宋慶松 彭培英 李洪濤 李鑫達(dá)
摘 要:降低固-固界面熱阻法是一種高效且應(yīng)用廣泛的減小器件傳熱阻力的方法。根據(jù)固-固界面狀態(tài)增加界面的有效接觸,可強(qiáng)化界面熱傳導(dǎo)。首先,概述了固-固界面熱阻的產(chǎn)生機(jī)理;其次,梳理了界面狀態(tài)(平面接觸和溝槽接觸)、粗糙度、界面壓力、熱界面材料等固-固界面熱阻影響因素的作用機(jī)制;第三,介紹了降低固-固界面熱阻方法的最新進(jìn)展;最后,分析了降低固-固界面熱阻研究存在的問題,并對(duì)其研究前景進(jìn)行了展望,提出未來(lái)應(yīng)從界面結(jié)構(gòu)、壓力/平面度、固-固接觸材料本身的物性參數(shù)、超薄黏合層熱界面材料等單獨(dú)或共同作用的方向上深化降低界面熱阻的研究,為其在強(qiáng)化電子散熱領(lǐng)域的應(yīng)用提供理論和實(shí)驗(yàn)支持。
關(guān)鍵詞:工程傳熱傳質(zhì)學(xué);界面結(jié)構(gòu);接觸熱阻;粗糙度;界面壓力;熱界面材料
中圖分類號(hào):TK01+8
文獻(xiàn)標(biāo)識(shí)碼:A DOI:10.7535/hbkd.2023yx03002
收稿日期:2023-03-24;修回日期:2023-05-04;責(zé)任編輯:馮 民
基金項(xiàng)目:
河北省高等學(xué)??茖W(xué)技術(shù)研究項(xiàng)目(QN2022160,ZD2022023);河北省自然科學(xué)基金(B2021208017)
第一作者簡(jiǎn)介:
宋慶松(1988—),女,河北邢臺(tái)人,講師,博士,主要從事能源管理方面的研究。
E-mail: qssong@hebust.edu.cn
Research progress of methods to reduce solid-solid?contact thermal resistance
SONG Qingsong, PENG Peiying, LI Hongtao, LI Xinda
(School of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018,China)
Abstract:Reducing solid-solid interface contact thermal resistance is an efficient and widely used method for reducing heat transfer resistance in devices. Increasing the effective contact of the interface according to the solid-solid interface state can enhance the interface heat conduction. Firstly, the mechanism of solid-solid interface thermal resistance was summarized. Secondly, the mechanism of the factors affecting the solid-solid interface thermal resistance was investigated, such as interface state(plane contact and groove contact), roughness, interface pressure, thermal interface material, etc. Thirdly, the latest progress of methods to reduce the contact thermal resistance of solid-solid interface was introduced. Finally, the problems in the research of reducing the contact thermal resistance of solid-solid interface were analyzed and its development prospect was suggested as following: further research should be carried out alone or together in the direction of the interface structure, pressure/flatness, physical parameters of solid-solid contact materials and thermal interface materials with ultra-thin boundary layer thickness, etc. It provides theoretical and experimental support for the application in the field of enhanced electronic cooling.
Keywords:engineering heat and mass transfer; interface structure; contact thermal resistance; roughness; interface pressure; thermal interface materials
隨著電子器件高功率和集成化的發(fā)展,其散熱問題日趨嚴(yán)峻,高溫或高熱流密度極易導(dǎo)致器件功能障礙,甚至影響其壽命。由于芯片和熱沉的接觸表面之間具有一定的空氣間隙,向間隙填充熱界面材料時(shí)可能出現(xiàn)黏合層厚度增大、熱界面材料產(chǎn)生裂紋等情況。如何將電子器件內(nèi)部產(chǎn)生的熱量及時(shí)導(dǎo)出,保證設(shè)備正常運(yùn)行,是固-固界面熱阻研究需解決的問題。
19世紀(jì)30年代,STARR通過實(shí)驗(yàn)發(fā)現(xiàn)銅與氧化銅的接觸界面?zhèn)鬟f熱量時(shí)存在阻力[1]。19世紀(jì)40年代,有研究人員提出試件表面可以通過粗糙體來(lái)模擬,此后許多學(xué)者對(duì)界面接觸熱阻問題進(jìn)行了大量的實(shí)驗(yàn)和理論研究,國(guó)內(nèi)界面接觸熱阻的研究始于19世紀(jì)80年代[2]。目前國(guó)內(nèi)外有多個(gè)研究團(tuán)隊(duì)在進(jìn)行相關(guān)研究,主要代表為美國(guó)紐約州立大學(xué)FELSKE JAMES D團(tuán)隊(duì),華中科技大學(xué)劉勝教授團(tuán)隊(duì)和同濟(jì)大學(xué)聲子學(xué)與熱能科學(xué)中心徐象繁研究員團(tuán)隊(duì)[3-5]。華中科技大學(xué)目前正在研究界面溝槽對(duì)界面接觸熱阻的影響,該研究重點(diǎn)關(guān)注了界面結(jié)構(gòu),但其對(duì)界面壓力等相關(guān)因素的研究較少[3]。近年來(lái),GREENWOOD團(tuán)隊(duì)等將固-固界面接觸熱阻研究進(jìn)一步細(xì)化到界面粗糙度和壓力等關(guān)鍵因素中,引入接觸表面微凸體的模型假設(shè),利用赫茲彈性接觸理論分析試件的實(shí)際接觸面積與壓力載荷的關(guān)系,使界面?zhèn)鳠釞C(jī)理的闡述更加明了[6]。在此基礎(chǔ)上,PENG團(tuán)隊(duì)又考慮了界面的彈塑性接觸和加載較大壓力的熱流情況,所得經(jīng)驗(yàn)公式對(duì)近期研究具有一定的指導(dǎo)意義[7]。這些成果促進(jìn)了界面接觸熱阻的發(fā)展,但在不同界面狀態(tài)下討論界面熱阻影響因素和減小方法的研究相對(duì)較少[8-10]。例如,在常規(guī)固-固平面接觸情況下,填充型熱界面材料易出現(xiàn)粒子堆積從而造成黏合層厚度增加等問題,降低了界面的散熱性能。固-固界面結(jié)構(gòu)對(duì)熱界面材料在界面間的流動(dòng)和分布有一定作用,進(jìn)而會(huì)影響界面熱阻。目前關(guān)于固-固界面結(jié)構(gòu)接觸的研究還較少,因此在界面接觸狀態(tài)基礎(chǔ)上展開接觸熱阻的研究具有重要的現(xiàn)實(shí)意義。
本文首先概述了固-固界面熱阻的產(chǎn)生機(jī)理,梳理固-固界面熱阻影響因素的作用機(jī)制,根據(jù)目前這些關(guān)鍵影響因素的研究及應(yīng)用情況,重點(diǎn)分析了存在的問題,并對(duì)固-固界面強(qiáng)化傳熱的研究前景進(jìn)行展望,為進(jìn)一步降低界面接觸熱阻的理論和應(yīng)用研究提供依據(jù)。
1 固-固界面熱阻產(chǎn)生機(jī)理概述
固-固界面?zhèn)鳠嶙枇Υ蟮膯栴}是目前制約高功率電子器件發(fā)展的瓶頸。器件芯片的熱量在耗散到環(huán)境的過程中需要經(jīng)過芯片與熱沉的固-固界面,接觸熱阻在此產(chǎn)生。圖1是典型的固-固界面位置簡(jiǎn)圖,由圖1可知,芯片與熱沉之間的界面接觸不完全。根據(jù)固-固界面接觸熱
阻(RTIM)的計(jì)算公式:RTIM=Rc+hBLT/KTIM,從宏觀方面可知熱界面材料的黏合層厚度(hBLT)和熱導(dǎo)率(KTIM)、上下界面與熱界面材料的接觸熱阻(Rc)是影響固-固界面熱阻的關(guān)鍵參數(shù)。其中,Rc與界面粗糙結(jié)構(gòu)、界面壓力等相關(guān)??梢姡R?guī)固-固平面接觸熱阻的影響因素多,其發(fā)展也較快。另外,熱界面材料(尤其是填充型)在使用時(shí)易發(fā)生粒子堆積,可能造成黏合層厚度大以及產(chǎn)生孔洞、黏結(jié)裂紋等,反而增大熱界面材料的熱阻。固-固接觸界面的結(jié)構(gòu)(界面溝槽、平面度匹配情況)對(duì)填充型熱界面材料的分布影響較大。一方面,在固體溝槽的表面仍然存在粗糙結(jié)構(gòu),影響熱傳導(dǎo);另一方面,機(jī)械加工的表面其本身具有一定的斜度(該形狀誤差可用平面度表征),當(dāng)芯片與熱沉接觸時(shí),界面可能產(chǎn)生一定的縫隙,顯然界面壓力對(duì)縫隙大小具有調(diào)節(jié)能力。
另外,固-固界面狀態(tài)對(duì)熱阻的調(diào)控與熱界面材料的流動(dòng)相關(guān)。熱界面材料受擠壓會(huì)流動(dòng)著填充界面,流體優(yōu)先向最小阻力的方向流動(dòng),而填充型熱界面材料中的粒子易產(chǎn)生堆積現(xiàn)象,阻止材料的流動(dòng),從而阻礙黏合層減薄。填充型熱界面材料在界面的應(yīng)用可根據(jù)Bingham模型和Herschel-Bulkley流體模型來(lái)描述,現(xiàn)有研究結(jié)果表明,通過優(yōu)化其黏度和屈服強(qiáng)度、加大界面壓力可減薄黏合層[11]。表1總結(jié)了固-固界面間熱界面材料流動(dòng)理論的適用流動(dòng)狀態(tài)和解釋。
2 固-固界面熱阻的影響因素
固-固界面熱阻受多個(gè)因素影響,接觸界面的平整度越好、熱界面材料熱導(dǎo)率越高且界面施加壓力越大的情況下界面熱阻越小。界面狀態(tài)(平面接觸、溝槽接觸)對(duì)固-固界面熱阻具有一定的調(diào)節(jié)作用。如具有溝槽結(jié)構(gòu)的界面能加快熱界面材料的流動(dòng),阻止填充型熱界面材料內(nèi)粒子的堆積,從而減薄黏合層。
2.1 界面狀態(tài)
固-固界面狀態(tài)對(duì)電子器件的散熱效果影響較大,研究人員從數(shù)值模擬的角度研究固-固界面平面接觸狀態(tài)和溝槽接觸狀態(tài)下的界面熱傳導(dǎo)情況。沈軍等[13]分別采用截錐體、圓弧形和三角形模型模擬固-固界面結(jié)構(gòu)的接觸情況,給出了對(duì)應(yīng)情況下的界面熱阻的近似計(jì)算公式。國(guó)內(nèi)外對(duì)界面溝槽調(diào)控?zé)嶙璧南嚓P(guān)研究也取得了一定的進(jìn)展。LINDERMAN等[14]采用固-固界面溝槽裝置對(duì)其界面?zhèn)鳠崆闆r進(jìn)行了評(píng)估。如圖2所示,固-固接觸的界面處有一個(gè)面被加工了溝槽,界面空隙仍用熱界面材料填充,通過位置傳感器可實(shí)時(shí)檢測(cè)熱界面材料的厚度,測(cè)量其對(duì)應(yīng)的界面熱阻,該裝置為界面溝槽調(diào)控?zé)嶙璧难芯刻峁┝藢?shí)驗(yàn)支持。近來(lái),研究人員通過設(shè)計(jì)不同的溝槽結(jié)構(gòu),更換不同的固-固接觸界面,對(duì)界面接觸熱阻的情況進(jìn)行了描述:方格溝槽結(jié)構(gòu)比米字型結(jié)構(gòu)的降熱阻效果更好(界面固體為黃銅,熱界面材料選用導(dǎo)熱硅脂,則接觸熱阻值分別為0.881×10-3K·m2/W和1.324×10-3K·m2/W);與銅(黃銅,熱導(dǎo)率109 W·m-1·K-1)和鋁(鑄造鋁合金,熱導(dǎo)率150 W·m-1·K-1)相比,固-固接觸面材料為硅(熱導(dǎo)率148 W·m-1·K-1)時(shí)的降熱阻效果尤為明顯,測(cè)量顯示這3種材料的接觸熱阻分別為0.881,0.473和0.276 K·m2/W(熱界面材料選用導(dǎo)熱硅脂),且與平面相比,界面溝槽將黏合層厚度減小了1/3~1/2[14]。界面結(jié)構(gòu)對(duì)其熱阻的影響涉及很多方面,需要根據(jù)具體情況進(jìn)行分析,尤其是對(duì)其定量分析較為復(fù)雜,后續(xù)工作的開展應(yīng)該在模擬的基礎(chǔ)上進(jìn)一步優(yōu)化實(shí)驗(yàn)裝置,并針對(duì)具體器件進(jìn)行研究。
2.2 粗糙度
近年來(lái),許多研究人員對(duì)表面粗糙度與接觸熱阻的關(guān)系進(jìn)行了討論。當(dāng)接觸界面粗糙度降低時(shí)會(huì)對(duì)界面接觸點(diǎn)面積和界面形貌產(chǎn)生影響,因此選用表面粗糙度為關(guān)鍵因素研究界面熱阻具有很強(qiáng)的代表性[15-17]。目前模擬研究顯示:粗糙度增大,同時(shí)增大界面微觀間隙,表現(xiàn)為接觸熱傳導(dǎo)量減小,從而得到界面接觸熱阻會(huì)隨著表面粗糙度增大而增大的結(jié)論[18-20]。部分學(xué)者通過實(shí)驗(yàn)法得到了與模擬研究相似的結(jié)論[21-24],然而對(duì)粗糙界面的微觀尺度研究鮮有報(bào)道。另外,保持界面壓力固定,在一定粗糙度范圍內(nèi),材料種類對(duì)界面熱阻變化率的大小也有很大影響[25]。表2總結(jié)了幾種常用材料在不同粗糙度范圍內(nèi)變化時(shí)對(duì)應(yīng)的界面熱阻變化率。由表2比較發(fā)現(xiàn),與不銹鋼材料相比,銅片在較小的界面壓力(僅0.05 MPa)作用下的熱阻變化率大小就已經(jīng)與不銹鋼相當(dāng)??傮w來(lái)看鋁的熱阻變化率最大,文獻(xiàn)報(bào)道這是由于鋁的硬度低,在同樣的壓力下發(fā)生較大的變形,熱阻減小明顯[26]。
綜上所述,在一定粗糙度范圍內(nèi),材料種類會(huì)影響界面熱阻變化率的大小。通過比較不銹鋼、銅和鋁3種材料,分析可得粗糙度對(duì)鋁材料界面熱阻的影響最大。除表面粗糙度、界面材料種類外,溫度等諸多因素也可能對(duì)接觸熱阻有一定的影響。
2.3 界面壓力
由固-固界面接觸熱阻的產(chǎn)生機(jī)理可知,界面壓力是影響接觸熱阻的重要因素之一。目前,關(guān)于界面熱阻的實(shí)驗(yàn)研究中壓力取值大多為0.1~10 MPa[18]。根據(jù)兩接觸界面材料性質(zhì)不同,部分研究壓力取值可能更大,壓力對(duì)界面熱阻的影響與界面實(shí)際接觸面積有關(guān)。如圖3所示,當(dāng)界面壓力增加時(shí),兩表面凹凸形成的接觸點(diǎn)形變?cè)黾?,兩物體實(shí)際接觸面積增大,熱阻減小。應(yīng)用施壓模型法可定
性描述施加壓力與界面熱阻之間的關(guān)系,假定接觸表面的微凸體為球形且高度呈高斯分布,通過統(tǒng)計(jì)與分析發(fā)現(xiàn),在界面由小到大的加載過程中,微凸體也隨之發(fā)生形變,使界面熱阻先成指數(shù)關(guān)系減小再發(fā)生線性遞減[29]。一些研究人員則進(jìn)行了實(shí)驗(yàn),研究結(jié)果顯示當(dāng)加載壓力增大到一定程度時(shí)熱阻值穩(wěn)定[18]。這是由于當(dāng)加載到一定壓力時(shí),界面結(jié)合相當(dāng)緊密、形變很小,接觸熱阻值不再發(fā)生明顯變化,相似的實(shí)驗(yàn)結(jié)果在其他研究中也得到驗(yàn)證[30]。以上研究表明,接觸熱阻在某一區(qū)間內(nèi)會(huì)隨著界面壓力的增大而變化明顯,但隨著壓力的不斷增加而趨于平緩。
施加壓力可以一定程度上降低固-固界面接觸熱阻,但是實(shí)際器件能承受的壓力值有限。精密的微電子器件能承受的壓力更小。一般電子器件在承受壓力的初始階段接觸熱阻降低顯著,但當(dāng)壓力超過固體材料的承受極限時(shí),可能會(huì)損壞器件。因此,施加界面壓力的研究應(yīng)考慮界面兩側(cè)固體材料的承載能力,避免損傷器件。
2.4 熱界面材料
熱界面材料屬于高導(dǎo)熱材料,普遍用于填充固-固界面的空氣(熱導(dǎo)率僅約0.026 W·m-1·K-1)間隙,如圖4所示。熱界面材料的應(yīng)用為界面建立了有效的熱傳導(dǎo)通道,減小了界面?zhèn)鳠釤嶙瑁虼丝商岣咂骷嵝阅?sup>[31-32]。目前,研究人員從多種角度對(duì)熱界面材料進(jìn)行研究。例如:對(duì)傳統(tǒng)熱界面材料的特性細(xì)化研究,對(duì)新型熱界面材料的熱導(dǎo)率提升研究,熱界面材料內(nèi)高導(dǎo)熱填料的分布與形狀研究[33]。這反映出熱界面材料的種類和性能差異較大,其對(duì)界面熱阻的影響仍有待進(jìn)一步研究。另外,一般取向方法制備的熱界面材料使用時(shí)要求熱流方向與取向方向一致,通過固-固界面結(jié)構(gòu)設(shè)計(jì)強(qiáng)化熱界面材料取向可能為熱傳導(dǎo)過程中熱流的控制與熱量的分布提供新路線。
2.5 其他重要因素
除以上影響界面接觸熱阻的因素外,還有其他重要因素對(duì)界面的傳熱特性也有一定的影響,如固-固接觸界面的物理參數(shù)(彈塑性、導(dǎo)熱系數(shù))、器件所處環(huán)境溫度、兩固-固接觸界面的平面度[34-35]。迄今為止,還沒有令人滿意的理論模型或可靠的經(jīng)驗(yàn)公式能精確描述以上重要因素對(duì)界面熱阻的作用機(jī)理,但是界面熱阻理論與實(shí)驗(yàn)研究等的總結(jié)對(duì)促進(jìn)界面熱傳導(dǎo)有積極的意義。
3 降低固-固界面熱阻方法
接觸熱阻屬于熱學(xué)、數(shù)學(xué)、機(jī)械等多個(gè)學(xué)科的交叉領(lǐng)域,影響因素包括材料表面形態(tài)(粗糙度等)、接觸界面壓力、間隙熱界面材料、材料表面彈塑性、溫度等。固-固界面接觸熱阻影響因素所涉及的范圍相當(dāng)廣泛,其調(diào)控機(jī)理也比較復(fù)雜,在電子器件應(yīng)用中需要根據(jù)需求和因素特點(diǎn)來(lái)調(diào)控接觸熱阻。
大部分電子器件的發(fā)熱量需要通過導(dǎo)熱的方式傳遞到熱沉,再通過任何便利的手段(如液冷、相變儲(chǔ)熱)散發(fā)到環(huán)境中。電子器件與熱沉的連接是固-固界面連接,接觸換熱是工業(yè)常用的散熱途徑,如發(fā)動(dòng)機(jī)的冷卻、航天器天線碳纖維增強(qiáng)復(fù)合材料板的對(duì)接或插接、機(jī)載計(jì)算機(jī)芯片熱量與冷板之間的連接。這些接觸界面直接影響傳熱,其對(duì)電子器件的溫度分布有重要影響。固-固界面接觸熱阻的調(diào)節(jié)一般需要同時(shí)達(dá)到溫度分布均勻的效果,否則可能影響電子器件(如反射器)的精度[36]。界面不是簡(jiǎn)單的二維平面,而是具有一定厚度的薄層,通過對(duì)界面結(jié)構(gòu)進(jìn)行優(yōu)化可以調(diào)整界面熱阻[37]。表3列出了一些降低固-固界面接觸熱阻的方法,提供了界面具體情況、機(jī)理及應(yīng)用場(chǎng)合,該表是對(duì)新近研究成果的總結(jié)。
4 問題與展望
4.1 目前固-固界面接觸熱阻研究存在的問題
固-固界面接觸的間隙問題和熱界面材料黏合層厚度問題可以通過調(diào)控界面狀態(tài)來(lái)克服。在常規(guī)平面接觸狀態(tài)下,粗糙度對(duì)固-固界面初始接觸情況影響較大,因而粗糙度調(diào)控被廣泛應(yīng)用于降低固-固界面接觸熱阻的研究中。目前通過對(duì)固-固界面接觸熱阻的宏觀參數(shù)進(jìn)行分析和研究可知:盡量減小界面粗糙度,可使界面相對(duì)實(shí)際接觸面積增大;同時(shí),選擇合適的界面材料種類對(duì)于降低接觸熱阻更為明顯[51]。隨著對(duì)降低固-固界面接觸熱阻熱傳輸機(jī)理、影響因素研究的不斷深入,如何優(yōu)化降低固-固界面熱阻的方法尚存在以下問題。
1)目前粗糙度的宏觀機(jī)理多用于指導(dǎo)固體表面的機(jī)械加工,對(duì)平面度的討論較少。另外,粗糙界面大多在微米尺度甚至部分在納米級(jí)別(即其傳熱已涉及微觀尺度),而相應(yīng)的熱載子輸運(yùn)規(guī)律的研究與應(yīng)用仍處于發(fā)展階段,缺乏深入探索。
2)對(duì)于界面結(jié)構(gòu)和熱界面材料黏合層厚度的調(diào)控應(yīng)用主要聚焦于溝槽設(shè)計(jì)上,而忽略了相關(guān)理論指導(dǎo)和實(shí)驗(yàn)驗(yàn)證的重要性。
3)關(guān)于固-固接觸材料本身物理性能(如導(dǎo)熱系數(shù)、彈塑性)的影響研究還存在不足,使用非穩(wěn)態(tài)傳熱來(lái)深入探討固-固界面?zhèn)鳠徇^程的研究還很不充分。
4.2 固-固界面熱阻研究的前景展望
電子器件的高度集成化促使研究人員探索更先進(jìn)、更有效降低固-固界面接觸熱阻的方法[52-53]。界面熱阻公式主要針對(duì)單個(gè)宏觀因素影響熱傳導(dǎo)的機(jī)理進(jìn)行解釋,實(shí)際在界面?zhèn)鬟f過程中熱載子發(fā)生了散射,該微觀機(jī)理還有待進(jìn)一步揭示[54-55]。目前,常規(guī)固-固平面接觸情況下的穩(wěn)態(tài)熱傳導(dǎo)研究較多,而考慮界面兩側(cè)固體本身結(jié)構(gòu)參數(shù)及物性參數(shù)的非穩(wěn)態(tài)傳熱研究有待深入[56-59],界面狀態(tài)直接影響固-固界面的接觸,從而影響了界面黏合處熱界面材料的流動(dòng)與分布。因而,基于界面狀態(tài)調(diào)節(jié)熱界面材料黏合層是未來(lái)重點(diǎn)研究方向之一[60-61]。另外,工程應(yīng)用也驅(qū)使熱界面材料向更低黏合層厚度、穩(wěn)定取向?qū)岬饶繕?biāo)推進(jìn)[62-66]。基于以上基礎(chǔ)理論和工程應(yīng)用技術(shù)需求,未來(lái)降低固-固界面接觸熱阻的研究應(yīng)基于界面接觸狀態(tài)進(jìn)行。
1)將界面結(jié)構(gòu)與宏觀參數(shù)(壓力/平面度)共同作用于固-固界面的情況下,完善降低固-固界面接觸熱阻的微觀-宏觀作用機(jī)理;
2)采用Ansys,Comsol等強(qiáng)大的有限元計(jì)算工具研究固-固接觸材料本身的物性參數(shù)(如熱導(dǎo)率、彈塑性)對(duì)固-固界面非穩(wěn)態(tài)傳熱的作用機(jī)制,從而選出更適合實(shí)際應(yīng)用的電子材料;
3)對(duì)于熱界面材料應(yīng)用,其研究重點(diǎn)應(yīng)與界面結(jié)構(gòu)設(shè)計(jì)/取向?qū)嵯嘟Y(jié)合,制備在固-固界面處性能穩(wěn)定的超薄熱界面材料可能是未來(lái)研究的熱點(diǎn)。
本課題組擬在現(xiàn)有工作的基礎(chǔ)上,應(yīng)用Comsol計(jì)算軟件設(shè)計(jì)置矩形溝槽、錐型溝槽、球型溝槽等界面結(jié)構(gòu),進(jìn)一步施加界面壓力以降低平面斜度對(duì)界面?zhèn)鳠岬挠绊?,探索微觀接觸界面結(jié)構(gòu)與壓力調(diào)控共同作用下的熱傳導(dǎo)規(guī)律;另外,搭建固-固接觸實(shí)驗(yàn)設(shè)備,討論傳熱模擬結(jié)果和實(shí)驗(yàn)測(cè)試結(jié)果的一致性,為進(jìn)一步降低固-固界面接觸熱阻提供新的可能性。
參考文獻(xiàn)/References:
[1] BRUNSCHWILER T,KLOTER U,LINDERMAN R J,et al.Hierarchically nested channels for fast squeezing interfaces with reduced thermal resistance[J].IEEE Transactions on Components and Packaging Technologies,2007,30(2):226-234.
[2] SINGHAL V,SIEGMUND T,GARIMELLA S V.Optimization of thermal interface materials for electronics cooling applications[J].IEEE Transactions on Components and Packaging Technologies,2004,27(2):244-252.
[3] ZHANG Qin,PI Zhihua,CHEN Mingxiang,et al.Effective thermal conductivity of silicone/phosphor composites[J].Journal of Composite Materials,2012,45(23):2465-2473.
[4] DENG Zilong,CHEN Yongping,SHAO Chenxi.Gas flow through rough microchannels in the transition flow regime[J].Physical Review E,2016,93(1). DOI: 10.1103/PhysRevE.93.013128.
[5] 周俊,李保文.微納米電子器件散熱過程中的物理問題[J].物理,2013,42(2):88-99
ZHOU Jun,LI Baowen.The physics ofheat dissipation in micro-nano-scale devices[J].Physics,2013,42(2):88-99.
[6] GREENWOOD J A,WILLIAMSON J B P.Contact of nominally flat surfaces[J].Mathematical and Physical Sciences,1966,295(1442):300-319.
[7] PENG Junfeng,HONG Jun,ZHUANG Yan.A new model for constriction resistance of rough contacts between nominally flat surfaces[J].Applied Mechanics and Materials,2011,110/116:977-984.
[8] FU Chenjie,LI Qiang,LU Jibao,et al.Improving thermal conductivity of polymer composites by reducing interfacial thermal resistance between boron nitride nanotubes[J].Composites Science and Technology,2018,165:322-330.
[9] WANG Feifan,ZHAO Xueting,LIU Jiahao,et al.Study on the relationship between interfacial heat transfer coefficient and interface pressure in squeeze casting by using microscopic contact model[J].International Journal of Thermal Sciences,2020,152.DOI: 10.1016/j.ijthermalsci.2020.106300.
[10]MA Dexiao,JI Guozhao,ZHANG Lei,et al.Enhancement of conductive drying of sewage sludge with mechanical compression:Dryingkinetics,and interfacial heat transfer behavior[J].Science of the Total Environment,2021,796.DOI: 10.1016/j.scitotenv.2021.148716.
[11][]
[12]皮智華.表面溝槽對(duì)封裝界面熱阻的影響研究[D].武漢:華中科技大學(xué),2011.
PI Zhihua.Study of the Impact of Surface Channels on Interfacial Thermal Resistance for Packaging[D].Wuhan:Huazhong University of Science&Technology,2011.
[13]沈軍,馬駿,劉偉強(qiáng).一種接觸熱阻的數(shù)值計(jì)算方法[J].上海航天,2002,19(4):33-36.
SHEN Jun,MA Jun,LIU Weiqiang.A numerical calculation method of thermal contact resistance[J].Aerospace Shanghai,2002,19(4):33-36.
[14]LINDERMAN R J,BRUNSCHWILER T,KLOTER U,et al.Hierarchical nested surface channels for reduced particle stacking and low-resistance thermal interfaces[C]//Twenty-Third Annual IEEE Semiconductor Thermal Measurement and Management Symposium.San Jose:IEEE,2007:87-94.
[15]CHEN Yuzheng,F(xiàn)ENG Shiwei,ZHANG Yamin,et al.Effect of interface morphology on thermal contact resistance in thermal management of electronic devices[J].International Journal of Modern Physics B,2022,36(17).DOI: 10.1142/S0217979222500928.
[16]LE N Q,POLANCO C A,RASTGARKAFSHGARKOLAEI R,e tal.Effects of bulk and interfacial anharmonicity on thermal conductance at solid/solid interfaces[J].Physical Review B,2017,95.DOI: 10.1103/PhysRevB.95.245417.
[17]WANG Jingwei,ZHANG Zhongwei,SHI Run,et al.Impact of nanoscale roughness on heat transport across the solid-solid interface[J].Advanced Materials Interfaces,2020,7(4).DOI: 10.1002/admi.201901582.
[18]畢冬梅,陳煥新,王釗,等.溫度及加載壓力對(duì)低溫下固-固接觸熱阻的影響[J].華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2011,39(5):128-132.
BI Dongmei,CHEN Huanxin,WANG Zhao,et al.Influence of temperature and pressure on solid to solid thermal contact resistance[J].Journal of Huazhong University of Science and Technology (Natural Science Edition),2011,39(5):128-132.
[19]汪琦瑋.熱界面材料的界面熱阻問題研究[D].武漢:華中科技大學(xué),2019.
WANG Qiwei.Study on the Interfacial Thermal Resistance of Thermal Interface Materials[D].Wuhan:Huazhong University of Science and Technology,2019.
[20]董進(jìn)喜.電子設(shè)備結(jié)構(gòu)內(nèi)界面接觸熱阻的影響因素分析[J].機(jī)械工程師,2017(8):137-138.
[21]TARIQ A,ASIF M.Experimental investigation of thermal contact conductance for nominally flat metallic contact[J].Heat and Mass Transfer,2016,52(2):291-307.
[22]DOU Ruifeng,GE Tianran,LIU Xunliang,et al.Effects of contact pressure,interfacetemperature, and surface roughness on thermal contact conductance between stainless steel surfaces under atmosphere condition[J].International Journal of Heat and Mass Transfer,2016,94:156-163.
[23]SHIA D,YANG Jin.A Hertzian contact based model to estimate thermal resistance of thermal interface material for high-performance microprocessors[J].Microelectronics Journal,2021,112.DOI: 10.1016/j.mejo.2021.105058.
[24]FENG Biao,ZHANG Yuhong,TU Jing,et al.Correlating the thermal contact resistance between metal/erythritol interfaces with surface roughness and contact pressure[J].International Journal of Heat and Mass Transfer,2021,176.DOI: 10.1016/j.ijheatmasstransfer.2021.121407.
[25]COOPER M G,MIKIC B B,YOVANOVICH M M.Thermal contact conductance[J].International Journal of Heat and Mass Transfer,1969,12(3):279-300.
[26]陳宇崢.薄層界面熱傳導(dǎo)機(jī)理及熱測(cè)量研究[D].北京:北京工業(yè)大學(xué),2020.
CHEN Yuzheng.Research on Thermal Conduction Mechanism and Thermal Measurement of Thin Layer Interface[D].Beijing:Beijing University of Technology,2020.
[27]徐烈,楊軍,徐佳梅,等.低溫下固體表面接觸熱阻的研究[J].低溫與超導(dǎo),1996(1):53-58.
XU Lie,YANGJun,XU Jiamei,et al.The research of contact thermal resistance of solid surface at low temperature[J].Cryogenics & Superconductivity,1996(1):53-58.
[28]徐建桐.壓力及粗糙度對(duì)液態(tài)金屬界面?zhèn)鳠嵝阅苡绊懙难芯浚跠].大連:大連海事大學(xué),2019.
XU Jiantong.Study on the Infuence of Pressure and Roughness on theInterface Heat Transfer Performance of Low Melting Temperature Alloys[D].Dalian:Dalian Maritime University,2019.
[29]PENG Junfeng,HONG Jun,ZHUANG Yan.A new model for constriction resistance of rough contacts between nominally flat surfaces[J].Applied Mechanics and Materials,2011,110/116:977-984.
[30]謝明君,張平,蔡萌,等.3種常用熱界面材料的接觸熱阻壓力實(shí)驗(yàn)研究[J].桂林電子科技大學(xué)學(xué)報(bào),2020,40(4):362-365.
XIE Mingjun,ZHANG Ping,CAI Meng,et al.Experimental study on thermal contact resistance of three common thermal interface materials[J].Journal of Guilin University of Electronic Technology,2020,40(4):362-365.
[31]POLANCO C A,RASTGARKAFSHGARKOLAEI R,ZHANG Jingjie,et al.Design rules for interfacial thermal conductance:Building better bridges[J].Physical Review B,2017,95(19).DOI: 10.1103/PhysRevB.95.195303.
[32]LIANG Zhi,TSAI H L.Reduction of solid-solid thermal boundary resistance by inserting an interlayer[J].International Journal of Heat and Mass Transfer,2012,55(11/12):2999-3007.
[33]袁超,付星,羅小兵.含有熱界面材料的界面熱阻模型[J].工程熱物理學(xué)報(bào),2013,34(4):746-750.
YUAN Chao,F(xiàn)U Xing,LUO Xiaobing.An interface resistance model of thermal interstitial materials[J].Journal of Engineering Thermophysics,2013,34(4):746-750.
[34]TREGENZA O,SAHA M,HUTASOIT N,et al.An experimental evaluation of the thermal interface resistance between cold sprayed copper/laser-textured alumina bi-layered composites[J].International Journal of Heat and Mass Transfer,2022,188:122606.
[35]ZHANG Yuexing,LIANG Ting,YE Zhenqiang,et al.Plasma-assisted self-assembled monolayers for reducing thermal resistance across graphite films/polymer interfaces[J].Composites Science and Technology,2022,229.DOI:10.1016/j.ijheatmasstransfer.2022.122606.
[36]FATHIDOOST M,YANG yiwei,OECHSNER M,et al.Data-driven thermal and percolation analyses of 3D composite structures with interface resistance[J].Materials & Design,2023,227.DOI: 10.1016/j.matdes.2023.111746.
[37]ZHAO Jianning,WEI Dong,DONG Yiyang,et al.Thermal rectification mechanism of composite cylinders with temperature and stress-dependent interface thermal resistance[J].International Journal of Heat and Mass Transfer,2022,194.DOI: 10.1016/j.ijheatmasstransfer.2022.123024.
[38]SHANG Kang,HAN Chaoling,JIANG Tao,et al.Numerical study of PEMFC heat and mass transfer characteristics based on roughness interface thermal resistance model[J].International Journal of Hydrogen Energy,2023,48(20):7460-7475.
[39]FENG Biao,ZHANG Yuhong,TU Jing,et al.Correlating the thermal contact resistance between metal/erythritol interfaces with surface roughness and contact pressure[J].International Journal of Heat and Mass Transfer,2021,176.DOI: 10.1016/j.ijheatmasstransfer.2021.121407.
[40]ZHAO Jianwei,ZHAO Rui,HUO Yankai,et al.Effects of surface roughness,temperature and pressure on interface thermal resistance of thermal interface materials[J].International Journal of Heat and Mass Transfer,2019,140:705-716.
[41]CHEN Shijie,ZHENG Feihu,WEI Qian,et al.Interface thermal resistance of micron-thin film[J].International Journal of Heat and Mass Transfer,2023,208.DOI: 10.1016/j.ijheatmasstransfer.2023.124037.
[42]ZHAO Jianwei,ZHAO Rui,HUO Yankai,et al.Effects of surface roughness, temperature and pressure on interface thermal resistance of thermal interface materials[J].International Journal of Heat and Mass Transfer,2019,140:705-716.
[43]FENG Changping,YANG Lu yao,YANG Jie,et al.Recent advances in polymer-based thermal interface materials for thermal management:A mini-review[J].Composites Communications,2020,22.DOI: 10.1016/j.coco.2020.100528.
[44]LEE S,LEE A,BAEK S,et al.A study on thermal resistance evaluation of carbon nanotube buckypaper with cellulose material for thermal interface material[J].Diamond and Related Materials,2022,130.DOI: 10.1016/j.diamond.2022.109428.
[45]LYU Le,DAI Wen,YU Jinhong,et al.A mini review:Application of graphene paper in thermal interface materials[J].New Carbon Materials,2021,36(5):930-938.
[46]ZHANG Guorui,XUE Sen,CHEN Feng,et al.An efficient thermal interface material with anisotropy orientation and high through-plane thermal conductivity[J].Composites Science and Technology,2023,231.DOI: 10.1016/j.compscitech.2022.109784.
[47]CHEN Ken,XIE Jinjian,LI Wenfang,et al.Excellent hot-corrosion and thermal-shock resistance of metal-enamel composite coating on martensitic stainless steel enabled by interface engineering[J].Corrosion Science,2022,202.DOI: 10.1016/j.corsci.2022.110286.
[48]GASKAROV I,F(xiàn)ARKHSHATOV M,SAIFULLIN R,et al.Cylindrical interfaces repair technique using electric resistance welding of metal powder materials[J].Results in Engineering,2022,16.DOI: 10.1016/j.rineng.2022.100699.
[49]QIU Ranfeng,LI Jiuyong,SHI Hongxin,et al.Characterization of resistance spot welded joints between aluminum alloy and mild steel with composite electrodes[J].Journal of Materials Research and Technology,2023,24:1190-1202.
[50]UEKI Y,TSUTSUMI Y,SHIBAHARA M.Molecular dynamics study of instantaneous interfacial thermal resistance of droplets on flat crystalline surface during cooling and ice formation[J].International Journal of Heat and Mass Transfer,2022,194.DOI: 10.1016/j.ijheatmasstransfer.2022.123004.
[51]BALASUBRAMANIAN G,PURI I K.Heat conduction across a solid-solid interface:Understanding nanoscale interfacial effects on thermal resistance[J].Applied Physics Letters,2011,99.DOI: 10.1063/1.3607477.
[52]MIKIC′ B B.Thermal contact conductance;theoretical considerations[J].International Journal of Heat and Mass Transfer,1974,17(2):205-214.
[53]BAHRAMI M,YOVANOVICH M M,CULHAM J R.Thermal contact resistance at low contact pressure:Effect of elastic deformation[J].International Journal of Heat and Mass Transfer,2005,48(16):3284-3293.
[54]ZHOU Tian,ZHAO Yejing,RAO Zhenghua.Fundamental and estimation of thermal contact resistance between polymer matrix composites:A review[J].International Journal of Heat and Mass Transfer,2022,189.DOI: 10.1016/j.ijheatmasstransfer.2022.122701.
[55]RUAN Kunpeng,SHI Xuetao,GUO Yongqiang,et al.Interfacial thermal resistance in thermally conductive polymer composites:A review[J].Composites Communications,2020,22.DOI: 10.1016/j.coco.2020.100518.
[56]李慶威.碳納米管熱傳導(dǎo)研究[D].北京:清華大學(xué),2010.
LI Qingwei.Studies on Thermal Conductance of Carbon Nanotubes[D].Beijing:Tsinghua University,2010.
[57]王苗.基于碳納米管陣列的界面接觸傳熱強(qiáng)化方法研究[D].南京:南京理工大學(xué),2016.
WANG Miao.Investigation on Method of Heat Transfer Enhancement across Contact Surfaces based on Carbon Nanotube Array[D].Nanjing:Nanjing University of Science and Technology,2016.
[58]ZHANG Guorui,XUE Sen,CHEN Feng,et al.An efficient thermal interface material with anisotropy orientation and high through-plane thermal conductivity[J].Composites Science and Technology,2023,231.DOI: 10.1016/j.compscitech.2022.109784.
[59]SALMON K,NELLIS G,PFOTENHAUER J.Experimental characterization of cryogenic contact resistance[J].Cryogenics,2022,128.DOI: 10.1016/j.cryogenics.2022.103587.
[60]CHEN Jie,XU Xiangfan,ZHOU Jun,et al.Interfacial thermal resistance:Past,present,and future[J].Reviews of Modern Physics,2022,94(2).DOI: 10.1103/RevModPhys.94.025002.
[61]PAN Xiaoshan,CUI Xiaoyu,LIU Shaoshuai,et al.Research progress of thermal contact resistance[J].Journal of Low Temperature Physics,2020,201(3):213-253.
[62]CHEN Mengjun,LI Qiang,ZHANG Ping.Experimental investigation of high temperature thermal contact resistance of thin disk samples using infrared camera in vacuum condition[J].International Journal of Heat and Mass Transfer,2020,157.DOI: 10.1016/j.ijheatmasstransfer.2020.119749.
[63]KUMAR SWAMY M C,Satyanarayan,PINTO R.Study on thermal contact resistance of low melting alloy used as thermal interface material[J].Materials Today:Proceedings,2022,66(Part 4):2508-2512.
[64]LIU H R,LI B J,HUA L J,et al.Designing thermoelectric self-cooling system for electronic devices:Experimental investigation and model validation[J].Energy,2022,243.DOI: 10.1016/j.energy.2021.123059.
[65]CUI Tengfei,LI Qiang,XUAN Yimin,et al.Multiscale simulation of thermal contact resistance in electronic packaging[J].International Journal of Thermal Sciences,2014,83:16-24.
[66]呂曉衛(wèi),馮展鷹,馮杏梅,等.降低固-固界面接觸熱阻研究[J].電子機(jī)械工程,2015,31(4):37-40.
LYU Xiaowei,F(xiàn)ENG Zhanying,F(xiàn)ENG Xingmei,et al.Research on reducing the thermal contact resistance between solid-solid interface[J].Electro-Mechanical Engineering,2015,31(4):37-40.