亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        不同種類及加工方式對(duì)雜糧酸奶體外抗氧化活性的比較

        2023-07-28 02:32:12朱曉雪龔綿紅楊秉坤李亞鳳丁雨紅唐立和魏曉斌
        關(guān)鍵詞:蕎麥雜糧酸奶

        朱曉雪,龔綿紅,楊秉坤,莊 姣,李亞鳳,丁雨紅,唐立和,魏曉斌,劇 檸

        不同種類及加工方式對(duì)雜糧酸奶體外抗氧化活性的比較

        朱曉雪1,龔綿紅1,楊秉坤1,莊 姣1,李亞鳳1,丁雨紅1,唐立和2,魏曉斌2,劇 檸1※

        (1. 寧夏大學(xué)食品與葡萄酒學(xué)院,銀川 750021;2. 寧夏北方乳業(yè)有限責(zé)任公司,銀川 750101)

        為探究雜糧品種及加工方式對(duì)雜糧酸奶體外抗氧化活性的影響,選擇小米、黃米、燕麥、藜麥、糙米、蕎麥、高粱米7種雜糧為原料,經(jīng)過(guò)蒸制、煮制、打漿3種常見加工方式,比較其多酚含量及抗氧化活性,對(duì)特性較好的雜糧經(jīng)恰當(dāng)處理后與牛奶共發(fā)酵制備酸奶,研究該雜糧酸奶的多酚含量及抗氧化活性,開發(fā)具備抗氧化活性的雜糧酸奶。結(jié)果表明,7種雜糧之間的抗氧化能力存在顯著(<0.05)差異,采用抗氧化綜合(antioxidant potency composite,APC)指數(shù)法評(píng)定雜糧的抗氧化活性,發(fā)現(xiàn)抗氧化活性最高的雜糧為蕎麥。進(jìn)一步對(duì)蕎麥進(jìn)行加工處理,發(fā)現(xiàn)蒸制處理后其抗氧化活性優(yōu)于煮制和打漿。將蒸制的蕎麥與牛奶混合制備酸奶,制成的蕎麥酸奶總酚含量為52.85 mg/100g,是普通酸奶的5.16倍;且其抗氧化能力顯著高于普通酸奶(<0.05)。該研究為功能性雜糧酸奶的開發(fā)提供借鑒。

        農(nóng)產(chǎn)品;雜糧;加工方式;酸奶;抗氧化活性

        0 引 言

        研究表明,雜糧中富含酚酸、單寧、花青素、植物甾醇等多酚類化合物,比傳統(tǒng)主糧有更高的抗氧化活性[1-2]。這些多酚類化合物能夠通過(guò)阻斷自由基導(dǎo)致的鏈?zhǔn)椒磻?yīng)延緩或抑制脂質(zhì)及其他生物膜氧化的過(guò)程,起到預(yù)防衰老和輔助治療慢性疾病的保健作用[3]。不同地域的雜糧多酚類化合物含量不同,其抗氧化效果也存在差異[4]。中國(guó)西北地區(qū)晝夜溫差大,日照時(shí)間長(zhǎng),太陽(yáng)輻射強(qiáng)的自然條件有利于農(nóng)作物酚類化合物的形成與積累[5-8]。近年來(lái)雜糧酸奶(青稞、黑米等)因其良好的風(fēng)味及口感深受消費(fèi)者歡迎[9]。研究表明,添加雜糧的酸奶抗氧化性能顯著高于普通酸奶[10],且其抗氧化效果受雜糧種類、比例及加工方式的影響[11-13]。目前關(guān)于雜糧的功能活性及雜糧酸奶已有較多研究[14-16],而針對(duì)中國(guó)西北地區(qū)種植的雜糧及雜糧酸奶的抗氧化特性尚未見系統(tǒng)報(bào)道。本文采用抗氧化綜合(antioxidant potency composite,APC)指數(shù)法綜合評(píng)價(jià)西北重要省份—寧夏地區(qū)種植的7種雜糧體外抗氧化活性,探究不同加工方式對(duì)雜糧酸奶抗氧化特性的影響,從而篩選出抗氧化活性強(qiáng)、加工方式適宜的雜糧酸奶并對(duì)其抗氧化特性進(jìn)行表征。試驗(yàn)結(jié)果為西北地區(qū)雜糧的開發(fā)利用提供數(shù)據(jù)支持及參考,同時(shí)為功能性酸奶的開發(fā)提供借鑒。

        1 材料與方法

        1.1 材料與試劑

        小米、黃米、燕麥、藜麥、糙米、蕎麥、高粱米,寧夏山逗子雜糧綠色食品科技開發(fā)有限公司。1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)、2,2-聯(lián)氮-二(3-乙基-苯并噻唑-6-磺酸)二銨鹽(2,2'- Azinobis-(3-ethylbenzthiazoline-6-sulphonate),ABTS)、2,4,6-三吡啶基三嗪(2,4,6-Tri(2-pyridyl)-s-triazine,TPTZ)、福林酚試劑、水溶性VE(Trolox)、蘆?。兌?99%),上海麥克林生化科技有限公司;沒食子酸(純度>99%),德國(guó)默克集團(tuán)有限公司;甲醇、丙酮、亞硝酸鈉、硝酸鋁、碳酸鈉、氫氧化鈉等均為市售分析純。

        1.2 儀器與設(shè)備

        WFJ72系列721型可見分光光度計(jì),上海光譜儀器有限公司;RE-52AA 旋轉(zhuǎn)蒸發(fā)儀,上海亞榮生化儀器廠;PHSJ-3F pH計(jì),上海儀電科學(xué)儀器股份有限公司;冷凍干燥機(jī),美國(guó)LABCONCO公司;BSP-150恒溫培養(yǎng)箱,上海博迅實(shí)業(yè)有限公司醫(yī)療設(shè)備廠。

        1.3 方法

        1.3.1 樣品制備(蒸、煮、打漿)

        顆粒完整飽滿、色澤鮮亮的雜糧,經(jīng)除雜清洗后分別進(jìn)行蒸、煮、打漿。蒸雜糧時(shí)料液比1∶1.5(g/mL)、100 ℃、10 min。煮雜糧時(shí)料液比1∶20(g/mL)、100 ℃、20 min。打漿:以1∶5(g/mL)的料水比加入30 ℃水中浸泡1 h于打漿機(jī)打漿至充分磨勻,備用。最后使用凍干機(jī)凍干樣品,-80 ℃預(yù)凍4 h,凍干后將其儲(chǔ)藏于-20 ℃冰箱中。

        1.3.2 樣品的提取

        1)谷物中多酚的提取

        游離酚的提取參照康子悅等[17-18]的方法略有改動(dòng)。樣品粉碎過(guò)0.3 mm篩網(wǎng),精確稱取2 g樣品于離心管中,加30 mL 80%丙酮溶液20 ℃超聲提取30 min,每隔5 min 漩渦混勻,4 500 r/min離心10 min,收集上清液,殘?jiān)瓷鲜龇椒ㄖ貜?fù)提取2次,合并提取液于45 ℃下真空旋轉(zhuǎn)蒸發(fā)至干,甲醇復(fù)溶至10 mL,即為游離型多酚提取物,密封-80 ℃低溫保存,每個(gè)樣品提取3次。游離型多酚提取后的殘?jiān)?,?0 mL 2 mol/L NaOH溶液25 ℃搖床振蕩水解1 h。用 6 mol/L HCl 調(diào)pH值至2~3,加入正己烷萃取,離心去除上清液,然后用30 mL乙酸乙酯萃取3次。合并上層乙酸乙酯萃取相于45 ℃下真空旋轉(zhuǎn)蒸發(fā)至干,甲醇定容至10 mL,即為結(jié)合型多酚提取物,密封-80 ℃低溫保存。每個(gè)樣品提取3次。

        2)酸奶中多酚的提取

        參照SILVA等的方法略有改動(dòng)[19],稱酸奶樣品5 g與15 mL 85%甲醇水混合,40 kHz(25 ℃,30分鐘)超聲水浴提取并離心(4 500 r/min,10 min,4 ℃)。萃取進(jìn)行2次,將上清液混合并用旋轉(zhuǎn)真空蒸發(fā)器在30 ℃下蒸發(fā)至干。甲醇定容至10 mL,并將提取殘?jiān)?0 mL 2 mol/L的NaOH在軌道振蕩器上振蕩(250 r/min,4 h)水解,以獲得結(jié)合酚類化合物的提取物。逐漸加入6 mol/L HCl將所得水解物酸化至pH 值1.5~2.0。離心后用30 mL乙酸乙酯提取上清液3次。提取液用旋轉(zhuǎn)真空蒸發(fā)器在30 ℃下蒸發(fā)至干。將所得殘余物溶解在甲醇中,最終體積為10 mL。每個(gè)樣品提取3次。

        1.3.3 總酚含量的測(cè)定

        采用Folin-Ciocalteu法[11]測(cè)定樣品的總酚含量。以沒食子酸為標(biāo)樣制作標(biāo)準(zhǔn)曲線,結(jié)果以100 g干基中所含沒食子酸的毫克數(shù)表示(簡(jiǎn)寫為mg/100g)。計(jì)算公式如下:

        式中為總酚質(zhì)量分?jǐn)?shù),mg/100g;0為空白樣吸光度值;1為樣品吸光度值;為沒食子酸標(biāo)準(zhǔn)曲線的截距;為沒食子酸標(biāo)準(zhǔn)曲線的斜率;為提取液體積,mL;為樣品質(zhì)量,g。

        1.3.4 總黃酮含量的測(cè)定

        采用NaNO2-Al(NO3)3法[20],略有改動(dòng)。取0.5 mL 提取液加入4.5 mL 70%乙醇和0.3 mL 5% NaNO2溶液混勻反應(yīng)6 min,再加入0.3 mL 10% Al(NO3)3溶液混勻,反應(yīng)6 min,最后加入4 mL 4% NaOH 溶液混勻,定容至10 mL,反應(yīng)15 min,510 nm 波長(zhǎng)處測(cè)其吸光度。以蘆丁為標(biāo)樣制作標(biāo)準(zhǔn)曲線,結(jié)果以100 g干基中所含蘆丁的毫克數(shù)表示(簡(jiǎn)寫為mg/100g)。測(cè)定重復(fù)3次。計(jì)算公式如下:

        式中為總黃酮質(zhì)量分?jǐn)?shù),mg/100g;1為蘆丁標(biāo)準(zhǔn)曲線的截距;1為蘆丁標(biāo)準(zhǔn)曲線的斜率。

        1.3.5 抗氧化活性測(cè)定

        DPPH自由基清除能力測(cè)定參照趙霞等的方法[21]。ABTS+·自由基清除能力測(cè)定參照楊瑞等的方法[22-23]。鐵離子還原能力(FRAP Ferricion Reducing Antioxidant Power)測(cè)定參照Z(yǔ)HANG等的方法[24]。

        抗氧化能力以每100 g樣品中Trolox當(dāng)量表示(μmol/100g),計(jì)算公式如下[25]:

        式中為Trolox當(dāng)量,μmol/100g;2為Trolox標(biāo)準(zhǔn)曲線的截距;2為Trolox標(biāo)準(zhǔn)曲線的斜率;為樣品稀釋倍數(shù)。

        1.3.6 酸奶工藝流程及操作要點(diǎn)

        選取經(jīng)1.3.1加工,并通過(guò)1.3.5測(cè)定抗氧化活性較好的加工工藝的雜糧進(jìn)行酸奶的制備。具體工藝:將鮮牛乳與處理過(guò)的雜糧、白砂糖按一定比例混合;預(yù)熱,于70 ℃、20 MPa 條件下均質(zhì)5 min,均質(zhì)后將混合液加熱至95 ℃、滅菌10 min,滅菌結(jié)束后,迅速冷卻至42 ℃。無(wú)菌條件下,將發(fā)酵劑按一定比例接種至混合發(fā)酵液中,42 ℃條件下發(fā)酵6 h。4 ℃冷藏后熟12~24 h后即得雜糧酸奶。

        1.3.7 感官評(píng)價(jià)

        參照彭小霞等[26]的方法對(duì)酸奶產(chǎn)品進(jìn)行評(píng)價(jià)。

        1.4 數(shù)據(jù)處理

        數(shù)據(jù)用Excel整理并采用平均值±標(biāo)準(zhǔn)偏差表示;采用Origin2021b及RStudio軟件進(jìn)行顯著性及相關(guān)性分析并做圖(<0.05)。使用抗氧化活性綜合(antioxidant potency composite,APC)指數(shù)法[27]進(jìn)行不同雜糧及不同加工方式蕎麥中抗氧化活性比較,按照下式計(jì)算APC 綜合指數(shù)。

        式中為APC 綜合指數(shù),%;x為方法測(cè)定值;max為該方法測(cè)定的最大值;為使用的方法總數(shù)。

        2 結(jié)果與分析

        2.1 不同種類雜糧的抗氧化性能比較

        以DPPH·清除能力、ABTS+?清除能力。鐵離子還原能力3種檢測(cè)方法表征雜糧的抗氧化能力。由表1可知,在7種雜糧中藜麥游離酚提取物的DPPH自由基清除能力最強(qiáng),達(dá)332.31 μmol /100g,蕎麥次之。結(jié)合酚提取物的DPPH自由基清除能力中糙米最強(qiáng),達(dá)173.51 μmol/100g,小米和燕麥次之。在ABTS+·清除能力中蕎麥的游離酚提取物顯著高于其他雜糧(<0.05),糙米的清除能力最低;而結(jié)合酚提取物中糙米的ABTS+·清除能力最強(qiáng),蕎麥最低。在鐵離子還原能力中,蕎麥游離酚提取物的鐵離子還原能力(1 056.69 μmol /100g)最強(qiáng),顯著高于其他雜糧(<0.05),是其他雜糧的2~4倍,高粱米次之,小米、黃米最低;在結(jié)合酚提取物中,糙米的還原鐵離子能力最強(qiáng),小米和燕麥次之,蕎麥最低。根據(jù)以往雜糧抗氧化的相關(guān)報(bào)道[23,28-29],西北地區(qū)雜糧如藜麥、糙米、蕎麥等具有更好的抗氧化能力。

        表1 不同種類雜糧的抗氧化能力及APC綜合指數(shù)

        注:同列不同小寫字母表示差異顯著(<0.05)。下表同。

        Note: Different lowercase in the same column indicate significant difference (< 0.05). The following table is the same.

        由于3種抗氧化檢測(cè)機(jī)理不同,不同抗氧化活性評(píng)價(jià)方法所得到的結(jié)論也存在差異,因此本研究采用APC指數(shù)法對(duì)不同雜糧的抗氧化活性進(jìn)行評(píng)價(jià),結(jié)果見表1。APC指數(shù)由大到小的順序是:蕎麥、高粱米、藜麥、糙米、燕麥、小米、黃米。因此針對(duì)不同加工方式對(duì)雜糧抗氧化能力的影響,選擇綜合指數(shù)較高的蕎麥進(jìn)行下一步研究。

        2.2 不同加工方式對(duì)蕎麥多酚含量及抗氧化性能的影響

        2.2.1 不同加工方式下蕎麥的多酚含量

        蕎麥中的酚類物質(zhì)在不同熱加工過(guò)程中受到不同程度的綜合作用力,與結(jié)合態(tài)酚類化合物相比,游離態(tài)酚類化合物結(jié)構(gòu)不穩(wěn)定,更易被破壞和分解[30],因此處理過(guò)的蕎麥游離酚均會(huì)有所損失,這可能是由于部分可溶性游離多酚在加工時(shí)溶解于水中,也可能是由于熱處理過(guò)程中產(chǎn)生的熱量或氧化反應(yīng)導(dǎo)致游離酚的損失或降低[31]。由表2可知,蒸制、煮制和打漿3種加工方式顯著影響蕎麥多酚提取物中游離酚和總酚含量(<0.05)。蒸制、煮制和打漿3種方式下,蕎麥多酚提取物中游離酚質(zhì)量分?jǐn)?shù)分別減少了35.38%、48.02%、59.21%;結(jié)合酚質(zhì)量分?jǐn)?shù)分別增加了71.96%、12.87%、104.02%。加工后蕎麥的游離酚出現(xiàn)不同程度的降低,這可能是由于蒸制和煮制2種熱處理方式導(dǎo)致部分游離酚發(fā)生氧化或降解反應(yīng)[32-33];打漿則可能是物理破壞導(dǎo)致了游離酚的損失。蕎麥中的結(jié)合酚多與谷物中蛋白質(zhì)及膳食纖維中不溶性纖維基質(zhì)結(jié)合[34],因此,在高溫作用下蛋白質(zhì)及纖維素結(jié)構(gòu)發(fā)生變化,使結(jié)合酚得到釋放[35],從而導(dǎo)致蕎麥加工后的結(jié)合酚增加。與未處理的蕎麥相比,蒸制相較于其它方式對(duì)總酚的損失率更小。

        黃酮含量方面,蒸制使蕎麥的游離黃酮含量顯著高于未處理及其他加工方式的蕎麥(<0.05)。與未處理過(guò)的蕎麥相比,蒸制蕎麥中的游離黃酮、總黃酮分別增加了50.90%、34.57%。未處理及加工后蕎麥的結(jié)合黃酮無(wú)顯著性差異(>0.05)。有報(bào)道稱,高溫作用會(huì)導(dǎo)致細(xì)胞壁破裂,有利于溶劑與細(xì)胞內(nèi)部的相互滲透,增加黃酮在溶劑中的溶解,使黃酮類物質(zhì)更易被提取出來(lái),但加熱時(shí)間過(guò)長(zhǎng)會(huì)使游離黃酮被破壞和分解[35-37]。本試驗(yàn)中蒸制使得游離黃酮、總黃酮均增加的原因可能是較高溫度,較短蒸制時(shí)間(10 min)使得游離黃酮得以保留的同時(shí),總黃酮含量顯著增加(<0.05)。

        表2 不同加工方式下蕎麥的多酚及黃酮含量比較

        2.2.2 不同加工方式下蕎麥的抗氧化能力

        由表3可知,在經(jīng)過(guò)蒸制、煮制和打漿處理后處理后,蕎麥的DPPH自由基清除能力顯著降低。其中蕎麥游離酚提取物的DPPH自由基清除能力分別減少26.18%、39.53%、55.49%;結(jié)合酚提取物的DPPH自由基清除能力分別增加了104.42%、264.53%、272.54%。根據(jù)分析,游離酚提取物的DPPH自由基清除能力與游離酚含量具有一致的變化規(guī)律,表明游離酚的含量可以很好地反映游離酚提取物的DPPH自由基清除能力,這與王耀紅的結(jié)論一致[38]。ABTS+·自由基清除能力方面,蒸制方式下蕎麥游離酚提取物的ABTS+·清除能力下降不明顯(>0.05),煮制和打漿的方式顯著低于蒸制和未處理(<0.05);結(jié)合酚提取物中蒸制、煮制和打漿的方式顯著高于未處理的ABTS+·自由基清除能力(<0.05)。鐵離子還原能力方面,蒸煮方式下游離酚提取物的鐵離子還原能力變化不明顯(>0.05),打漿的方式使鐵離子還原能力顯著降低了34%;3種加工方式下蕎麥結(jié)合酚提取物的鐵離子還原能力變化不顯著(>0.05)。

        通過(guò)APC綜合指數(shù)法評(píng)價(jià)不同方式的抗氧化性,其抗氧化活性由高到低依次為蒸制、未處理、煮制、打漿。因此,將蕎麥以蒸制的方式加入酸奶里,研究其抗氧化能力。

        表3 不同加工方式下蕎麥的抗氧化能力比較

        2.2.3 蒸制方式下蕎麥多酚含量與抗氧化能力的相關(guān)性分析

        對(duì)蒸制方式下蕎麥多酚含量與抗氧化能力進(jìn)行相關(guān)性分析,結(jié)果由表4可知,總酚、結(jié)合黃酮與DPPH自由基清除能力、ABTS+·清除能力、鐵離子還原能力具有良好相關(guān)性,其中總酚與ABTS+·清除能力、鐵離子還原能力存在極顯著正相關(guān)性(<0.001),結(jié)合黃酮與DPPH自由基清除能力存在極顯著正相關(guān)性(<0.01)。

        表4 蕎麥多酚含量與抗氧化能力相關(guān)性分析

        注:**代表在<0.01 水平上極顯著相關(guān),***代表在<0.001 水平上極顯著相關(guān)。

        Note: ** represents extremely significant correlation at the level of<0.01, *** represents extremely significant correlation at the level of<0.001.

        2.3 蕎麥酸奶的多酚含量及體外抗氧化特性表征

        2.3.1 蕎麥酸奶的多酚含量

        將蒸制好的蕎麥與牛奶共同發(fā)酵成蕎麥酸奶。研究蕎麥酸奶的多酚含量及抗氧化性能,結(jié)果如圖1所示。蕎麥酸奶中游離酚、結(jié)合酚及總酚的含量均顯著高于普通酸奶(<0.05),其中總酚的質(zhì)量分?jǐn)?shù)(52.85 mg/100g)是普通酸奶(10.94 mg/100g)的5.16倍。蕎麥酸奶中的游離黃酮、結(jié)合黃酮分別為10.29、2.20 mg/100g,顯著高于普通酸奶(<0.05);總黃酮質(zhì)量分?jǐn)?shù)為12.49 mg/100g,是普通酸奶的4.23倍。

        注:不同小寫字母表示同一酚類物質(zhì)在不同樣品間的差異。下同。

        Fig .1 Content of polyphenol and flavonoid in yoghurt

        2.3.2 蕎麥酸奶體外抗氧化特性表征

        酸奶體外抗氧化能力如圖2可知,DPPH自由基清除能力方面,蕎麥酸奶游離酚提取物達(dá)30.28 μmol/100g,約是普通酸奶的(15.17 μmol/100g)的2倍;蕎麥結(jié)合酚提取物為13.45 μmol/100g,普通酸奶為7.35 μmol/100g。有研究報(bào)道酸奶中小分子肽類、氨基酸及乳酸菌對(duì)DPPH自由基也具有一定的清除作用[39]。ABTS+?清除能力方面,蕎麥酸奶游離酚提取物、結(jié)合酚提取物的ABTS+?清除能力分別為81.57、36.45 μmol/100g,顯著高于普通酸奶(<0.05)。在鐵離子還原能力中,蕎麥酸奶游離酚提取物的鐵離子還原能力(81.208 μmol/100g)顯著高于普通酸奶(30.91 μmol/100g);結(jié)合酚提取物(33.49 μmol/100g)與普通酸奶的還原鐵離子能力沒有顯著差異(>0.05)??梢?,蕎麥酸奶的3種抗氧化能力均不同程度的高于普通酸奶,具有良好的抗氧化活性。

        圖2 酸奶的體外抗氧化能力

        2.3.3 蕎麥酸奶感官評(píng)價(jià)

        經(jīng)過(guò)感官評(píng)定,結(jié)果由圖3可知,添加蕎麥顆粒的酸奶總體接受性高于普通酸奶,蕎麥的添加主要提升了酸奶的口感和氣味,酸奶中的蕎麥顆粒增加了酸奶的咀嚼感,同時(shí)使酸奶具有自然的發(fā)酵風(fēng)味和獨(dú)特的麥香味,酸甜可口,口感細(xì)膩。

        圖3 酸奶的感官評(píng)價(jià)

        Fig .3 Sensory evaluation of yoghurt

        3 結(jié) 論

        通過(guò)對(duì)7種雜糧的抗氧化能力進(jìn)行篩選,對(duì)不同加工方式下雜糧的多酚含量及抗氧化能力進(jìn)行比較,將抗氧化優(yōu)異的雜糧以最優(yōu)的加工方式加入牛奶中發(fā)酵成酸奶,研究其雜糧酸奶的抗氧化活性。結(jié)果表明:

        1)不同種類雜糧的抗氧化能力存在顯著差異。根據(jù)APC指數(shù)進(jìn)行綜合評(píng)價(jià),抗氧化能力從高到低依次為:蕎麥、高粱米、藜麥、糙米、燕麥、小米、黃米。

        2)將抗氧化能力最強(qiáng)的蕎麥,經(jīng)過(guò)蒸制、煮制、打漿3種方式加工后,發(fā)現(xiàn)蒸制對(duì)蕎麥的抗氧化性影響最小,多酚損失率最小。總酚和黃酮含量從高到低為:蒸制、煮制、打漿,根據(jù)APC指數(shù)計(jì)算,抗氧化活性大小排序:蒸制、煮制、打漿。

        3)將蒸制的蕎麥與牛奶發(fā)酵成酸奶,其多酚含量及抗氧化效果顯著高于普通酸奶(<0.05),相比于普通酸奶,其總酚的質(zhì)量分?jǐn)?shù)(52.85 mg/100g)是普通酸奶(10.94 mg/100g)的5.16倍,總黃酮質(zhì)量分?jǐn)?shù)(12.49 mg/100g)是普通酸奶的4.23倍,抗氧化能力顯著高于普通酸奶。

        此研究結(jié)果為雜糧篩選及其抗氧化雜糧酸奶的開發(fā)利用提供了參考。下一步關(guān)于雜糧酸奶體內(nèi)多酚利用率及抗氧化性如何,在今后的研究中應(yīng)繼續(xù)深入探索。

        [1] QIN H, WU H, SHEN K, et al. Fermented minor grain foods: Classification, functional components, and probiotic potential[J]. Foods, 2022, 11(20): 3155.

        [2] ALHAITHLOUL HAS, GALAL FH, SEUFI AM. Effect of extreme temperature changes on phenolic, flavonoid contents and antioxidant activity of tomato seedlings()[J]. PeerJ, 2021, 9: e11193.

        [3] TORBICA A, BELOVI? M, POPOVI? L, et al. Comparative study of nutritional and technological quality aspects of minor cereals[J]. Journal of Food Science and Technology, 2021, 58(5): 311-322.

        [4] MAANTE-KULJUS M, R?TSEP R, MOOR U, et al. Effect of vintage and viticultural vractices on the phenolic content of hybrid winegrapes in very cool climate[J]. Agriculture, 2020, 10(5): 169-169.

        [5] 張青雯,崔寧博,馮禹,等. 基于氣象資料的日輻射模型在中國(guó)西北地區(qū)適用性評(píng)價(jià)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(2):189-196. ZHANG Qingwen, CUI Ningbo, FENG Yu, et al. Evaluation on applicability of daily solar radiation model in Northwest China based on meteorological data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 189-196. (in Chinese with English abstract)

        [6] 白雪冰,楊佳寧,姜醒睿,等. 西北地區(qū)干紅葡萄酒產(chǎn)地與酒齡的理化判別方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(13):319-326. BAI Xuebing, YANG Jianing, JIANG Xingrui, et al. Discrimination method for the origin and age of dry red wine by physico-chemical indices in northwest China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(13): 319-326. (in Chinese with English abstract)

        [7] YE Y, LI P, ZHOU J, et al. The improvement of sensory and bioactive properties of yogurt with the introduction of tartary buckwheat[J]. Foods, 2022, 11(12): 1774.

        [8] YANG M, LI N, TONG L, et al. Comparison of physicochemical properties and volatile flavor compounds of pea protein and mung bean protein-based yogurt[J]. LWT, 2021, 152: 112390.

        [9] 方芳,王文玉,吳炫,等. 谷物酸奶的研制及其抗氧化特性研究[J]. 中國(guó)食品,2019,761(1):149-151.

        [10] FAN X, LI X, ZHANG T, et al. Novel millet-based flavored yogurt enriched with superoxide dismutase[J]. Frontiers in Nutrition, 2022, 8(1): 791886.

        [11] 韓玲玉,汪麗萍,譚斌,等. 7種雜糧抗氧化活性及其擠壓雜糧粉體外消化特性研究[J]. 中國(guó)糧油學(xué)報(bào),2019,34(6):45-52. HAN Lingyu, WANG Liping, TAN Bin, et al. Comparative study of 7 kinds of cereals on antioxidant activity and in vitro digestion characteristics of extruded cereal powders[J]. Journal of the Chinese Cereals and Oils Association, 2019, 34(6): 45-52. (in Chinese with English abstract)

        [12] 王紅迪,嚴(yán)文霞,蔣兵,等. 超聲輔助萌芽聯(lián)合超高壓處理對(duì)花生-黑豆芽復(fù)合汁品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2023,39(2):222-232. WANG Hongdi, YAN Wenxia, JIANG Bing, et al. Effects of ultrasonic-assisted germination combined with high hydrostatic pressure treatment on the quality of compound peanut-black bean sprout juice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(2): 222-232. (in Chinese with English abstract)

        [13] 劉翀,張瑞婷,劉本國(guó),等. 蒸汽爆破處理對(duì)麥麩的酚酸組成及其抗氧化活性的影響(英文)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(6):308-314. LIU Chong, ZHANG Ruiting, LIU Benguo, et al. Effect of steam explosion treatment on phenolic acid composition of wheat bran and its antioxidant capacity[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(6): 308-314. (in Chinese with English abstract)

        [14] 任長(zhǎng)忠,陜方,王敏,等. 蕎麥營(yíng)養(yǎng)與功能性研究及其產(chǎn)品開發(fā)[J]. 中國(guó)糧油學(xué)報(bào),2022,37(11):261-269. REN Changzhong, SHAN Fang, WANG Min, et al. Review on the nutrition and functionality and the food product development of buckwheat[J]. Journal of the Chinese Cereals and Oils Association, 2022, 37(11): 261-269. (in Chinese with English abstract)

        [15] 段慶松,段玉敏,肖志剛,等. 擠壓穩(wěn)定化處理對(duì)米糠各組分蛋白結(jié)構(gòu)及功能性質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(19):283-290. DUAN Qingsong, DUAN Yumin, XIAO Zhigang, et al. Effects of extrusion stabilization on protein structure and functional properties of rice bran components[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(19): 283-290. (in Chinese with English abstract)

        [16] 王娟,孫瑞琳,劉欣,等. 藜麥黑枸杞酸奶的工藝優(yōu)化及其抗氧化活性研究[J]. 食品工業(yè)科技,2022,43(12):240-245. WANG Juan, SUN Ruilin, LIU Xin, et al. Study on the optimization of quinoa black medlar yogurt and its antioxidant activity[J]. Science and Technology of Food Industry, 2022, 43(12): 240-245. (in Chinese with English abstract)

        [17] 康子悅,沈蒙,葛云飛,等. 基于植物廣泛靶向代謝組學(xué)技術(shù)探究小米粥中酚類化合物組成及其抗氧化性[J]. 食品科學(xué),2021,42(4):206-214. KANG Ziyue, SHEN Meng, GE Yunfei, et al. Analysis of phenolic composition in millet porridge using widely-targeted metabolomics and evaluation of antioxidant activity[J]. Food Science, 2021, 42(4): 206-214. (in Chinese with English abstract)

        [18] TI H, LI Q, ZHANG R, et al. Free and bound phenolic profiles and antioxidant activity of milled fractions of different indica rice varieties cultivated in southern China[J]. Food Chemistry, 2014, 159(18): 166-174.

        [19] SILVA F, QUEIROGA R, SOUZA E D, et al. Incorporation of phenolic-rich ingredients from integral valorization of Isabel grape improves the nutritional, functional and sensory characteristics of probiotic goat milk yogurt[J]. Food Chemistry, 2022, 369(4): 130957.

        [20] 段夢(mèng)杰,王振華,托合提薩伊普·圖爾蓀托合提,等. 小米粉添加量對(duì)生鮮面條品質(zhì)與多酚含量及抗氧化活性的影響[J]. 食品科學(xué)技術(shù)學(xué)報(bào),2022,40(3):137-144. DUAN Mengjie, WANG Zhenhua, TUOHETISAYIPU Tuersuntuoheti, et al. Effect of millet flour ratio on fresh noodles quality, polyphenol content and antioxidant activities[J]. Journal of Food Science and Technology, 2022, 40(3): 137-144. (in Chinese with English abstract)

        [21] 趙霞. 熱加工和發(fā)芽處理對(duì)燕麥多酚含量和抗氧化性的影響[D]. 無(wú)錫:江南大學(xué),2016. ZHAO Xia. Effect of Thermal Processing and Germination on Oat Polyphenols and Antioxidant Activities[D]. Wuxi: Jiangnan University, 2016. (in Chinese with English abstract)

        [22] 楊瑞,黨斌,張杰,等. 青海青稞、燕麥、藜麥營(yíng)養(yǎng)品質(zhì)及抗氧化活性比較研究[J]. 中國(guó)糧油學(xué)報(bào),2022,37(5):63-69. YANG Rui, DANG Bin, ZHANG Jie, et al. A comparative study on the nutritional quality and antioxidant activity of barley, oats, and quinoa in qinghai[J]. Journal of the Chinese Cereals and Oils Association, 2022, 37(5): 63-69. (in Chinese with English abstract)

        [23] LIU Y, LIU Y, ZHANG J, et al. Effects of degree of milling on phenolics and antioxidant activity of cooked rice during in vitro digestion[J]. Cereal Chemistry, 2022, 99(2): 393-404.

        [24] ZHANG R, KHAN S A, CHI J, et al. Different effects of extrusion on the phenolic profiles and antioxidant activity in milled fractions of brown rice[J]. LWT - Food Science and Technology, 2018, 88: 64-70.

        [25] LI D, ZHANG X M, ZHANG J J. Antioxidant activity in vitro guided screening and identification of flavonoids antioxidants in the extract from tetrastigma hemsleyanum diels et gilg[J]. International Journal of Analytical Chemistry, 2021, 2021: 1-11.

        [26] 彭小霞. 全谷物酸牛奶的發(fā)酵技術(shù)及營(yíng)養(yǎng)功能研究[D]. 廣州:華南理工大學(xué),2019. PENG Xiaoxia. Studies on the Fermentation Technology and Nutritional Functionality of Whole Grain Yogurt[D]. Guangzhou: South China University of Technology, 2019. (in Chinese with English abstract)

        [27] 張玲艷,李潔瑩,韓飛,等. 蒸煮對(duì)小米營(yíng)養(yǎng)成分及抗氧化活性的影響[J]. 食品科學(xué),2017,38(24):113-117. ZHANG Lingyan, LI Jieying, HAN Fei, et al. Effects of steaming and boiling on the nutrients and antioxidant activity of millet[J]. Food Science, 2017, 38(24): 113-117. (in Chinese with English abstract)

        [28] ZENG Z C, HU X T, MCCLEMENTS D J, et al. Hydrothermal stability of phenolic extracts of brown rice[J]. Food Chemistry, 2019, 271: 114-121.

        [29] 楊紅葉,柴巖,王玉堂,等. 不同種類蕎麥中各種存在形式多酚含量的研究[J]. 食品科學(xué),2011,32(17):60-64. YANG Hongye, CHAI Yan, WANG Yutang, et al. Analysis of free and bound phenolics in different buckwheat varieties[J]. Food Science, 2011, 32(17): 60-64. (in Chinese with English abstract)

        [30] 楊洋,范蓓,李楊,等. 不同加工方式對(duì)青稞中酚類物質(zhì)的影響[J]. 食品工業(yè)科技,2023,44(1):11-18. YANG Yang, FAN Bei, LI Yang, et al. Influence of different processing methods on phenols in hulless barley[J]. Science and Technology of Food Industry, 2023, 44(1): 11-18. (in Chinese with English abstract)

        [31] 張歡. 蒸煮方式對(duì)糙米多酚抗氧化性、淀粉酶和葡萄糖苷酶活性的影響研究[D]. 沈陽(yáng):沈陽(yáng)師范大學(xué),2021. ZHANG Huan. Effect of Different Cooking Methods on Antioxidant Activities and Amylase and Glucoside Activities of Phenolic Compounds in Brown Rice[D]. Shenyang: Shenyang Normal University, 2021. (in Chinese with English abstract)

        [32] YU Y, ZHANG B, XI Y, et al. Bioaccessibility and transformation pathways of phenolic compounds in processed mulberry () leaves after in vitro gastrointestinal digestion and faecal fermentation[J]. Journal of Functional Foods, 2019, 60: 1-10.

        [33] ZHONG Y J, ZHANG Y Q, ZHU Z Y, et al. Comparative study on physicochemical and nutritional properties of black rice influenced by superheated steam, far infrared radiation, and microwave treatment[J]. Innovative Food Science & Emerging Technologies, 2023, 84: 103282.

        [34] ZHANG X W, DONG L H, JIA X C, et al. Bound phenolics ensure the antihyperglycemic effect of rice bran dietary fiber in db/db mice via activating the insulin signaling pathway in skeletal muscle and altering gut microbiota[J]. Journal of Agricultural and Food Chemistry, 2020, 68(15): 4387-4398.

        [35] 田懷香,陳霜,陳小燕,等. 不同提取方式對(duì)萱草花中酚類物質(zhì)及抗氧化活性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(20):303-312. TIAN Huaixiang, CHEN Shuang, CHEN Xiaoyan, et al. Effects of different extraction methods on phenolic compounds and antioxidant activity in Hemerocallis flower[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(20): 303-312. (in Chinese with English abstract)

        [36] 洪晴悅. 不同熱加工對(duì)青稞主要生物活性成分和體外消化與腸菌發(fā)酵特性的影響[D]. 重慶:西南大學(xué),2021. HONG Qingyue. Effects of Different Thermal Processing on Main Bioactive Components, in Vitro Digestion and Fermentation Characteristics of Qingke[D]. Chongqing: Southwest University, 2021. (in Chinese with English abstract)

        [37] 趙萌萌,張文剛,黨斌,等. 超微粉碎對(duì)青稞麩皮粉多酚組成及抗氧化活性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(15):291-298. ZHAO Mengmeng, ZHANG Wengang, DANG Bin, et al. Effects of ultra-micro-crushing on composition of polyphenols and antioxidant activity of barley bran powder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(15): 291-298. (in Chinese with English abstract)

        [38] WANG Q, SHAO H J, ZHANG Z, et al. Phenolic profile and antioxidant properties of sand rice () as affected by cooking and in vitro digestion[J]. Journal of the Science of Food & Agriculture, 2019, 99(8): 3871-3878.

        [39] YANG M, LI N, TONG L, et al. Comparison of physicochemical properties and volatile flavor compounds of pea protein and mung bean protein-based yogurt[J]. LWT, 2021, 152: 112390.

        Comparative study on antioxidant activity of multigrain yoghurt by different types and processing methods of coarse cereals

        ZHU Xiaoxue1, GONG Mianhong1, YANG Bingkun1, ZHUANG Jiao1, LI Yafeng1, DING Yuhong1, TANG Lihe2, WEI Xiaobin2, JU Ning1※

        (1.,,750021,; 2..,750101,)

        Coarse cereals rich in polyphenol compounds (such as polyphenolic acids, tannin, anthocyanin, and phytosterols) can soften the blood vessels, and lower the blood sugar, blood lipids, and superoxide free radicals for anti-aging and the increasing physiological activity. In this study, a comparison was performed on the polyphenol content and antioxidant activity of seven coarse cereals grown in Northwest China. A systematic investigation was carried out to explore the effects of different processing on the antioxidant activity in vitro. The raw materials were taken as millet, yellow rice, oat, quinoa, brown rice, buckwheat, and sorghum rice. After that, the multigrain yoghurt was prepared with high antioxidant activity in vitro. The antioxidant activity of coarse cereals was evaluated by the Antioxidant potency composite (APC) index using three detection methods, namely, DPPH free radical scavenging capacity, ABTS+·scavenging capacity, and iron ion reducing capacity. The coarse cereal with better performance was processed using steaming, boiling, and beating. The polyphenol content and antioxidant activity were further compared. At the same time, the relationship was determined between the polyphenols and antioxidant activity of the coarse cereal under the best processing. Finally, the coarse cereal with better characteristics and processing was selected to produce the multigrain yoghurt with the optimal polyphenol content and antioxidant activity. The results showed that there were significant antioxidant activities of different coarse cereals (<0.05). Specifically, brown rice and quinoa presented the strongest DPPH free radical scavenging capacity, followed by buckwheat. The buckwheat shared the strongest ABTS+·scavenging and iron reduction capacity. The antioxidant potency composite (APC) index was used to evaluate the antioxidant activity of different types of coarse cereals. The antioxidant activity was listed in the descending order of the buckwheat (93.45%) > the sorghum rice (52.42%) > the quinoa (51.24%) > the brown rice (50.91%) > the oats (39.70%) > the millet (33.82%) > the yellow rice (20.86%). The content of total phenols and flavonoids was also ranked in the descending order of steaming>boiling>beating. The contents of the total phenols were 329.48, 258.24, and 233.46 mg/100 g, respectively, whereas, that of the total flavonoids were 46.11, 34.89, and 34.09 mg/100g, respectively. According to the comprehensive antioxidant index, the antioxidant activity was ranked in the descending order of steaming (94.18%), boiling (91.52%), and beating (73.90%). The best antioxidant activity was achieved in the steamed buckwheat, indicating the lowest total phenol loss rate (29.22%), and the highest increase of flavonoids (34.75%). Furthermore, the correlation analysis between the polyphenol content and antioxidant activity of the steamed buckwheat showed that the total phenol, total flavonoid, and bound flavonoid presented a better correlation with the antioxidant activity. The total phenol showed an extremely significant positive correlation with the ABTS+·scavenging capacity and iron ion reducing capacity (<0.001). A significant positive correlation was found between the bound flavonoid and DPPH radical scavenging capacity (<0.01). The contents of free phenol, bound phenol, and total phenol in the buckwheat-yoghurt were significantly higher than those of the yoghurt without buckwheat (<0.05). The total phenol content of buckwheat-yoghurt (52.85 mg/100g) was 5.16 times of that the yoghurt without buckwheat (10.94 mg/100g), whereas, the total flavonoid content of the buckwheat-yoghurt (12.49 mg/100g) was 4.23 times of that the yoghurt without buckwheat. This finding can provide a strong reference for coarse cereals and functional yoghurt.

        agricultural products; coarse cereals; processing method; yoghurt; antioxidant activity

        2023-01-31

        2023-04-14

        寧夏回族自治區(qū)重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2021BEF02022);國(guó)家自然科學(xué)基金資助項(xiàng)目(32160593)

        朱曉雪,研究方向?yàn)槿榧叭橹破芳庸?。Email:397105572@qq.com

        劇檸,教授,研究方向?yàn)槿橹破芳庸ぜ叭槠肺⑸飳W(xué)。 Email:juning1122@163.com

        10.11975/j.issn.1002-6819.202301132

        S21; TS252

        A

        1002-6819(2023)-08-0268-08

        朱曉雪,龔綿紅,楊秉坤,等. 不同種類及加工方式對(duì)雜糧酸奶體外抗氧化活性的比較[J]. 農(nóng)業(yè)工程學(xué)報(bào),2023,39(8):268-275. doi:10.11975/j.issn.1002-6819.202301132 http://www.tcsae.org

        ZHU Xiaoxue, GONG Mianhong, YANG Bingkun, et al. Comparative study on antioxidant activity of multigrain yoghurt by different types and processing methods of coarse cereals[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(8): 268-275. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.202301132 http://www.tcsae.org

        猜你喜歡
        蕎麥雜糧酸奶
        紅山蕎麥看木森
        雜糧粉到底能不能吃?
        中老年保健(2022年2期)2022-08-24 03:21:44
        酸奶一定要涼著喝嗎?
        中老年保健(2022年3期)2022-08-24 02:59:30
        酸奶的12個(gè)健康真相,你知道幾個(gè)
        保健食品說(shuō)蕎麥
        細(xì)糧VS雜糧
        酸奶的12個(gè)健康真相,你知道幾個(gè)
        在家自己做酸奶可行嗎
        啟蒙(3-7歲)(2018年7期)2018-07-10 09:38:16
        蕎麥花開
        雜糧小鎮(zhèn)之歌
        陶山(2016年4期)2016-03-01 05:27:04
        精品国产人妻一区二区三区| 国产黄色看三级三级三级| 91亚洲国产成人久久精品网站 | 人妻av一区二区三区av免费| 国产高清丝袜美腿视频在线观看| 丰满熟女人妻一区二区三区 | 欧美jizzhd精品欧美| 中文字幕在线亚洲日韩6页手机版| 麻豆AⅤ精品无码一区二区 | 中文字幕第七页| 加勒比东京热久久综合| 熟女免费观看一区二区 | 欧美老熟妇又粗又大| 日本精品久久久久中文字幕1| 精品人妻一区二区视频| 美妇炮灰被狂躁爽到高潮h| 日日拍夜夜嗷嗷叫国产| 亚洲综合无码无在线观看| 国产精品女同一区二区| 亚洲国产夜色在线观看| 国产成人精品视频网站| 伊人久久大香线蕉av色婷婷| 中国久久久一级特黄久久久| 久久久av波多野一区二区| 久久99精品国产99久久6男男| 99久久久精品免费香蕉| 青青草视频原手机在线观看| 日本一区二区不卡二区| 精品香蕉一区二区三区| 在线高清理伦片a| аⅴ天堂国产最新版在线中文| 亚洲精品国产av一区二区| av免费观看网站大全| 久久久久亚洲av无码a片| 国产成人亚洲精品青草天美| 久久婷婷综合色丁香五月| 狠狠干视频网站| 免费观看国产激情视频在线观看| 超碰国产精品久久国产精品99 | 国产熟女高潮视频| 无码人妻丰满熟妇区免费|