石瑩,陳思怡,曾譯可,唐俊,李迪平,李國敬,黃先彪,李春龍,謝宗周,劉繼紅
套袋提升椪柑果實品質的作用機制
1華中農業(yè)大學/果蔬園藝作物種質創(chuàng)新與利用全國重點實驗室,武漢 430070;2當陽市特產技術推廣中心,湖北當陽 444100;3邵陽市農業(yè)科學研究院,湖南邵陽 422002
【背景】椪柑()是我國重要的寬皮橘類型,‘鄂柑一號’是湖北省當陽市發(fā)展面積較大的椪柑品種,但存在采收過早和果實品質未達最佳等問題,不利于其市場銷售。因此,需要研發(fā)應用于‘鄂柑一號’椪柑延遲采收和完熟的栽培技術?!灸康摹刻骄刻状鼘μ嵘醺桃惶枴瘲崭坦麑嵠焚|的作用,并基于糖酸代謝基因表達水平的變化解析其機制。【方法】試驗在湖北省當陽市半月鎮(zhèn)‘鄂柑一號’椪柑園進行,比較套袋果實和未套袋(對照)果實的品質,主要分析果皮亮度及色澤、可溶性固形物含量、可滴定酸含量,通過氣相色譜法分析可溶性糖和有機酸含量,通過qRT-PCR分析比較二者糖酸代謝相關基因表達水平差異?!窘Y果】套袋加快了果皮色澤參數a*、b*和柑橘色澤指數(CCI)變化,提升了果皮亮度(L*),顯著降低了果皮硬度;套袋顯著提高了采收時期椪柑果實可溶性固形物含量,其中蔗糖、果糖和葡萄糖含量顯著增加;氣相色譜分析發(fā)現,柑橘果實有機酸以檸檬酸為主,套袋果實檸檬酸含量稍高于對照;實時熒光定量PCR分析表明,套袋果實蔗糖合成相關基因、和表達水平顯著高于未套袋果實,而檸檬酸降解相關基因表達水平顯著下調?!窘Y論】套袋可能改變了袋內果實所處環(huán)境的溫度、濕度,上調可溶性糖合成基因表達,促進糖積累,從而提升椪柑果實品質。
椪柑;套袋;果實品質;糖酸代謝
【研究意義】我國柑橘熟期主要集中在每年11月初至第二年2月期間,其中中熟品種栽培比例較高,2020年中熟柑橘種植比例超過50%[1],中熟柑橘品種生產過剩會影響果農的收益,阻礙我國柑橘產業(yè)的健康發(fā)展。此外,我國中熟柑橘與歐盟部分國家的柑橘成熟期重合導致出口受限,而在國外對柑橘需求較為迫切的3—10月間,我國柑橘產量較低,無法適時滿足國外柑橘進口需求,甚至需要從其他國家以較高價格進口柑橘供國內市場消費。因此,進一步采取措施延長上市時間,除繼續(xù)調整柑橘熟期結構外,柑橘的貯藏保鮮工作也是重中之重[2]?!厩叭搜芯窟M展】柑橘的貯藏方式主要有簡易貯藏保鮮[3]、冷藏保鮮[4]、氣調貯藏保鮮[5]、生物技術保鮮[6]、基因工程技術保鮮等[7],成本低、效益高、節(jié)能且安全的貯藏保鮮技術也在持續(xù)探索中。留樹保鮮是自然保鮮方法的一種,將果實留樹至充分成熟再采收,或延緩果實衰老過程從而達到延遲采收[8]。柑橘留樹保鮮的優(yōu)勢在于讓果實充分成熟,能夠表現出品種固有的品質特性,從而提高果實品質[9];在柑橘淡季新鮮下樹,暢銷且增值,減輕了集中扎堆上市的壓力,提高了柑橘產業(yè)的質量和效益,有助于柑橘產業(yè)的健康可持續(xù)發(fā)展。【本研究切入點】套袋是留樹保鮮過程中常用的措施,能夠起到物理防護作用,減少蟲鳥危害、降低病果率、防止農藥與果面接觸、防止樹枝劃傷等[10],也能在一定程度上改變果實的微環(huán)境[11]。但目前對不同氣候條件、不同地理位置是否適宜采取套袋的方法比較模糊?!緮M解決的關鍵問題】本研究以湖北省當陽市種植較多的椪柑品種‘鄂柑1號’為試材,探究套袋果實品質的變化,并基于糖酸代謝基因表達分析初步揭示其作用機制,為果實套袋延期采收的方法提供理論基礎。
試驗椪柑果園位于湖北省宜昌市當陽市半月鎮(zhèn)龍臺村鳳凰山(北緯30°40′46″,東經111°50′21″,海拔130 m),樹齡18年,以枳()砧為砧木嫁接‘鄂柑1號’,樹冠高2.5 m,株距2.5 m,行距4.5 m,果園進行正常的肥水管理和病蟲害防治。
2019年11月11日選取6棵生長勢相近的椪柑植株為試材,試驗設2個處理:套袋處理(套袋)3棵植株,每株選取果形端正、果實大小相近的100個果實進行套袋處理;另外選擇3棵植株不套袋作為對照(CK)。選用防水透氣的乳白色木漿紙質單層紙袋(什邡市潤鋒紙制品加工廠),套袋處理前全園噴施一次農藥防治病蟲害,藥干后進行套袋操作。套袋時從下往上將整個果實全部套入袋中,使果實位于紙袋中央,扎緊袋口鐵絲防止雨水進入。套袋第0、10、20、30、40和55天分別采樣,在每棵植株同一高度上,4個方向各隨機采1個果實。樣品當天帶回華中農業(yè)大學進行品質分析,測定果皮色澤、硬度、可溶性固形物含量、可滴定酸含量,每個果實去除靠近果蒂和果臍部分的剩余果實上分別取下囊瓣、果皮,用液氮速凍后立即置于-80 ℃超低溫冰箱備用,所有時期取樣完成后使用氣相色譜分析可溶性糖和有機酸含量,并分析糖酸代謝相關基因的表達水平。
使用色彩色差儀(*cm-5,美能達,Japan)測量果面色澤參數L*、a*和b*;使用質構儀(*TA. XT. Plus,Stable micro systems,UK)測定果皮硬度。
可溶性固形物使用PAL-1手持折光測糖儀(Atago,Japan)測定;可滴定酸使用GMK-835F水果酸度計(G-WON,South Korea)測定??扇苄蕴呛陀袡C酸含量采用氣相色譜法[12]測定,使用安捷倫GC-7890B氣相色譜儀,HP-5色譜柱(5%-Phenyl- methyl polysiloxane. 30 m×0.25 μm×320 μm i.d.)。
用PLANT pure通用植物總RNA快速提取試劑盒(Aidlab公司)提取果肉總RNA,實時熒光定量PCR采用ChamQ Universal SYBR qPCR Master Mix(ABI,USA)檢測基因表達量,方法參照說明書。采用QuantStudio 7 Flex system(Applied Biosystems,美國)熒光定量分析儀進行反應,基因的相對表達量采用2???CT方法[13]計算,基因引物信息見表1。
表1 定量分析所用引物
套袋工作重復了3年,提升果實品質效果一致,因此,只在其中一年進行了數據采集和分析。采用Microsoft Excel 2016和SPSS進行數據分析,依據LSD測驗比較顯著性差異。
觀察跟蹤果實的色澤變化,套袋果實的L*均值高于CK,且在30 d表現出顯著差異,套袋顯著提升了果皮亮度,40 d時,二者的L*值都有所降低(圖1-A);果皮色澤參數a*快速增加,套袋處理10 d后極顯著高于CK,此后的差異逐漸減?。▓D1-B);果皮色澤參數b*值小幅上升,套袋果實的b*均值高于CK且在套袋后30 d表現出顯著差異(圖1-C);0 d時套袋果實的色澤飽和度(CCI)極顯著低于CK,但套袋后快速升高,在套袋10 d后顯著高于CK,此后二者之間沒有表現出顯著性差異(圖1-D)。果實的色澤變化說明套袋在一定程度上加快了椪柑果實的著色進程,10—30 d時套袋果實具有更好的外觀品質,此后優(yōu)勢逐漸消失。
果實成熟后期果皮硬度逐漸降低,套袋后表現為快速下降。套袋55 d采收時套袋果實的果皮硬度僅為510.97 g,顯著低于CK的567.68 g(圖1-E),套袋顯著降低了果皮硬度。根據果實的表型可以看出,套袋果實后期依然平滑有光澤,而對照果實發(fā)生明顯的果面塌陷,組織柔軟,明顯受到嚴重凍害(圖1-F)。
*:P<0.05;**P<0.01;***:P<0.001。下同 The same as below
果實生長發(fā)育后期可溶性固形物含量(TSS)持續(xù)增加,套袋果實的TSS積累速度大于CK,套袋55 d后達到14.9%,極顯著高于CK的13.0%(圖2-A),套袋顯著提升了椪柑果實的TSS;套袋時為11月11日,可滴定酸含量(TA)已經大幅降低,因此套袋后TA隨著果實的進一步成熟仍略有降低,但變化幅度較小,此過程中套袋果實的TA均值高于CK且在套袋后55 d表現出顯著差異,果實套袋在一定程度上阻止了TA的降低(圖2-B)。
使用氣相色譜分析套袋和CK果實的可溶性糖和有機酸含量。0 d時套袋果實和CK果實的蔗糖含量分別為39.66和36.66 mg?g-1,二者之間差異不顯著;55 d時,套袋果實的蔗糖含量達到77.24 mg?g-1,極顯著高于CK果實(圖3-A)。0 d時,套袋果實的果糖和葡萄糖的平均含量分別為15.58和11.49 mg?g-1,分別低于CK的17.77和14.57 mg?g-1,果實套袋后表現出更快的果糖和葡萄糖積累速度,40 d后套袋果實的果糖和葡萄糖含量開始顯著高于CK,套袋55 d時這種差距變得更為明顯,此時套袋果實的果糖含量和葡萄糖含量分別為29.63和23.95 mg?g-1,均顯著高于CK(圖3-B、C),套袋顯著提升了椪柑果實的蔗糖、果糖和葡萄糖含量,與TSS的變化趨勢一致。
圖2 套袋對椪柑果實可溶性固形物含量(A)和可滴定酸含量(B)的影響
圖3 套袋對椪柑果實蔗糖(A)、果糖(B)、葡萄糖(C)和檸檬酸(D)含量的影響
另外,還分析了果實的有機酸含量,發(fā)現以檸檬酸為主(結果未展示)。CK果實中檸檬酸含量基本穩(wěn)定,而套袋果實檸檬酸有所積累,20和55 d,套袋果實和CK果實中的檸檬酸含量分別為11.31、7.28和9.79和8.58 mg?g-1,進一步成熟過程中,套袋果實檸檬酸含量稍高于CK(圖3-D);套袋和CK果實的蘋果酸含量基本保持穩(wěn)定,奎寧酸含量隨著果實成熟而降低,套袋果實中的蘋果酸、奎寧酸含量高于CK,但因其含量極少,對有機酸變化的貢獻較?。ńY果未展示)。因此,套袋提高了檸檬酸的含量,與TA含量變化趨勢一致,表明套袋處理一定程度上阻止了酸的降解。
套袋果實中表達水平在處理40 d后顯著上調,的表達水平變化最明顯,在套袋處理55 d后顯著高于CK,但套袋果實中和的表達水平分別在套袋20 d和套袋55 d時低于CK,與和的表達量變化相反(圖4-A);套袋后,和的表達水平逐漸上調且在套袋果實中的表達水平顯著高于CK,而和的表達水平逐漸降低,且套袋果實中和的表達水平顯著低于CK,但上調的變化程度最大(圖4-B)。
套袋處理的檸檬酸降解相關基因表達水平均較低。其中和的表達水平在套袋55 d后顯著高于CK(圖5-A)。s的表達水平變化也較小,套袋處理40 d后,在套袋果實中的表達水平顯著高于CK;套袋處理20 d后,在套袋果實中的表達水平顯著高于CK;而的表達水平變化情況相反,套袋40 d后在套袋果實中的表達水平低于CK(圖5-B)。s的表達水平在果實發(fā)育后期變化較小,套袋20 d和55 d時的表達水平顯著高于CK,而和的表達水平在CK和套袋果實中沒有顯著差異(圖5-C)。檸檬酸降解相關基因在套袋果實中的表達水平整體略高于CK,僅的表達水平在套袋40 d時顯著下調,但檸檬酸降解相關基因的表達水平整體較低。
套袋通過物理隔離保護果皮免受機械傷害,從而提升了果實表面光潔度和亮度。露天條件下白天溫度持續(xù)升高,至正午達到最高溫度后開始逐漸降低,濕度變化則相反,而套袋顯著提高了袋內微域的平均溫度和濕度[17-18]。有研究發(fā)現遮光使柑橘果皮中的葉綠素含量迅速下降且類胡蘿卜素積累緩慢[19],套袋能夠促進‘三紅蜜柚’提前退綠,增加成熟期果實的果皮番茄紅素,顯著提高果面的色澤飽和度[20];套袋使紅肉臍橙果皮葉綠素含量下降,有利于黃色、紅色的呈現[21];套袋能明顯提早檸檬果實著色[22],改善紐荷爾臍橙果實的外觀品質[23]。柑橘果皮呈色主要受到葉綠素和類胡蘿卜素含量以及二者比值的影響[24],套袋通過提高溫度、濕度和遮光效果影響果皮中葉綠素和類胡蘿卜素的合成,加速了椪柑果實的著色,套袋后期隨著果實衰老和溫度持續(xù)降低,套袋和對照果實的外觀品質都有所下降,二者之間差異逐漸減小,套袋對果面著色影響的具體作用機制還有待進一步分析。
內在品質的變化表明,套袋處理提高了椪柑果實的可溶性固形物含量,蔗糖、果糖和葡萄糖含量較未套袋果實都有提高?!~荷爾’臍橙[25]、椪柑[26]、‘宮川’溫州蜜柑[27]上都有類似的研究結果,套袋果實的可溶性固形物含量明顯上升,風味更佳,果實品質得到顯著改善。套袋使果實實現了充分成熟,能夠表現出品種固有的品質特性;另一方面通過提高溫度、改變氣體環(huán)境影響果實的代謝進程和光合產物的分配及積累,套袋影響果實的光照量,也可能通過反饋調節(jié)提高果實庫強,增加果實從葉片中分配的光合產物,此外滲透調節(jié)也可能誘導一些初生代謝物的含量發(fā)生變化從而達到增糖提質的效果。果實獲得光合產物的能力在很大程度上受庫強控制[28],分析果實中蔗糖代謝相關基因的表達水平,發(fā)現蔗糖合成相關基因、和、在套袋果實中顯著上調,這可能增強了果實的“庫”調運同化物的能力[29],本研究認為蔗糖代謝相關基因通過調控果實的庫強大小對蔗糖的積累發(fā)揮著重要作用,顯著提高了果實的可溶性糖含量。
圖4 套袋對椪柑果實蔗糖磷酸合成酶基因CsSPSs(A)和蔗糖合成酶基因CsSSs(B)表達水平的影響
圖5 套袋對椪柑果實ATP-檸檬酸裂解酶基因CsACLs(A)、順烏頭酸酶基因CsACOs(B)、異檸檬酸脫氫酶基因CsNADP-IDHs (C)表達水平的影響
套袋處理一定程度上阻止了椪柑果肉中可滴定酸的降解,與衢州[30]、臨海市[31]等地的研究結論相反,本研究通過氣相色譜分析發(fā)現套袋果實的檸檬酸含量相較對照更高,佐證了套袋果實中可滴定酸的降解速度相較對照更慢。有機酸的消耗是導致柑橘果實風味和品質下降的主要原因[32],本研究中套袋延緩了椪柑果實可滴定酸的降解,不僅能維持風味,還有利于儲藏。套袋的遮光作用延緩了果實的發(fā)育,有利于酸的積累[33],也可能與試驗地區(qū)當年的氣候相關。本研究分析果實中檸檬酸代謝相關基因的表達水平,發(fā)現檸檬酸降解相關基因的表達水平下調,與檸檬酸含量的變化情況相符,推測套袋果實中表達水平下調導致烏頭酸酶活性受抑制,從而一定程度上阻止了檸檬酸分解轉化為順烏頭酸[34]。但檸檬酸代謝相關基因的表達水平整體較低,而果實中有機酸的代謝過程極為復雜,檸檬酸含量還受遺傳特性、光照、水分、溫度、營養(yǎng)元素、葉果比等很多因素的共同調控[35],套袋條件下果實降酸的主要途徑有待進一步分析和探究。
椪柑套袋可改善果實外觀,同時改變了袋內果實所處環(huán)境的溫度、濕度,上調了可溶性糖合成基因表達,促進糖積累,從而提升椪柑果實品質,可延長留樹時間至柑橘淡季新鮮采摘上市。綜上,果實套袋可以作為湖北地區(qū)椪柑的一種延遲采收和完熟栽培技術進行進一步推廣和應用。
[1] 趙慧瑩. 中國柑橘出口現狀、問題及對策. 對外經貿實務, 2022(3): 48-51.
ZHAO H Y. Present situation, problems and countermeasures of citrus export in China. Economic Relations and Trade, 2022(3): 48-51. (in Chinese)
[2] 王羽玥. 果實早衰及冬季低溫對夏橙果實枯水的影響[D]. 重慶: 西南大學, 2006.
WANG Y Y. Effects of premature fruit senescence and low temperature in winter on low water of summer orange fruit [D]. Chongqing: Southwest University, 2006. (in Chinese)
[3] 王友海, 費甫華, 諶丹丹, 盧夢玲, 鄢華捷, 秦歡, 黃聲東. 宜昌柑橘貯藏保鮮現狀、問題及對策建議. 湖北農業(yè)科學, 2017, 56(18): 3519-3523.
WANG Y H, FEI F H, CHEN D D, LU M L, YAN H J, QIN H, HUANG S D. The Current situation, problems and countermeasuresuggestions of Yichangstorage and fresh-keeping. Hubei Agricultural Sciences, 2017, 56(18): 3519-3523. (in Chinese)
[4] XU J S. The effect of low-temperature storage on the activity of polyphenol oxidase inchestnuts. Postharvest Biology and Technology, 2005, 38(1): 91-98.
[5] 程照瑞, 郭志雄, 佘文琴, 潘東明, 潘騰飛. 柚果實貯藏保鮮技術研究進展. 福建農業(yè)科技, 2020(3): 65-70.
CHENG Z R, GUO Z X, SHE W Q, PAN D M, PAN T F. Research progress of the storage and preservation technology of pomelo fruit. Fujian Agricultural Science and Technology, 2020(3): 65-70. (in Chinese)
[6] SPADARO D, GULLINO M L. State of the art and future prospects of the biological control of postharvest fruit diseases. International Journal of Food Microbiology, 2004, 91(2): 185-194.
[7] LIU Y Z, BAIG M N R, FAN R, YE J L, CAO Y C, DENG X X. Identification and expression pattern of a novel NAM, ATAF, and CUC-like gene fromOsbeck. Plant Molecular Biology Reporter, 2009, 27(3): 292-297.
[8] 鄧曉東, 焦國柱, 劉聰, 韋同路, 郭大勇, 謝宗周, 劉繼紅. 亞精胺在椪柑果實留樹保鮮中的作用及其對離層形成的影響. 園藝學報, 2018, 45(4): 669-677.
DENG X D, JIAO G Z, LIU C, WEI T L, GUO D Y, XIE Z Z, LIU J H. Role of exogenous spermidine in keeping on-tree ponkan fruits fresh and its effect on formation of abscission zone. Acta Horticulturae Sinica, 2018, 45(4): 669-677. (in Chinese)
[9] 陶愛群, 易干軍, 石雪暉, 姜小文. 柑橘留樹保鮮研究進展. 廣東農業(yè)科學, 2012, 39(24): 45-49.
TAO A Q, YI G J, SHI X H, JIANG X W. Overview of citrus storage on tree. Guangdong Agricultural Sciences, 2012, 39(24): 45-49. (in Chinese)
[10] 魏志峰, 李秋利, 高登濤, 楊文佳, 劉軍偉, 韓園園. 果實套袋對果實品質影響研究進展. 江蘇農業(yè)科學, 2018, 46(24): 36-41.
WEI Z F, LI Q L, GAO D T, YANG W J, LIU J W, HAN Y Y. Research progress on the effect of fruit bagging on fruit quality. Jiangsu Agricultural Sciences, 2018, 46(24): 36-41. (in Chinese)
[11] 田福敏, 張紹彬, 羅濤, 熊運海, 王大平. 套袋對柑橘果面綠斑病及果實品質的影響. 貴州農業(yè)科學, 2018, 46(1): 33-35.
TIAN F M, ZHANG S B, LUO T, XIONG Y H, WANG D P. Effects of different bagging patterns on green spot disease and fruit quality of. Guizhou Agricultural Sciences, 2018, 46(1): 33-35. (in Chinese)
[12] 曾祥國. 不同種類和產區(qū)柑橘糖酸含量及組成研究[D]. 武漢: 華中農業(yè)大學, 2005.
ZENG X G. Study on sugar and acid content and composition offrom different varieties and producing areas [D]. Wuhan: Huazhong Agricultural University, 2005. (in Chinese)
[13] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCTmethod. Methods, 2001, 25(4): 402-408.
[14] TEROL J, SOLER G, TALON M, CERCOS M. The aconitate hydratase family from. BMC Plant Biology, 2010, 10: 222.
[15] HU X M, SHI C Y, LIU X, JIN L F, LIU Y Z, PENG S A. Genome-wide identification of citrus ATP-citrate lyase genes and their transcript analysis in fruits reveals their possible role in citrate utilization. Molecular Genetics and Genomics: MGG, 2015, 290(1): 29-38.
[16] GUO L X, SHI C Y, LIU X, NING D Y, JING L F, YANG H, LIU Y Z. Citrate accumulation-related gene expression and/or enzyme activity analysis combined with metabolomics provide a novel insight for an orange mutant. Scientific Reports, 2016, 6: 29343.
[17] 張斌斌, 馬瑞娟, 蔡志翔, 張春華, 顏志梅. 采前套袋微環(huán)境變化對桃果實品質的影響. 植物生理學報, 2015, 51(2): 233-240.
ZHANG B B, MA R J, CAI Z X, ZHANG C H, YAN Z M. Effect of microenvironment changes of bagging before harvest on peach fruit quality. Plant Physiology Journal, 2015, 51(2): 233-240. (in Chinese)
[18] 魏永贊, 胡福初, 鄭雪文, 石勝友, 董晨, 王弋, 李偉才. 光照對荔枝果實著色和花色素苷生物合成影響的分子機制研究. 園藝學報, 2017, 44(7): 1363-1370.
WEI Y Z, HU F C, ZHENG X W, SHI S Y, DONG C, WANG Y, LI W C. The molecular mechanism of the impacts of illumination onfruit coloration and anthocyanin biosynthesis. Acta Horticulturae Sinica, 2017, 44(7): 1363-1370. (in Chinese)
[19] 王偉杰, 徐建國, 徐昌杰. 宮內伊予柑果實發(fā)育期間色澤和色素的變化. 園藝學報, 2006, 33(3): 461-465.
WANG W J, XU J G, XU C J. Developmental changes in external color, pigment content and composition infruit. Acta Horticulturae Sinica, 2006, 33(3): 461-465. (in Chinese)
[20] 吳世濤, 佘文琴, 李水祥, 陳晶英, 孫宇晨, 馬文, 王杰. 套袋對‘三紅蜜柚’果實著色的影響. 果樹學報, 2020, 37(5): 687-695.
WU S T, SHE W Q, LI S X, CHEN J Y, SUN Y C, MA W, WANG J. Effects of bagging on rind pigmentation of ‘Sanhongmiyou’ fruit. Journal of Fruit Science, 2020, 37(5): 687-695. (in Chinese)
[21] 王貴元. 紅肉臍橙(Osbeck cv. Cara Cara navel orange)果實著色和糖積累規(guī)律的研究[D]. 武漢: 華中農業(yè)大學, 2005.
WANG G Y. Study on fruit coloring and sugar accumulation ofOsbeck cv. Cara Cara navel orange [D]. Wuhan: Huazhong Agricultural University, 2005. (in Chinese)
[22] 蔣運寧, 陳傳武, 付慧敏, 鄧崇嶺, 劉升球. 套袋對檸檬果實發(fā)育、外觀及內在品質的影響. 南方園藝, 2019, 30(5): 19-23.
JIANG Y N, CHEN C W, FU H M, DENG C L, LIU S Q. Effect of bagging on the development, appearance and inner quality of lemon fruits. Southern Horticulture, 2019, 30(5): 19-23. (in Chinese)
[23] 吳文勇, 張仁勇, 段碧娟. 套袋對紐荷爾臍橙果實品質的影響. 貴州農業(yè)科學, 2009, 37(9): 185-186.
WU W Y, ZHANG R Y, DUAN B J. Effect of bagging on fruit quality of Newhall navel orange. Guizhou Agricultural Sciences, 2009, 37(9): 185-186. (in Chinese)
[24] 黃貝, 王鵬, 溫明霞, 吳韶輝, 高偉勤, 徐建國, 夏仁學. 柑橘果實色素—類胡蘿卜素的研究進展. 果樹學報, 2019, 36(6): 793-802.
HUANG B, WANG P, WEN M X, WU S H, GAO W Q, XU J G, XIA R X. Advance study of pigment-carotenoids infruits. Journal of Fruit Science, 2019, 36(6): 793-802. (in Chinese)
[25] 郭琳琳, 劉慶, 伊華林. 2種保鮮方法對臍橙果實風味和色澤變化的影響. 果樹學報, 2007, 24(6): 792-795.
GUO L L, LIU Q, YI H L. Effect of two fresh-keeping methods on flavor and color quality in Navel orange fruit. Journal of Fruit Science, 2007, 24(6): 792-795. (in Chinese)
[26] 王貴元, 王歡. 套袋對‘8306’椪柑果實品質的影響. 長江大學學報(自然科學版), 2012, 9(4): 6-8, 4.
WANG G Y, WANG H. Effects of bagging on fruit quality of ‘8306’ Ponkan. Journal of Yangtze University (Natural Science Edition), 2012, 9(4): 6-8, 4. (in Chinese)
[27] 孫鈞, 陳俊偉, 石學根, 龐茜, 徐紅霞, 張林, 徐建國, 謝鳴. ‘宮川’溫州蜜柑大棚延遲采收果實品質及抗氧化能力的變化. 園藝學報, 2011, 38(10): 1865-1872.
SUN J, CHEN J W, SHI X G, PANG Q, XU H X, ZHANG L, XU J G, XIE M. Changes on fruit quality components and antioxidant capacity in fruit of greenhouse delayed harvest Satsuma mandarin. Acta Horticulturae Sinica, 2011, 38(10): 1865-1872. (in Chinese)
[28] CHENGAPPA S, GUILLEROUX M, PHILLIPS W, SHIELDS R. Transgenic tomato plants with decreased sucrose synthase are unaltered in starch and sugar accumulation in the fruit. Plant Molecular Biology, 1999, 40(2): 213-221.
[29] 曾海瓊. 套袋對清見果實蔗糖代謝及品質影響的研究[D]. 雅安: 四川農業(yè)大學, 2015.
ZENG H Q. Effects of bagging on sucrose metabolism and quality of Qingjian fruit [D]. Ya’an: Sichuan Agricultural University, 2015. (in Chinese)
[30] 朱一成, 吳文明, 劉燁玨. 大棚延后栽培椪柑品質動態(tài)變化研究. 中國果菜, 2019, 39(4): 15-18, 30.
ZHU Y C, WU W M, LIU Y Y. Study on dynamic change of ponkan quality under delayed cultivation in greenhouse. China Fruit & Vegetable, 2019, 39(4): 15-18, 30. (in Chinese)
[31] 石學根, 徐建國, 林媚, 張林. 設施栽培條件下冬季溫州蜜柑果實品質的變化. 浙江農業(yè)學報, 2006, 18(1): 32-36.
SHI X G, XU J G, LIN M, ZHANG L. Changes in fruit quality of Satsuma mandarin under the condition of protected cultivation in winter. Acta Agriculturae Zhejiangensis, 2006, 18(1): 32-36. (in Chinese)
[32] ETIENNE A, GéNARD M, LOBIT P, MBEGUIé-A-MBéGUIé D, BUGAUD C. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. Journal of Experimental Botany, 2013, 64(6): 1451-1469.
[33] 張振銘, 張紹鈴, 喬勇進, 陶書田. 不同果袋套袋對幸水梨品質的影響. 上海農業(yè)學報, 2007, 23(1): 30-33.
ZHANG Z M, ZHANG S L, QIAO Y J, TAO S T. Effect of different fruit bags on quality of pear (Nakai) Kousui. Acta Agriculturae Shanghai, 2007, 23(1): 30-33. (in Chinese)
[34] KUBO T, KIHARA T, HIRABAYASHI T. The effects of spraying lead arsenate on citrate accumulation and the related enzyme activities in the juice sacs of. Engei Gakkai Zasshi, 2002, 71(3): 305-310.
[35] 郭玲霞. 柑橘ATP檸檬酸裂解酶(ACL)在檸檬酸和相關物質積累中的作用及其機制和影響因素研究[D]. 武漢: 華中農業(yè)大學, 2020.
GUO L X. Study on the role, mechanism and influencing factors of citrus ATP citrate lyase (ACL) in the accumulation of citric acid and related substances [D]. Wuhan: Huazhong Agricultural University, 2020. (in Chinese)
Mechanism Underlying the Improved Quality of Bagged Fruits in Ponkan
1Huazhong Agricultural University/National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070;2Technology Promotion Center of Dangyang Special Agricultural Industry, Dangyang 444100, Hubei;3Shaoyang Academy of Agricultural Sciences, Shaoyang 422002, Hunan
【Background】Ponkan () is an important loose-skin tangerine in China. Egan No. 1 Ponkan is widely grown in Dangyang City, Hubei Province. When this cultivar is used for producing fruit, the major problem is that advanced harvesting leads to undesirable fruit quality, and thus, to a negative impact on consumer appeal. Therefore, the industry has a critical need for the technologies that allow growers to delay harvest until Egan No. 1 Ponkan fruit is fully mature. 【Objective】In this study, whether bagging improves the quality of fruit produced by Egan No. 1 Ponkan was tested, and the underlying mechanism by examining the expression levels of genes involved in sucrose and citric acid metabolism was analyzed. 【Method】The experiment was conducted in orchards that produce Egan No. 1 located in Banyue Town, Dangyang City, Hubei Province, to compare the qualities of fruit that were produced after bagging to control fruit that was not bagged. The indexes were compared, including peel brightness (L*), color parameters a*, b*, citrus color index (CCI), total soluble solids, titratable acids, soluble sugars and organic acids. In addition, qRT-PCR was used to analyze the expression levels of the genes associated with sucrose and citric acid metabolism. 【Result】The bagging induced changes in peel color parameters, including changes in a*, b*, CCI, increased L*, and significantly reduced peel firmness. The bagging significantly increased the total soluble solid content when the fruit was harvested, and the sucrose, fructose and glucose levels were significantly elevated. A gas chromatography analysis showed that the levels of citric acid, the major organic acid in citrus fruits, was slightly higher in the bagged fruits relative to the control fruit. The qRT-PCR analysis showed that the expression levels of three genes associated with sucrose biosynthesis (,and) were significantly higher in the bagged fruit relative to the control fruit. In contrast, the expression levels of genes implicated in citric acid catabolism, such as, were remarkably downregulated in the bagged fruit. 【Conclusion】Taken together, these data indicated that the bagging improved the quality of Ponkan fruit possibly by changing the ambient temperature and humidity in the micro-milieu of the bagged fruits, which might have elevated the expression levels of genes that influence soluble sugar content and led to better sugar accumulation and improved fruit quality of Ponkan.
Ponkan; bagging; fruit quality; sucrose and citric acid metabolism
10.3864/j.issn.0578-1752.2023.14.012
2022-10-27;
2023-02-13
湖北省重點研發(fā)計劃(2020BBA036,2022BBA0073)、華中農業(yè)大學荊楚行項目、湖北省農業(yè)創(chuàng)新行動計劃
石瑩,E-mail:2269878819@qq.com。通信作者劉繼紅,E-mail:liujihong@mail.hzau.edu.cn
(責任編輯 趙伶俐)