended to place paper packaging materials or products for a period of time without increasing storage pressure and increase the ventilation of storage space before using them for food packaging.
paper food packaging products; mineral oil saturated hydrocarbon; solid-phase microextraction-headspace gas chromatography-mass spectrometry; food safety
TS201.6;TS206.4
A
1001-3563(2023)17-0077-08
10.19554/j.cnki.1001-3563.2023.17.010
2023-01-17
廣東省基礎(chǔ)與應(yīng)用基礎(chǔ)研究基金聯(lián)合基金項(xiàng)目-青年基金項(xiàng)目(2019A1515110667);東莞市社會(huì)發(fā)展科技重點(diǎn)項(xiàng)目(20221800906442);廣東省科技創(chuàng)新戰(zhàn)略(培育)專項(xiàng)資金項(xiàng)目(pdjh2021b0905);廣東省數(shù)字印刷產(chǎn)教融合創(chuàng)新平臺(tái)(2021CJPT005);2022年?yáng)|莞市科技特派員項(xiàng)目(20221800500871)
責(zé)任編輯:曾鈺嬋