亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        原油乳狀液穩(wěn)定性及破乳機(jī)理研究進(jìn)展

        2023-08-29 09:48:04鄭煥令王加寧宋繁永李天元傅曉文黃玉杰
        中國環(huán)境科學(xué) 2023年8期
        關(guān)鍵詞:界面研究

        馮 城,鄭煥令,王加寧,宋繁永,李天元,傅曉文,黃玉杰,張 聞

        原油乳狀液穩(wěn)定性及破乳機(jī)理研究進(jìn)展

        馮 城,鄭煥令,王加寧,宋繁永*,李天元,傅曉文,黃玉杰,張 聞

        (齊魯工業(yè)大學(xué)(山東省科學(xué)院),山東省科學(xué)院生態(tài)研究所,山東省應(yīng)用微生物重點(diǎn)實(shí)驗(yàn)室,山東 濟(jì)南 250103)

        原油乳狀液是原油開采過程中產(chǎn)生的復(fù)雜油水體系,其中的天然界面活性物質(zhì)和添加的聚合物等增加了乳狀液的穩(wěn)定性,膠質(zhì)、瀝青質(zhì)被認(rèn)為是油水乳液主要的穩(wěn)定劑.化學(xué)破乳法是向乳狀液中添加破乳劑實(shí)現(xiàn)油水分離的一種方法,但對(duì)破乳機(jī)理尚無準(zhǔn)確定論.本文綜述了原油乳狀液的界面活性物質(zhì),包括界面膜、界面張力、膠質(zhì)、瀝青質(zhì)等對(duì)乳狀液穩(wěn)定性的影響機(jī)制,討論了破乳劑的發(fā)展現(xiàn)狀、趨勢及對(duì)乳狀液的作用效果,目前破乳劑的研究方向主要有改性復(fù)配、聚季銨鹽、聚醚類等破乳劑研發(fā),并闡述了頂替置換、絮凝聚結(jié)等破乳機(jī)理的研究現(xiàn)狀,并對(duì)破乳機(jī)理和破乳劑的未來研究方向進(jìn)行了展望.

        乳狀液;瀝青質(zhì);破乳劑;界面張力;破乳機(jī)理

        原油乳狀液是指原油在開采過程中產(chǎn)生的復(fù)雜油水體系,主要有油包水型、水包油型和復(fù)雜的多重乳液等[1-5].原油乳狀液的形成及其穩(wěn)定性取決于原油的組成、乳狀液的流變性質(zhì)和油的濃度,原油中的天然活性組分膠質(zhì)、瀝青質(zhì)和采油過程中攜帶的固體粒子等可在油水界面處形成界面膜,給液珠的聚并造成一定的阻礙,提高了乳狀液的穩(wěn)定性[6-8].

        原油乳狀液中除含有大量的原油外,還含有大量的苯、酚和二惡英等大量有毒有害物質(zhì),其危險(xiǎn)性和潛在價(jià)值備受重視[9].原油乳狀液的形成在原油開采過程中不可避免,在運(yùn)輸過程中會(huì)對(duì)管道造成腐蝕等嚴(yán)重問題,如何高效的對(duì)乳狀液破乳實(shí)現(xiàn)油水分離成為工作重點(diǎn).因此,研究原油乳狀液穩(wěn)定性的影響因素及破乳機(jī)理對(duì)石油行業(yè)生態(tài)環(huán)境治理和可持續(xù)發(fā)展具有重要的指導(dǎo)意義.本文從乳狀液的穩(wěn)定性和破乳機(jī)理進(jìn)行分析,探討了膠質(zhì)、瀝青質(zhì)、界面膜及溫度對(duì)乳狀液穩(wěn)定性的影響和目前可能的破乳機(jī)理,并對(duì)未來破乳劑可能的發(fā)展方向進(jìn)行分析,為原油乳狀液破乳劑的發(fā)展提供一定的選擇依據(jù).

        1 原油乳狀液的穩(wěn)定性

        1.1 瀝青質(zhì)和膠質(zhì)

        20世紀(jì)60~80年代,國內(nèi)外學(xué)者使用XRD、IR等分析方法對(duì)瀝青質(zhì)的結(jié)構(gòu)、組成及相對(duì)分子質(zhì)量等基本性質(zhì)進(jìn)行了系統(tǒng)研究,指出瀝青質(zhì)的核心結(jié)構(gòu)為稠合芳香環(huán)系,并提出了可能的瀝青質(zhì)模型,由Alvarez等[10]提出的群島模型,由Kuznicki等[11]提出的大陸模型(也稱孤島模型)和陰離子大陸模型以及目前被廣泛接受的Yen-Mullins 模型.瀝青質(zhì)分子在油水界面聚集形成粘彈性的界面膜,阻止分散液滴的聚結(jié)[12-16].近些年在對(duì)瀝青質(zhì)的研究中,Wong等[17]發(fā)現(xiàn)瀝青質(zhì)雖沒有穩(wěn)定的結(jié)構(gòu),但其吸附在油水界面膜上能夠形成凝膠狀結(jié)構(gòu),在一定程度上阻止液珠發(fā)生聚并.Politova等[18]則認(rèn)為瀝青質(zhì)對(duì)乳狀液穩(wěn)定的主要原因是它們?cè)谌闋钜簝?nèi)部生成了一種特殊的3D網(wǎng)絡(luò)結(jié)構(gòu),這種結(jié)構(gòu)能夠改變?nèi)闋钜旱牧髯冃?阻止了油水界面膜的排水,使液珠無法發(fā)生聚并,從而增加了乳狀液的穩(wěn)定性.

        圖1 瀝青質(zhì)結(jié)構(gòu)模型[19]

        目前,Yang等[20]通過分子動(dòng)力學(xué)模型揭示了瀝青質(zhì)穩(wěn)定油水乳液的機(jī)制,從瀝青質(zhì)中分離出了一種亞組分,并指出該組分是乳液穩(wěn)定和粘彈性油水界面膜形成的主要因素.此外,Wang等[21]研究發(fā)現(xiàn)界面活性物質(zhì)的存在使水相中的油滴之間產(chǎn)生了額外的空間排斥和雙電層排斥作用,從而使乳狀液更加穩(wěn)定.而瀝青質(zhì)是原油中的重組份之一,即便在濃度較低的情況下,也會(huì)形成聚集物、沉淀物[22]. Politova等[18]發(fā)現(xiàn)瀝青質(zhì)可通過吸附油水界面膜上的多環(huán)芳烴和芳香族化合物,使保護(hù)層作用于提高乳液的穩(wěn)定性,同時(shí)瀝青質(zhì)具有較大的極性和較大的分子量,是穩(wěn)定W/O乳液的最關(guān)鍵因素.瀝青質(zhì)的界面活性不強(qiáng),但其乳化能力較高,以分子狀態(tài)和微粒狀態(tài)存在于原油中,對(duì)原油乳化起著關(guān)鍵的作用.Li等[23]研究發(fā)現(xiàn),氧化后的瀝青質(zhì)、膠質(zhì)界面活性增強(qiáng),生成的乳狀液穩(wěn)定性增加,原因是氧化后的瀝青質(zhì)、膠質(zhì)結(jié)構(gòu)更加復(fù)雜,在界面的吸附更加牢固,形成的界面膜強(qiáng)度更高.

        膠質(zhì)具有與瀝青質(zhì)相似的結(jié)構(gòu)和更小的分子量,膠質(zhì)的乳化能力僅次于瀝青質(zhì),極性較強(qiáng)但形成的界面膜較弱,密度低并且易破裂,乳狀液穩(wěn)定性也較差,但膠質(zhì)具有較高的界面活性,可改變?yōu)r青質(zhì)的溶解狀態(tài),將瀝青質(zhì)溶解并從界面排出.Mansur等[24]研究表明,膠質(zhì)可從瀝青質(zhì)中解吸,使瀝青質(zhì)更易發(fā)生聚結(jié).此外,瀝青質(zhì)的溶解狀態(tài)由膠質(zhì)與瀝青質(zhì)的比例以及膠質(zhì)和瀝青質(zhì)中極性官能團(tuán)的濃度決定.Mclean等[25]在研究膠質(zhì)、瀝青質(zhì)濃度變化對(duì)原油乳狀液穩(wěn)定性的影響時(shí),也進(jìn)一步證實(shí)在瀝青質(zhì)濃度不變的情況下,隨著膠質(zhì)濃度的增加,模型油的穩(wěn)定性呈下降趨勢.當(dāng)膠質(zhì)濃度較高時(shí),會(huì)取替瀝青質(zhì)成為油水界面的主要吸附物質(zhì),降低乳狀液的穩(wěn)定性[26].2007年,Yang等[27]在利用臨界電場技術(shù)研究油包水乳液的穩(wěn)定性的研究中發(fā)現(xiàn),當(dāng)膠質(zhì)和瀝青質(zhì)以2:1的比例混合時(shí),乳狀液穩(wěn)定性增加并達(dá)到最大值,原因是在膠質(zhì)作用下的瀝青質(zhì)聚集體比純?yōu)r青質(zhì)聚集體可以更快的擴(kuò)散并吸附到油水界面.此外,在增加膠質(zhì)濃度的情況下,膠質(zhì)可代替瀝青質(zhì)成為主要吸附物,降低乳狀液的穩(wěn)定性.隨后Abdulredha等[28]在研究中提出了同樣的觀點(diǎn),當(dāng)膠質(zhì)和瀝青質(zhì)按2:1的比例混合時(shí),乳狀液的穩(wěn)定性可提高一倍,這種影響可能與膠質(zhì)瀝青質(zhì)中存在的極性成分有關(guān).

        3)進(jìn)入#2接地變保護(hù)裝置調(diào)試菜單,查看共有“控制回路斷線”、“過負(fù)荷”、“采樣通道異常”三種情況可觸發(fā)裝置“告警”的第2類中央信號(hào)與廠家資料一致,經(jīng)修改裝置配置和邏輯試驗(yàn),確定僅“控制回路斷線”引起的告警信號(hào)無法手動(dòng)復(fù)歸,“過負(fù)荷”引起的告警信號(hào)可以手動(dòng)復(fù)歸。裝置歷史事件記錄顯示2013年6月30日,曾有過控回?cái)嗑€的告警信號(hào)。

        由于原油乳狀液體系復(fù)雜,瀝青質(zhì)提取方式不完全相同,研究者報(bào)道的觀點(diǎn)不免有一定的差別.據(jù)目前文獻(xiàn)報(bào)道,瀝青質(zhì)在油水界面形成界面膜才使得乳狀液穩(wěn)定,但瀝青質(zhì)界面膜如何形成和瀝青質(zhì)在原油中的存在狀態(tài)之間的關(guān)系還未有準(zhǔn)確定論.

        1.2 界面膜

        Ashrafizadeh等[34]研究乳狀液的穩(wěn)定性實(shí)驗(yàn)中發(fā)現(xiàn),當(dāng)表面活性劑濃度增加時(shí),乳狀液穩(wěn)定性增強(qiáng),這是因?yàn)殡S著表面活性劑濃度的增加,油水界面張力值降低,使油水界面趨于穩(wěn)定狀態(tài).界面張力是影響乳狀液穩(wěn)定性的主要因素卻不是決定性因素,在油水體系中存在許多的助劑能夠降低界面張力,但生成的乳狀液并不穩(wěn)定,相反,加入一些高分子物質(zhì)卻能使乳狀液十分穩(wěn)定[35].

        體育彩票自1994年發(fā)行以來,在推進(jìn)全民健身活動(dòng)、奧運(yùn)戰(zhàn)略及社會(huì)公益事業(yè)等方面發(fā)揮著重要作用,同時(shí)為促進(jìn)我國體育事業(yè)發(fā)展產(chǎn)生著積極影響。通過文獻(xiàn)梳理可知,對(duì)于體育彩票領(lǐng)域的研究較多是體育彩票產(chǎn)業(yè)現(xiàn)狀、社會(huì)效應(yīng)、政策解讀等方面的質(zhì)性研究。量化研究更多的是從彩票購買者角度為出發(fā)點(diǎn)的實(shí)證研究。李凌(2015)等初步探討了消費(fèi)者購買競猜型體育彩票的影響因素[1],通過結(jié)構(gòu)方程模型驗(yàn)證了消費(fèi)者購買競猜型體育彩票的偏好路徑[2],最后通過定性與定量結(jié)合的方法探討體育賽事觀賞與競猜型體育彩票的影響效果[3]。

        原油乳化液之所以穩(wěn)定,是因?yàn)樵谟秃退g形成了界面屏障或薄膜,防止分散相液滴聚集和凝聚,導(dǎo)致脫水困難[29].界面膜的穩(wěn)定性一方面與活性物質(zhì)有關(guān),另一方面和構(gòu)成乳液的水體有一定關(guān)聯(lián).界面膜的性質(zhì)在很大程度上決定了乳狀液的性質(zhì),該膜的穩(wěn)定性在很大程度上取決于表面活性組分的吸附-解吸動(dòng)力學(xué)和溶解度及其界面流變特性[30].流變性能是薄膜動(dòng)態(tài)性能的主要特征,界面薄膜有兩種流變性質(zhì):界面剪切和膨脹粘彈性,但擴(kuò)張粘彈性參數(shù)通常比剪切粘彈性參數(shù)大得多,這種差異可能有幾個(gè)量級(jí),界面擴(kuò)張粘彈性在乳液穩(wěn)定性中起著重要作用[30].因此,在研究破乳劑的破乳性能時(shí),研究破乳劑對(duì)油水界面膜膨脹粘彈性行為的影響具有重要意義.Zhou等[31]對(duì)利用合成的聚醚類破乳劑對(duì)乳狀液的穩(wěn)定性進(jìn)行分析時(shí),發(fā)現(xiàn)由多種乳化劑形成的界面膜比單一乳化劑形成的界面膜穩(wěn)定性強(qiáng),當(dāng)界面膜是由膠質(zhì)和瀝青質(zhì)等物質(zhì)共同組成時(shí),其穩(wěn)定性要比單一瀝青質(zhì)形成的界面膜穩(wěn)定性強(qiáng).Sun等[32]對(duì)此發(fā)現(xiàn)的解釋為膠質(zhì)對(duì)瀝青質(zhì)有很強(qiáng)的協(xié)同乳化作用,兩者形成膠束后,會(huì)通過多種作用形成穩(wěn)定的乳狀液.Ayatollahi等[33]則分析了礦化水中不同離子對(duì)乳液穩(wěn)定性的影響,采用顯微鏡觀察液滴的情況,研究顯示,乳液中加入SO42-會(huì)使乳液液珠變小,界面膜變薄、變硬,并保持長期的穩(wěn)定,這種穩(wěn)定性可能與離子所帶電荷有關(guān),即在水滴之間形成了較其他鹽類更高的靜電斥力.

        破乳劑的研究至今已有近100a歷史,1914年,Barnickel發(fā)現(xiàn)硫酸亞鐵可對(duì)原油乳狀液進(jìn)行破乳脫水,開創(chuàng)了破乳劑的新紀(jì)元.破乳劑先后研發(fā)出了3代產(chǎn)品.第一代破乳劑是相對(duì)分子質(zhì)量小于1000的低分子陰離子型和非離子型表面活性劑,主要為無機(jī)物和普通有機(jī)物[79];第二代破乳劑主要是相對(duì)分子質(zhì)量在1000~10000之間的高分子破乳劑,脫出水含油率較低,出水水質(zhì)清澈[74-75].第三代破乳劑主要是使用交聯(lián)劑將高分子破乳劑聚合,使相對(duì)分子質(zhì)量達(dá)到幾萬甚至幾百萬的超高分子量破乳劑[80-81].第三代破乳劑以非離子型嵌段聚醚占主導(dǎo)地位,嵌段聚醚類破乳劑主要是將丙烯類單體在高溫高壓等條件下聚合而成.目前應(yīng)用上最廣泛的是EO/PO嵌段聚醚類破乳劑,此類破乳劑具有較好的溶解性能,合成條件相對(duì)簡單,破乳性能受低溫影響較小.我國在破乳劑的研發(fā)開始時(shí)間較晚,伴隨石油工業(yè)和有機(jī)化學(xué)的迅速發(fā)展,破乳劑發(fā)展也較快,我國研制的破乳劑總結(jié)歸納如表2所示.

        1.3 粘度和溫度

        3.1.1 界面張力 Kang等[57]較早提出了對(duì)破乳劑作用效果的研究主要集中在加入破乳劑后油水界面膜的變化和乳狀液的聚并與體系特性的關(guān)系.破乳劑本身屬于表面活性劑,對(duì)油水界面膜性質(zhì)的改變是實(shí)現(xiàn)破乳的關(guān)鍵.Pradilla等[58]與Mhatre等[59]發(fā)現(xiàn)破乳劑的主要目標(biāo)是通過在界面上吸附和減少界面膜上膠質(zhì)和瀝青質(zhì)的存在來實(shí)現(xiàn)油水分離,取代的成膜物質(zhì)越多,膜的強(qiáng)度和界面張力降低越明顯,破乳效果越好.破乳劑分子的吸附速度及其降低界面張力的能力都會(huì)影響破乳劑的效率和初始脫水速度[60].基于上述理論,Ye等[42]研究表明破乳劑降低界面張力的能力存在一定的限度,當(dāng)破乳劑分子在油水界面達(dá)到吸附平衡時(shí),界面張力也趨于不變.Wang等[61]認(rèn)為破乳劑濃度達(dá)到平衡后進(jìn)一步增加將導(dǎo)致界面上分子的重組和亞分子層的形成,即在吸附平衡后,界面張力會(huì)隨著濃度的增加而輕微下降. Lyu等[62]在研究合成的殼聚糖新型破乳劑時(shí)發(fā)現(xiàn),破乳劑的親水基團(tuán)傾向于擴(kuò)展到水相,疏水基團(tuán)則阻止破乳劑朝水相擴(kuò)散,最終導(dǎo)致破乳劑分子堆積在界面,降低了界面張力;當(dāng)界面上的破乳劑分子達(dá)到飽和后,開始在水相中聚集,形成簡單的膠束,分子間的相互作用達(dá)到平衡,界面張力保持不變.表1總結(jié)了不同破乳劑類型在最佳條件下的分水率.

        2 破乳劑的作用機(jī)理

        使用表面活性劑對(duì)原油乳狀液進(jìn)行破乳的機(jī)理十分復(fù)雜,且受多種因素的影響,導(dǎo)致對(duì)乳狀液的破乳機(jī)理沒有形成單一性的標(biāo)準(zhǔn).乳狀液的破壞通常是由分散的液珠相互聚并成大液珠,在重力的作用下發(fā)生沉降導(dǎo)致乳狀液分層引起的,破乳過程主要包括分油、絮凝、膜排水、聚結(jié)4部分[39],破壞界面膜被認(rèn)為是破乳過程中最關(guān)鍵的一步[40].瀝青質(zhì)可以形成穩(wěn)定的界面膜,并抑制反乳化,因其較低的可壓縮性抑制了界面膜的排水和液滴的變形[41]. Ye等[42]通過制備的兩親性破乳劑觀察原油破乳的實(shí)驗(yàn)中表明,想要達(dá)到較好的破乳效果,破乳劑要具有比瀝青質(zhì)更強(qiáng)的吸附性和界面活性,可以優(yōu)先吸附在油水界面,通過破乳試驗(yàn)發(fā)現(xiàn),他們合成的破乳劑STA在與瀝青質(zhì)競爭吸附上具有很大的優(yōu)勢,破乳劑與未脫附的瀝青質(zhì)等物質(zhì)形成不連續(xù)的混合膜,通過軟化或破壞瀝青質(zhì)界面膜降低穩(wěn)定性,導(dǎo)致水珠發(fā)生聚結(jié)實(shí)現(xiàn)破乳.隨后Sun等[43]通過研究不同結(jié)構(gòu)的破乳劑對(duì)油水界面膜的影響實(shí)驗(yàn)中提出了破乳劑分子的大小是影響破乳的重要因素,破乳劑分子是否可以插入到界面處由相應(yīng)的尺寸決定,支鏈型破乳劑由于存在較大的支鏈結(jié)構(gòu),空位通常小于直鏈型破乳劑,并且支鏈破乳劑從界面替代成膜物質(zhì)的能力較高,破乳效果更好.

        為加大產(chǎn)業(yè)扶貧力度,《指導(dǎo)意見》提出,多渠道拓寬農(nóng)產(chǎn)品營銷渠道,推動(dòng)批發(fā)市場、電商企業(yè)、大型超市等市場主體與貧困村建立長期穩(wěn)定的產(chǎn)銷關(guān)系,支持供銷、郵政及各類企業(yè)把服務(wù)網(wǎng)點(diǎn)延伸到貧困村,推廣以購代捐的扶貧模式。加快推進(jìn)“快遞下鄉(xiāng)”工程,完善貧困地區(qū)農(nóng)村物流配送體系。

        Ahmed等[38,44]通過對(duì)破乳劑結(jié)構(gòu)的研究中表明,破乳劑在界面膜上的吸附通過兩種機(jī)理進(jìn)行,一種是破乳劑中的長鏈與疏水性瀝青質(zhì)表面位點(diǎn)之間的疏水性相互作用,另一個(gè)是破乳劑中的苯環(huán)與瀝青質(zhì)分子之間的Π—Π相互作用.隨著時(shí)間的延長,更多的破乳劑分子在界面膜上取代瀝青質(zhì),最終達(dá)到動(dòng)態(tài)平衡,形成不連續(xù)的混合界面膜.

        目前普遍認(rèn)可的破乳機(jī)理主要有頂替置換機(jī)理[42]、增溶機(jī)理[45]、電中和機(jī)理和絮凝聚結(jié)機(jī)理[46],而大部分破乳劑主要作用于界面膜上的成膜物質(zhì)導(dǎo)致界面膜的破壞,因此認(rèn)可度較高的為頂替置換機(jī)理和絮凝聚結(jié)機(jī)理該機(jī)理.頂替置換機(jī)理認(rèn)為破乳劑加入到原油乳狀液體系后,首先朝著油水界面進(jìn)行擴(kuò)散,因其界面活性高于成膜物質(zhì),因此能頂替或置換部分天然乳化劑進(jìn)入界面膜,阻止體相中活性物質(zhì)分子向界面的遷移,并與原有的成膜物質(zhì)形成具有比原來界面膜強(qiáng)度更低的混合膜,該膜具有熱力學(xué)不穩(wěn)定性,導(dǎo)致界面膜破壞,將膜內(nèi)包復(fù)的水釋放出來[47-48],釋放出來的水不可逆的形成大液珠,分散的油滴也因破乳劑的加入形成不規(guī)則的油絮體,最后因油水密度差異發(fā)生分層,實(shí)現(xiàn)破乳[49].絮凝聚結(jié)機(jī)理則包括兩個(gè)階段:膜破裂和膜排水.在壓力梯度存在的情況下,膜中必須有流體流動(dòng),才能使膜排水.然而,如果液滴內(nèi)的界面膜減薄到小于某一臨界厚度,則會(huì)發(fā)生破裂;毛細(xì)管中的壓力差促使液滴迅速合并成一個(gè)液滴,液滴的變形使膜內(nèi)界面面積增大,導(dǎo)致排水速率降低.因此,薄膜的特性在一定程度上決定了液滴是否容易發(fā)生分離.

        3.1.2 破乳劑結(jié)構(gòu) 1949年,W.C.Gwriffin首次提出了親水親油平衡值(HLB)論點(diǎn),說明表面活性劑分子中的親水基團(tuán)與親油基團(tuán)的平衡關(guān)系.隨著破乳劑的不斷發(fā)展,Fan等[48]認(rèn)為破乳效率取決于其親水親油能力及對(duì)油水界面性能的影響,想要獲得較高的破乳效率,必須具備合適的HLB值.若親水性差,破乳劑分子無法吸附在界面上,親水性強(qiáng),則會(huì)溶解在水中.Xu等[72-73]基于上述理論,在研究破乳劑的結(jié)構(gòu)性能中發(fā)現(xiàn)破乳劑的親水性通常由-OH、-COOH、環(huán)氧乙烷(EO)等極性官能團(tuán)決定,疏水性由環(huán)氧丙烷(PO)或烷基鏈長度決定,增加破乳劑中EO含量,可以提高破乳劑的HLB值;固定破乳劑的HLB值,增加PO數(shù)量,可以提高相對(duì)分子質(zhì)量.隨著破乳劑相對(duì)分子質(zhì)量的增加,其破乳脫水效果也會(huì)隨之增加,通常認(rèn)為破乳劑的分子量越小、分子鏈越短,其擴(kuò)散速率越快,但會(huì)降低膜液排的速率,破乳效果并不理想;相反,分子量越大、分子鏈越長膜液排速率大,但擴(kuò)散速率慢,導(dǎo)致脫水速率較低.

        近年來,高職教育采用“校企合作,工學(xué)結(jié)合”的人才培養(yǎng)模式,成績喜人。但在職業(yè)能力的培養(yǎng)上還有許多不足。

        圖2 頂替置換機(jī)理示意

        3 破乳劑

        3.3.2 季銨鹽類破乳劑 季銨鹽型破乳劑可分為單、雙、多和超支化季銨鹽4種類型,被廣泛應(yīng)用于O/W體系.陽離子聚季銨鹽一般是由環(huán)氧丙烷與不同性質(zhì)的胺進(jìn)行縮聚得到的不同性能的陽離子破乳劑.Liu等[86]合成了PRJ2陽離子聚季銨鹽破乳劑,在80mg/L的濃度下,除油率可達(dá)94.6%.此類破乳劑對(duì)稀油形成的乳狀液有明顯的破乳效果,但對(duì)稠油和老化原油破乳效果不明顯.Wu等[87]則針對(duì)南陽油田O/W采出液脫水困難等問題,以合成的低聚季銨鹽MD-50與破乳劑復(fù)配AE-932復(fù)配具有良好的破乳效果,脫水率可達(dá)96.5%,而且與聚醚或多胺破乳劑相比低聚季銨鹽對(duì)聚驅(qū)采出水包油乳狀液油滴具有更快的聚結(jié)速度.最近,Zhang等[88]針對(duì)水包油型乳液制備了一類聚季銨鹽改性的超支化聚酰胺-胺(HP-JU),結(jié)果表明,聚季銨鹽改性結(jié)構(gòu)引入到超支化聚酰胺結(jié)構(gòu)中,可以降低破乳劑用量,即便在較低的溫度下仍然具有較高的破乳效率,說明在破乳劑的外端引入更多陽離子和兩親性集團(tuán),有利于提高破乳劑破乳效率的提升,這不僅為指導(dǎo)合成高效破乳劑有重要意義,也為設(shè)計(jì)低溫破乳劑提供了重要的設(shè)計(jì)思路.

        方玫上學(xué)的時(shí)候住校,為了省生活費(fèi),吃的也不太好?,F(xiàn)在又這么一折騰,她的胃很快就承受不住了,冷汗涔涔地倒在流水線上。

        3.1 破乳劑的作用效果

        溫度是破乳過程中的一個(gè)重要參數(shù),它可影響乳狀液的粘度和破乳劑的溶解度.當(dāng)溫度較低時(shí),原油乳狀液粘度大,液珠在分散相中因運(yùn)動(dòng)摩擦力大導(dǎo)致擴(kuò)散困難,流動(dòng)性較低,發(fā)生聚并的可能性小,乳狀液穩(wěn)定,并且破乳劑在原油中較難分散,向界面膜擴(kuò)散的速率變慢,破乳效率低[36].Al-Sabagh等[37]研究了溫度對(duì)芳香胺破乳劑破乳效率的影響,他們發(fā)現(xiàn)溫度從50℃升高到70℃的過程中,破乳效率有顯著提升.此外,他們還對(duì)破乳效率提高的原因進(jìn)行了分析,溫度的升高為聚結(jié)前的液珠提供足夠的能量,其次,溫度升高導(dǎo)致連續(xù)相粘度降低,這有利于分散水滴的動(dòng)力學(xué)運(yùn)動(dòng),因此導(dǎo)致碰撞次數(shù)增加,最終導(dǎo)致界面膜松弛、膜破裂和聚結(jié).溫度的升高會(huì)增加膠質(zhì)、瀝青質(zhì)等乳化劑的溶解度,使部分吸附在界面膜上的乳化劑脫附并擴(kuò)散到油相中.Ye等[38]研究了溫度對(duì)瀝青質(zhì)穩(wěn)定的油包水乳液破乳的影響,當(dāng)溫度從50℃升高到70℃的過程中,破乳效率從 36.21% 增加到 88.17%,造成破乳效率提高的原因是熱量會(huì)改變粘度并削弱由瀝青質(zhì)穩(wěn)定的乳液的界面膜強(qiáng)度.同時(shí)溫度的升高,液相中的分子間作用力增大,表面張力減小,潤濕性增大,接觸角變小,改變接觸角有利于原油從泥沙中脫落,導(dǎo)致界面膜強(qiáng)度降低,乳狀液穩(wěn)定性減弱[39].以上研究結(jié)果說明溫度和破乳效率之間存在一定的關(guān)聯(lián),溫度的升高為乳液提供了能量并降低了乳液的粘度,增加了破乳劑在乳液中的擴(kuò)散速率,降低了乳液的粘度,但此關(guān)聯(lián)存在一定的限度,當(dāng)溫度升高到70℃以上時(shí),破乳效率的升高不在明顯,再進(jìn)一步的升溫只會(huì)增加操作成本.

        表1 不同破乳劑類型分水率

        最近,Liu[50]則提出了“鎖匙說”破乳機(jī)理,該機(jī)理形象的把界面膜比作鎖,把破乳劑比作鑰匙,并且從微觀角度解釋了乳狀液的界面膜是由具有“鏈節(jié)”結(jié)構(gòu)的活性分子或活性分子聚集體組成,界面膜強(qiáng)度則取決于“鏈節(jié)”部分作用力大小,破乳劑則作用于薄弱環(huán)節(jié),這也很好的解釋微量的破乳劑能發(fā)揮較好作用的原因以及不具備配伍性則再多的破乳劑也無法實(shí)現(xiàn)破乳.

        3.1.3 電荷作用 隨著國內(nèi)外對(duì)破乳劑的深入研究,陰離子型破乳劑在實(shí)際應(yīng)用中雖價(jià)格低廉,但破乳劑用量大、破乳效率低,且易與其他物質(zhì)發(fā)生沉淀,增加破乳的難度而逐漸被淘汰.陽離子型破電離出的陽離子可吸附油水界面的負(fù)電荷,降低靜電作用,增加液滴之間的碰撞幾率,達(dá)到油水分離的目的,且脫出水含油率也較低,出水水質(zhì)清澈[74-75].Bera等[76]研究發(fā)現(xiàn),利用離子液體反向破乳劑處理非重質(zhì)油乳狀液具有良好的破乳效果,但對(duì)于重質(zhì)油的處理則至少需要含有12個(gè)飽和碳以上的烷基鏈. Yan等[77]則研究了離子液體的結(jié)構(gòu)對(duì)破乳效果的影響,研究發(fā)現(xiàn),四面體結(jié)構(gòu)形狀破乳效果最為優(yōu)異,線狀結(jié)構(gòu)最差,主要原因是四面體結(jié)構(gòu)破乳劑周圍電荷密度更強(qiáng),能快速到達(dá)界面并中和界面處的電荷.目前,已有的合成陽離子反相破乳劑的方法是選用清水型聚醚,與帶有雙鍵類化合物進(jìn)行反應(yīng),引入雙鍵反應(yīng)基團(tuán),再與烯類大分子陽離子單體進(jìn)行聚合,得到陽離子-非離子聚醚.Kou等[78]通過將清水型聚醚與環(huán)氧氯丙烷的環(huán)氧鍵反應(yīng)后,用胺類化合物對(duì)其進(jìn)行季銨化,制備出帶有陽離子的聚醚反相破乳劑,與第一類陽離子反相破乳劑和純聚醚類反相破乳劑相比,可以有效的降低生產(chǎn)成本,且合成產(chǎn)品穩(wěn)定性好,應(yīng)用范圍廣泛.對(duì)于陽離子型破乳劑處理的O/W型乳狀液提出了電中和破乳機(jī)理,該機(jī)理認(rèn)為O/W型乳狀液的液滴表面帶有負(fù)電荷,致使乳狀液體系相當(dāng)穩(wěn)定,當(dāng)加入具有一定分子量的陽離子型破乳劑時(shí),可以電離出帶有表面活性的陽離子電荷,乳狀液起到中和界面電荷、吸附橋聯(lián)、絮凝聚結(jié)等作用,從而使乳狀液脫穩(wěn),因此具有良好的破乳性能.

        3.2 破乳劑的發(fā)展及常見類型

        利用博羅水文站的洪水水位實(shí)測資料分別建立博羅與惠陽、石馬河、樊屋水位相關(guān)曲線(見圖3),同時(shí)建立樊屋與石龍(二)、峽口水閘相關(guān)曲線(見圖3)。

        表2 國內(nèi)原油破乳劑發(fā)展概述

        3.3 破乳劑發(fā)展趨勢

        隨著原油開采技術(shù)的不斷發(fā)展和各油田地層結(jié)構(gòu)的復(fù)雜,開采出的原油乳狀液愈來愈復(fù)雜、穩(wěn)定,所以要求原油破乳劑的研發(fā)需要不斷的朝著提高破乳能力、降低破乳溫度、減少破乳劑使用量以及增加適用性等方向發(fā)展.由于對(duì)原油破乳機(jī)理尚無準(zhǔn)確定論以及乳狀液成分的復(fù)雜性,開發(fā)綠色環(huán)保和經(jīng)濟(jì)高效的破乳劑仍然具有挑戰(zhàn)性.總體看來,原油乳狀液破乳劑的研發(fā)主要可以從改性、復(fù)配等方面開展研究,以求開發(fā)出高效、無污染的破乳劑,或與微波、超聲等方法聯(lián)合使用,提高破乳效率.

        3.3.1 聚醚類破乳劑 自20世紀(jì)80年代后,我國對(duì)破乳劑的研究主要集中在嵌段聚醚類高分子破乳劑的研發(fā).聚醚類破乳劑主要是在高溫高壓下進(jìn)行EO、PO等丙烯類衍生物單體的嵌段聚合而成的聚合物[82],具有獨(dú)特的分子結(jié)構(gòu),親油基和親水基可分別作用于特定的乳狀液進(jìn)行破乳,可通過改性增大其相對(duì)分子質(zhì)量和擴(kuò)大分子結(jié)構(gòu)來提高其破乳性能.1998年,Wei等[83]以海洋油田原油為樣品,制備了新型AP聚醚類破乳劑,可使脫水率達(dá)到90%,不僅保證了油田的正常生產(chǎn),滿足現(xiàn)場需求,而且實(shí)現(xiàn)了破乳劑的國產(chǎn)化.然而傳統(tǒng)破乳劑普適性差,僅針對(duì)某一乳液有效.近些年,對(duì)聚醚類破乳劑破乳劑的合成進(jìn)行了優(yōu)化,Abdel等[84]在研究利用葡萄糖與丙二酸、硬脂酸和棕櫚酸進(jìn)行改性制備了非離子型嵌段聚合物類,破乳效率最高可達(dá)到85%.Ma等[85]通過丙烯酸為原料合成了一種新型脂肪醇非離子型聚醚破乳劑,該破乳劑具有較高的界面活性,能對(duì)多種油包水乳狀液進(jìn)行快速有效的破乳,且破乳效率達(dá)97%以上,可基本實(shí)現(xiàn)乳狀液的破乳.

        國內(nèi)外針對(duì)原油乳狀液研究出了許多破乳方法,主要有微波法破乳[51]、電化學(xué)破乳[52-53]、化學(xué)破乳[54]、磁性破乳[55]等,每種方法的投資、處理效果及操作成本各異,都有一定的局限性和適應(yīng)性,其中化學(xué)破乳法因破乳劑結(jié)構(gòu)可變,并且可應(yīng)用于不同的乳液類型,且反應(yīng)迅速、低成本和高效益等優(yōu)點(diǎn)在各大油田和實(shí)驗(yàn)室中得到廣泛應(yīng)用[56].

        3.3.3 復(fù)配型破乳劑 復(fù)配型破乳劑的研究主要有多元化復(fù)配破乳劑、結(jié)構(gòu)差異較大的破乳劑復(fù)配和針對(duì)高含水乳狀液破乳劑的復(fù)配.國內(nèi)針對(duì)復(fù)配型破乳劑的研究主要是通過大量破乳劑的篩選,對(duì)破乳效果較好的單劑之間按照不同比例進(jìn)行復(fù)配.Li等[89]在原油破乳試驗(yàn)中,通過對(duì)大量破乳劑的篩選,以25-A:HL-1為單劑,復(fù)配比例2:1的條件下,制備出了針對(duì)涇河油田的高效破乳劑,脫水率可達(dá)到81.3%,較單劑脫水率提高了15.7%.Zhang等[90-92]同樣在實(shí)驗(yàn)中對(duì)破乳劑進(jìn)行了復(fù)配,且復(fù)配出的破乳劑效果均有所提升.由此可見,復(fù)配型破乳劑可以可以發(fā)揮出比單劑更優(yōu)的效果,但破乳劑之間的協(xié)同作用有一定的限度,應(yīng)該避免破乳劑之間的化學(xué)反應(yīng).然而對(duì)破乳劑單劑的篩選較為繁瑣,在對(duì)破乳劑制備的過程中,許多學(xué)者開始根據(jù)原油乳狀液的特性,有針對(duì)性的選擇選擇多種藥品按比例進(jìn)行配置.近些年,Jing等[93]采用十二烷基苯磺酸鈉、Na2SiO3與非離子表面活性劑進(jìn)行復(fù)配,發(fā)現(xiàn)當(dāng)三種藥劑比例為1:2:1時(shí),原油回收率達(dá)到99.35%.Peng等[94]采用DS系列聚醚破乳劑與反相破乳劑進(jìn)行復(fù)配,制備了破乳劑DS-1,在對(duì)大慶油田的離心破乳試驗(yàn)中,添加0.4%的DS-1,4h后脫水率可達(dá)97%,上層油相中含水率僅有0.6%.當(dāng)前,因復(fù)配型破乳劑作用效果更加明顯,提高了綜合效益,此方法在各大油田和實(shí)驗(yàn)室中廣泛應(yīng)用,但通過大量試驗(yàn)篩選出最優(yōu)破乳劑的方法工作量較大,后續(xù)可通過介電常數(shù)法、界面張力法和HLB法等方法進(jìn)行簡單準(zhǔn)確的篩選.

        4 展望

        在強(qiáng)化采油技術(shù)的應(yīng)用下,原油乳狀液體系變得更加復(fù)雜,造成了嚴(yán)重的技術(shù)和環(huán)境問題,綜合以上對(duì)原油乳狀液穩(wěn)定性及破乳劑的分析并結(jié)合我國當(dāng)前石油領(lǐng)域發(fā)展情況,為了高效的開采出優(yōu)質(zhì)原油,解決我國原油乳狀液處置率低等問題,建議從以下幾方面進(jìn)行研究:

        RJ版教科書與CM教科書中分別有4.76%和3.39%的例題背景是無實(shí)際意義的,如CM教科書中的一道例題(如圖11所示).

        4.1 各油田乳狀液的組成、特點(diǎn)及性質(zhì)各有不同,通過分析原油乳狀液組分、界面性質(zhì)等,深入探討乳狀液破乳機(jī)理和穩(wěn)定機(jī)理尤為重要,尤其破乳機(jī)理尚不明確,針對(duì)復(fù)雜乳液及破乳劑在油水界面上的分子動(dòng)力學(xué)模擬仍需與現(xiàn)場應(yīng)用結(jié)合深入研究.

        4.2 隨著原油乳狀液及含油污泥破乳技術(shù)的不斷發(fā)展,僅單獨(dú)使用一種處理技術(shù)很難實(shí)現(xiàn)高效的破乳,因此在實(shí)際處理過程中,需要結(jié)合乳狀液自身特點(diǎn)和現(xiàn)場需求,多種技術(shù)聯(lián)合使用,依靠先進(jìn)的設(shè)備和有效的處理方式,實(shí)現(xiàn)原油乳狀液的高效破乳和含油污泥的減量化無害化處理.

        4.3 傳統(tǒng)破乳劑的大量使用可能會(huì)對(duì)環(huán)境造成二次污染并難以去除,為滿足環(huán)境要求和油田破乳的實(shí)際需求,需進(jìn)一步加強(qiáng)新型破乳劑的開發(fā)與研制,將更多的關(guān)注點(diǎn)集中在高分子量嵌段聚醚類破乳劑、低溫破乳劑、通用型或適應(yīng)性廣泛的破乳劑,以期改善我國原油乳狀液處置率低的情況.

        4.4 破乳劑的復(fù)配已經(jīng)在中試現(xiàn)場和實(shí)驗(yàn)室中得到廣泛應(yīng)用,復(fù)配是破乳劑發(fā)展的一個(gè)重要趨勢,但在復(fù)配過程中不同破乳劑之間的比例需要通過大量實(shí)驗(yàn)確定,復(fù)配規(guī)律未知,在未來的研究中可以加強(qiáng)對(duì)二元及多元破乳劑復(fù)配工藝的改進(jìn)和完善.

        [1] 趙曉非,葛 丹,張曉陽.研究開發(fā)超聲波-破乳聯(lián)用技術(shù)處理大慶落地油泥 [J]. 化工進(jìn)展, 2017,36:489-494.Zhao X F, Ge D, Zhang X Y, et al. The combined ultrasonic - demulsification technology was developed to treat daqing oil sludge [J]. Chemical Industry Progress, 2017,36:489-494.

        [2] Jabbari M, Izadmanesh Y, Ghavidel H. Synthesis of ionic liquids as novel emulsifier and demulsifiers [J]. Journal of Molecular Liquids, 2019,293:111512.

        [3] Alara O R, Abdurahman N H, Tade M O, et al. Demulsifier: An important agent in breaking crude oil emulsions [J]. Chemical Engineering & Technology, 2022,45(10):1707-1720.

        [4] Yonguep E, Kapiamba K F, Kabamba K J, et al. Formation, stabilization and chemical demulsification of crude oil-in-water emulsions: A review [J]. Petroleum Research, 2022,7(4):459-472.

        [5] Zolfaghari R, Fakhru L-Razi A, Abdullah L C, et al. Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry [J]. Separation and Purification Technology, 2016,170:377- 407.

        [6] 徐明進(jìn),李明遠(yuǎn),彭 勃.瀝青質(zhì)與膠質(zhì)分子結(jié)構(gòu)對(duì)油水界面性質(zhì)的影響 [J]. 景德鎮(zhèn)高專學(xué)報(bào), 2010,25(2):37-39.Xu M J, Li M Y, Peng B, et al. Effect of molecular structure of asphaltene and colloid on properties of oil-water interface [J]. Journal of Jingdezhen Higher Technical College, 2010,25(2):37-39.

        [7] Faizullayev S, Adilbekova A, Kujawski W, et al. Recent demulsification methods of crude oil emulsions – brief review [J]. Journal of Petroleum Science and Engineering, 2022,215:110643.

        [8] Umar A A, Saaid I B M, Sulaimon A A, et al. A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids [J]. Journal of Petroleum Science and Engineering, 2018,165:673-690.

        [9] Da Rocha O R S, Dantas R F, Duarte M M M B, et al. Oil sludge treatment by photocatalysis applying black and white light [J]. Chemical Engineering Journal, 2010,157(1):80-85.

        [10] Alvarez Ramírez F, Ruiz Morales Y. Island versus archipelago architecture for asphaltenes: Polycyclic aromatic hydrocarbon dimer theoretical studies [J]. Energy & Fuels, 2013,27(4):1791-1808.

        [11] Kuznicki T, Masliyah J H, Bhattacharjee S. Molecular dynamics study of model molecules resembling asphaltene-like structures in aqueous organic solvent systems [J]. Energy & Fuels, 2008,22(4):2379-2389.

        [12] 嚴(yán) 方,謝永杰.大慶原油四組分分析及界面性質(zhì)研究 [J]. 化學(xué)分析計(jì)量, 2009,18(4):20-24.

        Yan F, Xie Y J. Four-component analysis and interface properties of Daqing crude oil [J]. Chemical Analytical Metrology, 2009,18(4):20- 24.

        [13] Lin Y, Perrard A, Biswal S L, et al. Microfluidic investigation of asphaltenes-stabilized water-in-oil emulsions [J]. Energy & Fuels, 2018,32(4):4903-4910.

        [14] Chang C, Williams I, Nowbahar A, et al. Effect of ethylcellulose on the rheology and mechanical heterogeneity of asphaltene films at the oil–water interface [J]. Langmuir, 2019,35(29):9374-9381.

        [15] Chang C, Nowbahar A, Mansard V, et al. Interfacial rheology and heterogeneity of aging asphaltene layers at the water–oil interface [J]. Langmuir, 2018,34(19):5409-5415.

        [16] 彭 勃,李明遠(yuǎn),趙鎖奇,等.原油減壓渣油餾分的油-水界面性質(zhì)——Ⅱ.大慶減渣餾分與伊朗輕質(zhì)減渣餾分油-水界面張力的比較 [J]. 石油學(xué)報(bào)(石油加工), 2003,(5):92-97. Peng B, Li M Y, Zhao S Q, et al. Oil-water interfacial properties of vacuum residue distillates of crude oil—Ⅱ. Comparison of oil-water interfacial tension between daqing and iran light slag reducing distillates [J]. Acta Petrolei Sinica (Petroleum Processing), 2003,(5): 92-97.

        [17] Wong S F, Lim J S, Dol S S. Crude oil emulsion: A review on formation, classification and stability of water-in-oil emulsions [J]. Journal of Petroleum Science and Engineering, 2015,135(10):498- 504.

        [18] Politova N, Tcholakova S, Denkov N D. Factors affecting the stability of water-oil-water emulsion films [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017,522:608-620.

        [19] Fakher S, Ahdaya M, Elturki M, et al. Critical review of asphaltene properties and factors impacting its stability in crude oil [J]. Journal of Petroleum Exploration and Production Technology, 2019,10:1183- 1200.

        [20] Yang F, Tchoukov P, Dettman H, et al. Asphaltene subfractions responsible for stabilizing water-in-crude oil emulsions. Part 2: Molecular Representations and Molecular Dynamics Simulations [J]. Energy & Fuels, 2015,29(8):4783–4794.

        [21] Wang D, Yang D, Huang C, et al. Stabilization mechanism and chemical demulsification of water-in-oil and oil-in-water emulsions in petroleum industry: A review [J]. Fuel, 2021,286(1):119390.

        [22] Ezzat A O, Atta A M, Al-Lohedan H A, et al. Synthesis and application of poly(ionic liquid) based on cardanol as demulsifier for heavy crude oil water emulsions [J]. Energy & Fuels, 2018, 32(1):214-225.

        [23] 李明遠(yuǎn).原油乳狀液穩(wěn)定性研究——Ⅴ.北海原油乳狀液的穩(wěn)定與破乳 [J]. 石油學(xué)報(bào)(石油加工), 1995,(3):1-6. Li M Y. Studies on stability of crude oil emulsions V. Stability and demulsification of North Sea crude oil emulsions [J]. Acta Petrolei Sinica (Petroleum Processing), 1995,(3):1-6.

        [24] Aguiar J I S, Mansur C R E. Study of the interaction between asphaltenes and resins by microcalorimetry and ultraviolet–visible spectroscopy [J]. Fuel, 2015,140(15):462-469.

        [25] Mclean J D, Kilpatrick P K. Effects of asphaltene aggregation in model heptane–toluene mixtures on stability of water-in-oil emulsions [J]. Journal of Colloid and Interface Science, 1997,196(1):23-34.

        [26] Liu J, Zhang Y, Peng K, et al. A review of the interfacial stability mechanism of aging oily sludge: Heavy components, inorganic particles, and their synergism [J]. Journal of Hazardous Materials, 2021,415:125624.

        [27] Yang X, Verruto V J, Kilpatrick P K. Dynamic asphaltene?resin exchange at the oil/water interface: Time-dependent W/O emulsion stability for asphaltene/resin model oils [J]. Energy & Fuels, 2007, 21(3):1343-1349.

        [28] Abdulredha M M, Siti Aslina H, Luqman C A. Overview on petroleum emulsions, formation, influence and demulsification treatment techniques [J]. Arabian Journal of Chemistry, 2020,13(1):3403-3428.

        [29] Tchoukov P, Yang F, Xu Z, et al. Role of asphaltenes in stabilizing thin liquid emulsion films [J]. Langmuir, 2014,30(11):3024-3033.

        [30] Sun T, Zhang L, Wang Y, et al. Influence of demulsifiers of different structures on interfacial dilational properties of an oil–water interface containing surface-active fractions from crude oil [J]. Journal of Colloid and Interface Science, 2002,255(2):241-247.

        [31] 周繼柱.原油乳狀液的穩(wěn)定性及Dendrimer聚醚破乳劑的合成研究[D]. 哈爾濱:哈爾濱工程大學(xué), 2008. Zhou J Z. Study on stability of crude oil emulsion and synthesis of Dendrimer polyether demulsifier [D]. Harbin: Harbin Engineering University, 2008.

        [32] 孫 琳,任梓寒,石 彥,等.原油活性組分及相互作用對(duì)乳狀液穩(wěn)定性影響的研究進(jìn)展 [J]. 油田化學(xué), 2022,39(2):373-380. Sun L, Ren Z-H, Shi Y, et al. Research progress on the effects of active components of crude oil and their interactions on emulsion stability [J]. Oilfield Chemistry, 2022,39(2):373-380.

        [33] Maaref S, Ayatollahi S. The effect of brine salinity on water-in-oil emulsion stability through droplet size distribution analysis: A case study [J]. Journal of Dispersion Science and Technology, 2017,39(5): 721-733.

        [34] Ashrafizadeh S N, Motaee E, Hoshyargar V. Emulsification of heavy crude oil in water by natural surfactants [J]. Journal of Petroleum Science and Engineering, 2012,86-87:137-143.

        [35] 夏力新.油水界面膜與乳狀液穩(wěn)定性關(guān)系的研究 [D]. 北京:中國科學(xué)院研究生院, 2003. Xia L X. Study on the relationship between oil-water interfacial film and emulsion stability [D]. Beijing: Graduate School of Chinese Academy of Sciences, 2003.

        [36] Abdurahman N H, Rosli Y M, Azhari N H, et al. Pipeline transportation of viscous crudes as concentrated oil-in-water emulsions [J]. Journal of Petroleum Science and Engineering, 2012, 90-91:139-144.

        [37] Al-Sabagh A M, Nasser N M, Khamis E A, et al. Resolution of water in crude oil emulsion by some novel aromatic amine polyesters [J]. Egyptian Journal of Petroleum, 2015,24(3):363-374.

        [38] Ye F, Zhang Z, Ao Y, et al. Demulsification of water-in-crude oil emulsion driven by a carbonaceous demulsifier from natural rice husks [J]. Chemosphere, 2021,288(3):132656.

        [39] Kang W, Yin X, Yang H, et al. Demulsification performance, behavior and mechanism of different demulsifiers on the light crude oil emulsions [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018,545:197-204.

        [40] Yau Y, Rudolph V, Ho K, et al. Evaluation of different demulsifiers for marpol oil waste recovery [J]. Journal of Water Process Engineering, 2017,17:40-49.

        [41] Li Z L, Chakraborty A, Fuentes J, et al. Study on demulsifier crude oil interactions at oil-water interface for crude oil dehydration [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021,630:127526.

        [42] Ye F, Shen L, Liu S, et al. Demulsification of amphiphilic gemini ionic liquids and its demulsification mechanism [J]. Chemosphere, 2022, 309:136650.

        [43] Sun T, Zhang L, Wang Y, et al. Influence of demulsifiers of different structures on interfacial dilational properties of an oil–water interface containing surface-active fractions from crude oil [J]. Journal of Colloid and Interface Science, 2002,255(2):241-247.

        [44] Abdelrahman O E, Ahmed M T, Hamad A A. Synthesis and application of novel gemini pyridinium ionic liquids as demulsifiers for arabian heavy crude oil emulsions [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021,634:127961.

        [45] Jiang X, Ye F, Zheng L, et al. Multi‐walled carbon nanotubes grafted by polyvinyl alcohol and its demulsification performance in oily wastewater [J]. ChemistrySelect, 2020,5(26):7895-7900.

        [46] Berry J D, Neeson M J, Dagastine R R, et al. Measurement of surface and interfacial tension using pendant drop tensiometry [J]. Journal of Colloid and Interface Science, 2015,455:226-237.

        [47] Shi P, Zhang R, Pu W, et al. Coalescence and separation of surfactant-stabilized water-in-oil emulsion via membrane coalescer functionalized by demulsifier [J]. Journal of Cleaner Production, 2022,330:129945.

        [48] Fan G, Lyu R, Gao X, et al. MPEG grafted quaternized carboxymethyl chitosan for demulsification of crude oil emulsions [J]. Journal of Applied Polymer Science, 2018,135(7):45867.

        [49] Xu H, Jia W, Ren S, et al. Stable and efficient demulsifier of functional fluorinated graphene for oil separation from emulsified oily wastewaters [J]. Journal of the Taiwan Institute of Chemical Engineers, 2018,93:492-499.

        [50] 劉海峰.原油乳狀液化學(xué)破乳機(jī)理——鎖匙說 [J]. 化工進(jìn)展, 2010, 29(S2):125-127. Liu H F. Demulsification mechanism of crude oil emulsion liquefaction -- Key theory [J]. Progress in Chemical Engineering, 2010,29(S2):125-127.

        [51] Lv X, Song Z, Yu J, et al. Study on the demulsification of refinery oily sludge enhanced by microwave irradiation [J]. Fuel, 2020,279:118417.

        [52] Zhao Y, Gu Y, Gao G. Piezoelectricity induced by pulsed hydraulic pressure enables in situ membrane demulsification and oil/water separation [J]. Water Research, 2022,215:118245.

        [53] Lu H, Pan Z, Miao Z, et al. Combination of electric field and medium coalescence for enhanced demulsification of oil-in-water emulsion [J]. Chemical Engineering Journal Advances, 2021,6:100103.

        [54] Song N, Huang X, Li Y, et al. Synthesis and application of new multibranched–linear–multibranched fluorinated copolymer as demulsifiers for naphthenic compounds stabilized emulsion [J]. Journal of Fluorine Chemistry, 2021,249:109842.

        [55] Ahmadi L, Ahmadi E, Mohamadnia Z. Demulsification of water in crude oil emulsions through magnetic nanocomposites decorated with poly (ionic liquid)s [J]. Journal of Molecular Liquids, 2022,357: 119162.

        [56] Santos Silva H, Alfarra A, Vallverdu G, et al. Role of the porphyrins and demulsifiers in the aggregation process of asphaltenes at water/oil interfaces under desalting conditions: a molecular dynamics study [J]. Petroleum Science, 2020,17(3):797-810.

        [57] Kang W L, Zhang H Y, Li D S, et al. The action mechanism of demulsifiers at model O/W interfacial film [J]. Acta Physico - Chimica Sinica, 2004,20(2):194-198.

        [58] Pradilla D, Ramírez J, Zanetti F, et al. Demulsifier performance and dehydration mechanisms in colombian heavy crude oil emulsions [J]. Energy & Fuels, 2017,31(10):10369-10377.

        [59] Mhatre S, Simon S, Sj?blom J, et al. Demulsifier assisted film thinning and coalescence in crude oil emulsions under DC electric fields [J]. Chemical Engineering Research and Design, 2018,134:117-129.

        [60] Tao J, Shi P, Fang S, et al. Effect of rheology properties of oil/water interface on demulsification of crude oil emulsions [J]. Industrial & Engineering Chemistry Research, 2015,54(17):4851-4860.

        [61] Wang D, Yang D, Huang C, et al. Stabilization mechanism and chemical demulsification of water-in-oil and oil-in-water emulsions in petroleum industry: Areview [J]. Fuel, 2021,286:119390.

        [62] Lyu R, Li Z, Liang C, et al. Acylated carboxymethyl chitosan grafted with MPEG-1900as a high-efficiency demulsifier for O/W crude oil emulsions [J]. Carbohydrate Polymer Technologies and Applications, 2021,2:100144.

        [63] Zhang Z, Xu G Y, Wang F, et al. Characterization and demulsification of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly (ethylene oxide) copolymers [J]. Journal of Colloid and Interface Science, 2004,277(2):464-470.

        [64] Xu H, Li Z, Wang C, et al. Synthesis and application of amphiphilic copolymer as demulsifier for super heavy oil emulsions [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 669:131498.

        [65] Zhang Z, Ai G, Zeng G, et al. Demulsification of water-in-crude oil emulsion driven by a three-branch structure demulsifier [J]. Journal of Molecular Liquids, 2022,354:118822.

        [66] Feng X, Liu H, Liu H, et al. Synthesis of an ionic liquid demulsifier with double hydrophilic and hydrophobic chains [J]. Journal of Molecular Liquids, 2023,381:121793.

        [67] Shen L, Liu S, He J, et al. Synthesis of a low temperature ionic liquid demulsifier and its demulsification mechanism [J]. Fuel, 2023,338: 127343.

        [68] Zhang Z, Wang Z, Wang Q, et al. Synthesis of a multi-branched trinuclear ionic liquid demulsifier and evaluation of its performance in W/O emulsions [J]. Fuel, 2023,338:127188.

        [69] Zhang X, He C, Zhou J, et al. Demulsification of water-in-heavy oil emulsions by oxygen-enriched non-ionic demulsifier: Synthesis, characterization and mechanisms [J]. Fuel, 2023,338:127274.

        [70] Li Z, An S, Liu Y, et al. Practical modification of tannic acid polyether demulsifier and its highly efficient demulsification for Water-in- Aging crude oil emulsions [J]. ACS Omega, 2019,4(24):20697- 20707.

        [71] Atta A M, Abdullah M M S, Al-Lohedan H A, et al. Demulsification of heavy crude oil using new nonionic cardanol surfactants [J]. Journal of Molecular Liquids, 2018,252:311-320.

        [72] Pensini E, Harbottle D, Yang F, et al. Demulsification mechanism of asphaltene-stabilized water-in-oil emulsions by a polymeric ethylene oxide–propylene oxide demulsifier [J]. Energy & Fuels, 2014,28(11): 6760-6771.

        [73] Xu Y, Wu J, Dabros T, et al. Optimizing the polyethylene oxide and polypropylene oxide contents in diethylenetriamine-Based Surfactants for destabilization of a water-in-oil emulsion [J]. Energy & Fuels, 2005,19(3):916-921.

        [74] 王偉. 油田破乳劑的研究與應(yīng)用進(jìn)展[J]. 化學(xué)工程與裝備, 2022, (9):261-263. Wang W. Research and application progress of oilfield demulsifier [J]. Chemical Engineering and Equipment, 2022,(9):261-263.

        [75] 王 軍,楊許召,陳玉菲.糖基雙子陽離子表面活性劑殺菌性能[J]. 日用化學(xué)工業(yè), 2019,49(2):83-86. Wang J, Yang X Z, Chen Y F, et al. Bactericidal properties of glyco- based Gemini cationic surfactants [J]. Domestic Chemical Industry, 2019,49(2):83-86.

        [76] Bera A, Belhaj H. Ionic liquids as alternatives of surfactants in enhanced oil recovery—A state-of-the-art review [J]. Journal of Molecular Liquids, 2016,244:177-188.

        [77] Yan C, Han J, Huang C, et al. Demulsification of water-in-oil emulsions for the petroleum industry by using alternating copolymers [J]. Energy Technology, 2014,2(7):618-624.

        [78] 寇子敏,李 軍,楊記濤,等.一種陽離子-非離子反相破乳劑的合成及應(yīng)用性能研究 [J]. 遼寧化工, 2022,51(11):1516-1519. Kou Z M, Li J, Yang J T, et al. Synthesis and application of a cationic - non - ionic reverse demulsifier [J]. Liaoning Chemical Industry, 2022,51(11):1516-1519.

        [79] 尹宇寒,杜 健,張文樂,等.原油破乳機(jī)理研究與破乳劑的發(fā)展 [J]. 化學(xué)工程與裝備, 2022,(10):45-46. Yin Y H, Du J, Zhang W L, et al. Study on demulsification mechanism of crude oil and development of demulsifier [J]. Chemical Engineering and Equipment, 2022,(10):45-46.

        [80] 田哲熙.遼河油田稠油乳狀液穩(wěn)定性及破乳脫水機(jī)理研究 [D]. 大慶:東北石油大學(xué), 2019. Tian Z X. Study on stability and demulsification dehydration mechanism of heavy oil emulsion in Liaohe Oilfield [D]. Daqing: Northeast Petroleum University, 2019.

        [81] 周鐵金.遼河稠油破乳脫水綜合技術(shù)實(shí)驗(yàn)研究 [J]. 渤海大學(xué)學(xué)報(bào)(自然科學(xué)版), 2007,(2):113-116. Zhou T J. Experimental study on comprehensive demulsification and dehydration technology of Liaohe Heavy oil [J]. Journal of Bohai University (Natural Science Edition), 2007,(2):113-116.

        [82] 葛 陽,魏立新,晁 萌,等. 原油破乳劑研究進(jìn)展與發(fā)展趨勢 [J]. 化學(xué)工程師, 2022,36(6):68-72.

        Ge Y, Wei L X, Yao M, et al. Research progress and development trend of crude oil demulsifier [J]. Chemical Engineer, 2022,36(6):68-72.

        [83] 魏學(xué)福,曲東江,高在海,等.AP系列破乳劑在海洋油田的應(yīng)用 [J]. 日用化學(xué)品科學(xué), 2000,(S1):133-135. Wei X F, Qu D J, Gao Z H, et al. Application of AP series demulsifier in offshore oilfield [J]. Household Chemical Science, 2000,(S1):133- 135.

        [84] Abdul-Raheim M A, Abdel-Raouf M E, Maysour N E, et al. Some sugar fatty ester ethoxylates as demulsifiers for petroleum sludge [J]. Journal of Surfactants and Detergents, 2012,16(3):377-387.

        [85] Ma J, Li X, Zhang X, et al. A novel oxygen-containing demulsifier for efficient breaking of water-in-oil emulsions [J]. Chemical Engineering Journal, 2020,385:123826.

        [86] 劉立新,郝松松,王學(xué)才,等.聚季銨鹽反相破乳劑的合成及破乳性能研究 [J]. 工業(yè)用水與廢水, 2010,41(5):70-73. Liu L X, Hao S S, Wang X C, et al. Synthesis and demulsification performance of polyquaternary ammonium salt reversed-phase demulsifier [J]. Industrial Water and Wastewater, 2010,41(5):70-73.

        [87] 吳 亞,陳世軍,陳 剛,等.低聚季銨鹽對(duì)聚驅(qū)采出水包油乳狀液破乳機(jī)理 [J]. 湖南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2016,43(6):117-123. Wu Y, Chen S J, Chen G, et al. Demulsification mechanism of oligomeric quaternary ammonium salt on oil-in-water emulsion produced by polymer flooding [J]. Journal of Hunan University (Natural Science Edition), 2016,43(6):117-123.

        [88] 張 順,趙德明,遲軍科,等.季銨鹽改性的超支化聚酰胺胺的合成及其破乳效果 [J]. 山東化工, 2021,50(5):1-4. Zhang S, Zhao D M, Chi J K, et al. Synthesis and demulsification of hyperbranched polyamides modified by quaternary ammonium salt [J]. Shandong Chemical Industry, 2021,50(5):1-4.

        [89] 李凌川,徐文璽,劉延軍.涇河油田原油破乳劑的優(yōu)選與復(fù)配 [J]. 石油地質(zhì)與工程, 2016,30(1):140-141. Li L C, Xu W X, Liu Y J. Optimization and compound of crude oil demulsifier in Jinghe Oilfield [J]. Petroleum Geology and Engineering, 2016,30(1):140-141.

        [90] 張 菁,鐘齊斌.西北油田采出液破乳劑的優(yōu)選 [J]. 現(xiàn)代化工, 2022, 42(S2):132-136. Zhang Q, Zhong Q B. Optimization of demulsifier for produced liquid in Northwest Oilfield [J]. Modern Chemical Industry, 2022,42(S2): 132-136.

        [91] 黃朝琦,秦志文,尚緒敏,等.含油污泥化學(xué)熱洗的藥劑配方及工藝優(yōu)化 [J]. 化工進(jìn)展, 2020,39(4):1478-1484. Huang C Q, Qin Z W, Shang X M, et al. Formulation and process optimization of chemical hot washing of oily sludge [J]. Chemical Industry Progress, 2020,39(4):1478-1484.

        [92] 吳 丹,齊占濤,吳振華,等.蘇里格凝析油乳液破乳劑的篩選研究 [J]. 天津化工, 2019,33(1):32-35. Wu D, Qi Z T, Wu Z H, et al. Screening of emulsion demulsifier for Sulige condensate Oil [J]. Tianjin Chemical Industry, 2019,33(1):32- 35.

        [93] Jing G, Chen T, Luan M. Studying oily sludge treatment by thermo chemistry [J]. Arabian Journal of Chemistry, 2016,9(1):S457-S460.

        [94] 彭柏群,張瑞泉,宋 輝.原油脫水站沉降罐上部污油破乳劑的研制[J]. 油氣田地面工程, 2010,29(3):17-18. Peng B Q, Zhang R Q, Song H. Development of demulsifier for the upper part of settling tank in crude oil dewatering station [J]. Gas Field Surface Engineering, 2010,29(3):17-18.

        Research progress on stability and demulsification mechanism of crude oil emulsions.

        FENG Cheng, ZHENG Huan-ling, WANG Jia-ning, SONG Fan-yong*, LI Tian-yuan, FU Xiao-wen, HUANG Yu-jie, ZHANG Wen

        (Qilu University of Technology, Ecology Institute of Shandong Academy of Sciences, Shandong Province Key Laboratory of Applied Microbiology, Jinan 250103, China)., 2023,43(8):4316~4325

        Crude oil emulsion is a complex oil-water system produced in the process of crude oil exploitation. The natural interfacial active substances and added polymers increase the stability of the emulsion. Gum and asphaltene are considered as the main stabilizers of the oil-water emulsion. Chemical demulsification is a method to separate oil from water by adding demulsifier to emulsion, but the mechanism of demulsification has not been confirmed. The influence mechanism of interfacial active substances in crude oil emulsions, including interfacial film, interfacial tension, gel, asphaltene and so on, on the stability of emulsions was reviewed. The development status and trend of demulsifiers and their effects on emulsions were discussed. At present, the main research directions of demulsifiers include modification and combination, research and development of polyquaternary ammonium salt, polyethers and other demulsifiers The research status of demulsification mechanism and the future research direction of demulsification mechanism and demulsifier were prospected.

        emulsion;asphaltene;demulsifier;interfacial tension;demulsification mechanism

        X74

        A

        1000-6923(2023)08-4316-10

        馮 城(1998-),男,山東濟(jì)寧人,碩士研究生,主要從事含油污泥減量化的研究.2298485248@qq.com.

        馮 城,鄭煥令,王加寧,等.原油乳狀液穩(wěn)定性及破乳機(jī)理研究進(jìn)展 [J]. 中國環(huán)境科學(xué), 2023,43(8):4316-4325.

        Feng C, Zheng H L, Wang J N, et al. Research progress on stability and demulsification mechanism of crude oil emulsions [J]. China Envirenmental Science, 2023,43(8):4316-4325.

        2023-04-25

        國家科技重大專項(xiàng)課題(2019YFC1804103);山東省科技重大專項(xiàng)(2021CXGC011201)

        * 責(zé)任作者, 助理研究員, 457360402@qq.com

        猜你喜歡
        界面研究
        FMS與YBT相關(guān)性的實(shí)證研究
        2020年國內(nèi)翻譯研究述評(píng)
        遼代千人邑研究述論
        國企黨委前置研究的“四個(gè)界面”
        視錯(cuò)覺在平面設(shè)計(jì)中的應(yīng)用與研究
        科技傳播(2019年22期)2020-01-14 03:06:54
        EMA伺服控制系統(tǒng)研究
        基于FANUC PICTURE的虛擬軸坐標(biāo)顯示界面開發(fā)方法研究
        新版C-NCAP側(cè)面碰撞假人損傷研究
        空間界面
        金秋(2017年4期)2017-06-07 08:22:16
        電子顯微打開材料界面世界之門
        国产av普通话对白国语| 乱人伦中文无码视频在线观看| 四虎影院在线观看| 亚洲欧美另类日本久久影院| 一区二区三区一片黄理论片| 亚洲成a∨人片在线观看无码| 国产sm调教视频在线观看| 亚洲自拍另类欧美综合| 日本熟妇视频在线中出| 日本一区二区三区免费精品| 午夜无码伦费影视在线观看| 国产成人精选在线不卡| 中文在线最新版天堂av| 国产在线一区二区三区四区| 欧美a级情欲片在线观看免费| XXXXBBBB欧美| 亚洲在中文字幕乱码熟女| 久久综合伊人77777麻豆| 国产做a爱片久久毛片a片| 国产亚洲精品福利在线| 在线观看国产激情免费视频| 丰满熟妇人妻av无码区| 欧美熟妇精品一区二区三区| 国产成人一区二区三区影院免费| 亚洲av日韩专区在线观看| 久久99精品久久水蜜桃| 欧美日韩另类视频| 一本久久伊人热热精品中文| 久久久久亚洲av无码a片| 永久免费av无码网站yy| 成人午夜免费福利| 一道之本加勒比热东京| 日韩精品久久久久久久电影蜜臀| 久久尤物AV天堂日日综合| 亚洲图文一区二区三区四区| 日本亲近相奷中文字幕| 精品香蕉久久久爽爽| 久久一区av蜜桃人妻| 2020国产在视频线自在拍| 日日澡夜夜澡人人高潮| 色播在线永久免费视频网站|