亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        我國(guó)轉(zhuǎn)基因玉米大豆應(yīng)用抗性治理策略

        2023-07-04 16:23:32沈平孫卓婧張華李云河李飛武宋新元鄭戈
        安徽農(nóng)業(yè)科學(xué) 2023年5期

        沈平 孫卓婧 張華 李云河 李飛武 宋新元 鄭戈

        摘要 ?為有序推進(jìn)我國(guó)生物育種產(chǎn)業(yè),保障轉(zhuǎn)基因玉米大豆產(chǎn)業(yè)化安全、可持續(xù)實(shí)施,需建立科學(xué)的抗性治理策略,延緩靶標(biāo)害蟲(chóng)和雜草抗性產(chǎn)生。查閱大量國(guó)內(nèi)外相關(guān)靶標(biāo)害蟲(chóng)和雜草抗性進(jìn)化研究的文獻(xiàn),總結(jié)國(guó)際轉(zhuǎn)基因玉米大豆抗性治理的經(jīng)驗(yàn)教訓(xùn),并分析我國(guó)轉(zhuǎn)基因抗蟲(chóng)棉的相關(guān)實(shí)踐,立足我國(guó)當(dāng)今靶標(biāo)害蟲(chóng)與雜草實(shí)際情況,進(jìn)行分析討論。依據(jù)玉米種植區(qū)域特點(diǎn)及蟲(chóng)情發(fā)生規(guī)律進(jìn)行區(qū)域劃分,并確定各區(qū)域推薦的轉(zhuǎn)基因抗蟲(chóng)玉米基因類型和配套庇護(hù)所策略,提出適合我國(guó)現(xiàn)階段產(chǎn)業(yè)特點(diǎn)的轉(zhuǎn)基因玉米大豆抗性治理策略。在靶標(biāo)害蟲(chóng)抗性治理方面,應(yīng)根據(jù)我國(guó)玉米主產(chǎn)區(qū)的靶標(biāo)害蟲(chóng)發(fā)生及遷移擴(kuò)散為害規(guī)律,遵循整體布局、源頭治理的原則,在轉(zhuǎn)化體研發(fā)、品種審定等環(huán)節(jié)加強(qiáng)蟲(chóng)源和種源控制;同時(shí),建議因地制宜,采取“一區(qū)一類基因一策”的害蟲(chóng)抗性治理措施。在田間雜草抗性治理方面,建議配合輪換使用不同抗性機(jī)理的轉(zhuǎn)化體和不同作用機(jī)理的除草劑。

        關(guān)鍵詞 ?轉(zhuǎn)基因玉米;轉(zhuǎn)基因大豆;靶標(biāo)害蟲(chóng);抗性雜草;抗性治理

        中圖分類號(hào) ?S 43 ??文獻(xiàn)標(biāo)識(shí)碼 ?A ??文章編號(hào) ?0517-6611(2023)05-0141-06

        doi: 10.3969/j.issn.0517-6611.2023.05.032

        開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):

        Application of Resistance Management Strategies in Genetically Modified Maize and Soybean in China

        SHEN Ping, SUN Zhuo-jing, ZHANG Hua et al

        (Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176)

        Abstract ?To promote the biological breeding industry and ensure the safety and sustainable implementation of the transgenic maize and soybean industrialization in China, it is necessary to establish a scientific resistance management strategy to delay the emergence of resistance to target pests and weeds.This study reviewed a large number of domestic and foreign literature on the evolution of resistance to target pests and weeds, summarized the experience and lessons of resistance management of genetically modified maize and soybean in the world, and analyzed the relevant practices of genetically modified insect-resistant cotton, also based on the actual situation of target pests and weeds in China.According to the characteristics of corn planting areas and the occurrence law of pests, the regions are divided, and the gene types and supporting shelter strategies of transgenic insect resistant corn recommended in each region are determined. In this study, the management strategy of resistance of genetically modified maize and soybean was put forward. In terms of pest resistance management, pest source and provenance control should be strengthened in transformation research and development and variety certification according to the occurrence, migration and diffusion of target pests in main maize producing areas in China, and the principle of overall layout and source control. At the same time, it is suggested to adopt the pest resistance management measures of “one area, one class of genes, one policy” according to local conditions. In the field weed resistance control, it is suggested to use transformants with different resistance mechanisms and herbicides with different action mechanisms in rotation.

        Key words ?Genetically modified maize;Genetically modified soybean;Target pests;Resistance of weeds;Resistance management

        轉(zhuǎn)基因作物自1996年實(shí)現(xiàn)大規(guī)模商業(yè)化種植以來(lái),發(fā)展迅速,2019年全球種植面積達(dá)到1.904億hm2,較1996年的170萬(wàn)hm2增長(zhǎng)了近111倍,使得生物技術(shù)成為世界上應(yīng)用最為迅速的作物技術(shù)[1]。目前已商業(yè)化的轉(zhuǎn)基因作物中最主要的性狀是抗蟲(chóng)和耐除草劑2類,抗蟲(chóng)耐除草劑轉(zhuǎn)基因作物的大面積推廣應(yīng)用,一方面在減少農(nóng)藥使用、保障害蟲(chóng)和雜草綠色防控及農(nóng)業(yè)可持續(xù)發(fā)展中發(fā)揮了重要作用;另一方面,也面臨著靶標(biāo)害蟲(chóng)抗性及雜草抗性產(chǎn)生的風(fēng)險(xiǎn)。為有效減緩抗性產(chǎn)生的進(jìn)程,延長(zhǎng)抗性基因及相關(guān)轉(zhuǎn)基因產(chǎn)品的生命周期,科學(xué)界、產(chǎn)業(yè)界和監(jiān)管部門通過(guò)開(kāi)展廣泛研究,建立了一系列抗性治理措施,如庇護(hù)所/高劑量、耐除草劑作物及除草劑品種輪換等[2-5]。美國(guó)、加拿大等國(guó)家和地區(qū)20多年的實(shí)踐證明,通過(guò)制定強(qiáng)制性法規(guī),抗性 治理措施總體實(shí)施效果較好,均未在田間發(fā)現(xiàn)害蟲(chóng)產(chǎn)生實(shí)質(zhì)性抗性,而巴西、阿根廷等地區(qū)由于監(jiān)管手段不足,抗性治理措施未得到有效落實(shí),導(dǎo)致田間很快出現(xiàn)對(duì)抗蟲(chóng)轉(zhuǎn)基因作物產(chǎn)生抗性的靶標(biāo)害蟲(chóng)種群,相應(yīng)的轉(zhuǎn)化體不得不退出市場(chǎng)。可見(jiàn),抗性治理工作對(duì)于轉(zhuǎn)基因作物產(chǎn)業(yè)可持續(xù)發(fā)展至關(guān)重要,而抗性治理措施的科學(xué)設(shè)計(jì)和有效落實(shí)在抗性治理工作中起到關(guān)鍵性的作用。我國(guó)高度重視轉(zhuǎn)基因作物研究與產(chǎn)業(yè)化應(yīng)用,1997年已實(shí)現(xiàn)轉(zhuǎn)基因抗蟲(chóng)棉花商業(yè)化種植,積累了較好的害蟲(chóng)抗性治理經(jīng)驗(yàn)。在國(guó)家轉(zhuǎn)基因生物新品種培育重大專項(xiàng)的支持下,涌現(xiàn)出一大批新基因、新技術(shù)、新產(chǎn)品,抗蟲(chóng)耐除草劑玉米DBN9936、瑞豐125、耐除草劑大豆中黃6106等多個(gè)轉(zhuǎn)化體陸續(xù)獲得生產(chǎn)應(yīng)用安全證書(shū),配套的轉(zhuǎn)基因農(nóng)作物品種審定、種子生產(chǎn)經(jīng)營(yíng)許可等制度也在不斷完善,為有序推進(jìn)我國(guó)轉(zhuǎn)基因主要農(nóng)作物產(chǎn)業(yè)化奠定基礎(chǔ)。為進(jìn)一步推進(jìn)我國(guó)轉(zhuǎn)基因抗蟲(chóng)耐除草劑玉米、耐除草劑大豆等主要農(nóng)作物的推廣應(yīng)用,保障農(nóng)業(yè)生物技術(shù)產(chǎn)業(yè)安全可持續(xù)發(fā)展,該研究系統(tǒng)分析了國(guó)內(nèi)外轉(zhuǎn)基因作物靶標(biāo)害蟲(chóng)抗性和雜草抗性研究進(jìn)展,總結(jié)了國(guó)內(nèi)外抗性治理的經(jīng)驗(yàn)和教訓(xùn),結(jié)合我國(guó)不同生態(tài)區(qū)的農(nóng)業(yè)生產(chǎn)實(shí)際,提出了我國(guó)轉(zhuǎn)基因玉米大豆應(yīng)用的抗性治理策略,為制定具有中國(guó)特色的抗性治理政策提供科學(xué)支撐。

        1 轉(zhuǎn)基因玉米靶標(biāo)害蟲(chóng)抗性現(xiàn)狀

        1.1 國(guó)外主要靶標(biāo)害蟲(chóng)抗性水平

        與害蟲(chóng)會(huì)對(duì)長(zhǎng)期施用的化學(xué)農(nóng)藥產(chǎn)生抗性一樣,靶標(biāo)害蟲(chóng)長(zhǎng)期處于抗蟲(chóng)作物表達(dá)的殺蟲(chóng)蛋白的選擇壓力下,會(huì)發(fā)生抗性進(jìn)化。根據(jù)靶標(biāo)害蟲(chóng)對(duì)殺蟲(chóng)蛋白產(chǎn)生抗性的程度,可分為3個(gè)水平:敏感水平、早期預(yù)警抗性水平和實(shí)質(zhì)抗性水平(表1)。

        1.2 我國(guó)主要靶標(biāo)害蟲(chóng)抗性水平

        1.2.1 ???亞洲玉米螟抗性水平。

        亞洲玉米螟嚴(yán)重危害我國(guó)玉米生產(chǎn),是我國(guó)轉(zhuǎn)基因抗蟲(chóng)玉米主要的靶標(biāo)害蟲(chóng)之一。掌握亞洲玉米螟田間種群對(duì)Bt殺蟲(chóng)蛋白的敏感基線,對(duì)商業(yè)化推廣轉(zhuǎn)基因抗蟲(chóng)玉米具有重要意義。在我國(guó)玉米主要產(chǎn)區(qū)——北方春播玉米區(qū)和黃淮平原夏播玉米區(qū)的7個(gè)省份、14個(gè)地點(diǎn)進(jìn)行田間亞洲玉米螟對(duì)Bt殺蟲(chóng)蛋白敏感性的監(jiān)測(cè),結(jié)果顯示,采自不同地區(qū)的亞洲玉米螟種群對(duì)Cry1Ab、Cry1Ac、Cry1F 5種殺蟲(chóng)蛋白處于敏感水平[17]。

        1.2.2 ???草地貪夜蛾抗性水平。

        2019年,草地貪夜蛾侵入我國(guó),對(duì)農(nóng)業(yè)生產(chǎn)構(gòu)成重大威脅。我國(guó)學(xué)者利用分子手段,快速鑒定出入侵的草地貪夜蛾種群為喜食玉米的“玉米型”草地貪夜蛾,并確定入侵源頭及入侵路徑,為害蟲(chóng)防控提供了堅(jiān)實(shí)基礎(chǔ)。利用室內(nèi)生測(cè)技術(shù),明確了入侵的草地貪夜蛾種群對(duì)5種常用Bt蛋白的敏感性水平與抗性等位基因頻率, 結(jié)果顯示,草地貪夜蛾對(duì)Vip3A、Cry1Ab、Cry1F、Cry2Ab、Cry1Ac 5種Bt殺蟲(chóng)蛋白的敏感性指標(biāo)在0.28~3.76,表明其種群對(duì)以上Bt蛋白均未產(chǎn)生抗性[18]。轉(zhuǎn)cry1Ab和vip3Aa雙價(jià)基因玉米對(duì)草地貪夜蛾的防治效果優(yōu)于單價(jià)的轉(zhuǎn)cry1Ab基因玉米[19]。上述研究為利用轉(zhuǎn)基因抗蟲(chóng)玉米防控草地貪夜蛾以及制定相關(guān)害蟲(chóng)抗性治理策略提供了基礎(chǔ)。

        1.3 Bt蛋白交互抗性研究

        如果靶標(biāo)害蟲(chóng)對(duì)不同蛋白存在交互抗性,將加劇抗性產(chǎn)生,因此開(kāi)展不同類型Bt蛋白的交互抗性研究,對(duì)于轉(zhuǎn)基因抗蟲(chóng)作物產(chǎn)品開(kāi)發(fā)及產(chǎn)業(yè)化推廣具有重要意義。研究表明,Cry1Ab蛋白和Cry1Ac蛋白之間存在高水平的交互抗性,Cry1Ab、Cry1Ac同Cry1Ah和Cry1F存在低水平的交互抗性[20-21]。同時(shí),國(guó)外相關(guān)研究表明,Vip3Aa蛋白與Cry1Ab、Cry1Ac、Cry1F等蛋白不存在交互抗性[22-24]。這些研究成果為我國(guó)科學(xué)利用不同類型抗蟲(chóng)基因,并制定靶標(biāo)害蟲(chóng)抗性進(jìn)化治理策略提供了重要依據(jù)。

        2 雜草抗性現(xiàn)狀

        雜草抗藥性指雜草種群所獲得的,在施用能夠有效防治該種群的除草劑后,能夠存活并繁衍的能力[25]。在雜草防除實(shí)踐中,一些對(duì)除草劑敏感的雜草種群被殺死,而另一些雜草由于在除草劑選擇壓的作用下,產(chǎn)生了對(duì)該除草劑不敏感的突變體,這些突變體被保留下來(lái)發(fā)展成抗藥性種群,即雜草對(duì)除草劑產(chǎn)生了抗藥性[26]。如果長(zhǎng)期使用同一種或同一類作用機(jī)理的除草劑,就可能在田間出現(xiàn)抗這種(類)除草劑的雜草[27]。

        2.1 雜草抗藥性及對(duì)農(nóng)業(yè)生產(chǎn)的影響

        迄今為止,全球有264種雜草的505個(gè)生物型對(duì)除草劑產(chǎn)生了抗性,分布在71個(gè)國(guó)家的95種作物(含非耕地)[28-29]。目前已知的除草劑作用機(jī)制僅31類,其中的21類藥劑已有抗性雜草報(bào)道,涉及164種除草劑。據(jù)統(tǒng)計(jì),全球稻田有52種雜草的近80個(gè)生物型對(duì)除草劑產(chǎn)生抗性(圖1)[30],涉及除草劑包括ALS[31]、ACCase[32-33]、合成激素類[34-35]、光系統(tǒng) Ⅱ 抑制劑[36-37]、細(xì)胞分裂抑制劑[38]、長(zhǎng)鏈脂肪酸抑制劑[39]、酯類合成抑制劑[40]、EPSP抑制劑[41]、DOXP抑制劑[42]等。

        雜草抗藥性對(duì)農(nóng)業(yè)生產(chǎn)產(chǎn)生直接和間接影響。由于抗性雜草出現(xiàn)導(dǎo)致雜草群落演替,抗性雜草難以治理,直接影響作物產(chǎn)量[43]。農(nóng)民為了防治抗性雜草,常采用加大施藥量的做法,不僅增加草害防除成本,還帶來(lái)作物藥害、環(huán)境污染等間接問(wèn)題,更嚴(yán)重的是可能造成某一作物化學(xué)防控體系整體失效[44]。

        2.2 全球玉米、大豆田主要抗性雜草

        全球四大作物(小麥、玉米、大豆和水稻)田間抗性雜草數(shù)量較多,而玉米和大豆田抗性雜草數(shù)量分別居第二(62種,100多個(gè)生物型)和第三位(48種,90多個(gè)生物型)(圖2)。雜草抗性產(chǎn)生與使用除草劑的類型及年限密切相關(guān)[28,45]。1972年,美國(guó)首例報(bào)道玉米田對(duì)光系統(tǒng)Ⅱ除草劑產(chǎn)生抗性的綠穗莧(Amaranthus hybridus)[46],此后的20年間由于主要采用莠去津類除草劑防治玉米田雜草,因此發(fā)現(xiàn)的90多例抗性雜草均為對(duì)光系統(tǒng)Ⅱ除草劑產(chǎn)生抗性[47]。20世紀(jì)80年代末,乙酰乳酸合酶(ALS)抑制劑類除草劑煙嘧磺隆、噻吩磺隆等在玉米田大量使用[48-49],1994年,美國(guó)報(bào)道了糙果莧(Amaranthus tuberculatus)對(duì)氯嘧磺隆、煙嘧磺隆、咪唑乙煙酸等ALS抑制劑類除草劑產(chǎn)生抗性[50],由于作物輪作制度和生境類似,這些雜草不僅在玉米田發(fā)現(xiàn),在大豆、棉花田均有發(fā)生[51-52]。美國(guó)1974年首次報(bào)道了大豆田對(duì)除草劑氟樂(lè)靈產(chǎn)生抗性的牛筋草(Eleusine indica)[53],1995年,發(fā)現(xiàn)對(duì)光系統(tǒng)Ⅱ除草劑莠去津(玉米田除草劑)和ALS抑制劑唑嘧磺草胺、氯嘧磺隆等同時(shí)產(chǎn)生抗性的糙果莧[54-55]。

        2.3 轉(zhuǎn)基因耐草甘膦作物與雜草抗藥性發(fā)展

        1996年之前的20多年間未見(jiàn)草甘膦的抗性報(bào)道。但自耐草甘膦作物商業(yè)化開(kāi)始,由于美國(guó)、巴西、阿根廷、澳大利亞等國(guó)家大量使用草甘膦除草,雜草抗性發(fā)展迅速,導(dǎo)致耐草甘膦雜草數(shù)量增加[56]。

        2001年美國(guó)大豆田首次發(fā)現(xiàn)抗草甘膦的小飛蓬(Conyza canadensis)[57],此后陸續(xù)發(fā)現(xiàn)對(duì)草甘膦和其他作用機(jī)理除草劑產(chǎn)生多抗性的雜草[58-59]。2005年,巴西首次報(bào)道了在玉米、大豆、小麥、果園發(fā)現(xiàn)對(duì)草甘膦產(chǎn)生抗性的香絲草(Conyza bonariensis)[60],同年,發(fā)現(xiàn)對(duì)草甘膦、ALS抑制劑及原卟啉原氧化酶抑制劑類除草劑產(chǎn)生抗性的糙果莧[61];阿根廷也在當(dāng)年發(fā)現(xiàn)了對(duì)草甘膦產(chǎn)生抗性的假高粱(Sorghum halepense)[62]。此后的十幾年,美國(guó)及巴西、阿根廷等國(guó)家每年都有對(duì)草甘膦產(chǎn)生抗性雜草的報(bào)道[59,63]。目前為止,全球耐草甘膦雜草有50余種(圖3),主要集中在澳大利亞、美國(guó)、巴西、阿根廷;一些國(guó)家還發(fā)現(xiàn)對(duì)草甘膦和其他作用機(jī)制除草劑產(chǎn)生多抗性的雜草,如澳大利亞報(bào)道有對(duì)4種不同作用機(jī)制除草劑產(chǎn)生多抗性的野胡蘿卜(Raphanus raphanistrum)[64]和對(duì)5種不同作用機(jī)制除草劑產(chǎn)生多抗性的早熟禾(Poa annua)[65];美國(guó)也發(fā)現(xiàn)對(duì)4種不同作用機(jī)制除草劑產(chǎn)生多抗性的地膚(Kochia scoparia)[66-67]和對(duì)5種不同作用機(jī)制除草劑產(chǎn)生多抗性的長(zhǎng)芒莧(Palmer amaranth)[68]。

        我國(guó)抗性雜草44種,數(shù)量居世界第6位,目前僅發(fā)現(xiàn)非耕地的牛筋草和小飛蓬2種雜草對(duì)草甘膦產(chǎn)生抗性(表2)[69]。

        3 抗性治理的經(jīng)驗(yàn)和教訓(xùn)

        3.1 國(guó)際抗性治理經(jīng)驗(yàn)與教訓(xùn)

        3.1.1

        靶標(biāo)害蟲(chóng)抗性治理。美國(guó)、加拿大等發(fā)達(dá)國(guó)家及南非、烏拉圭、菲律賓等發(fā)展中國(guó)家都將庇護(hù)所策略納入了轉(zhuǎn)基因作物監(jiān)管法規(guī),強(qiáng)制要求農(nóng)民在種植Bt作物時(shí)必須種植非Bt作物作為庇護(hù)所,并建立了相應(yīng)的監(jiān)管體系。此外,農(nóng)民的自律意識(shí)對(duì)庇護(hù)所策略的實(shí)施也至關(guān)重要。發(fā)達(dá)國(guó)家的種植者通常都是大農(nóng)場(chǎng)主,受教育程度普遍較高,使得庇護(hù)所種植的合規(guī)率比較高。相反,在巴西、阿根廷等一些發(fā)展中國(guó)家,由于農(nóng)民配合程度低,使得庇護(hù)所種植合規(guī)率不足30%,直接導(dǎo)致草地貪夜蛾在短時(shí)間內(nèi)對(duì)Cry1F、Cry1Ab等Bt玉米中常用殺蟲(chóng)蛋白產(chǎn)生了抗性。同樣地,在印度,由于農(nóng)民對(duì)庇護(hù)所策略執(zhí)行不嚴(yán),導(dǎo)致紅鈴蟲(chóng)在4~5年就對(duì)第一代Bt棉花產(chǎn)生了抗性。

        3.1.2

        雜草抗性治理方面。根據(jù)目的基因、農(nóng)田生態(tài)環(huán)境、雜草多樣性等因素,科學(xué)合理地制定除草劑使用指南,在保證雜草防控效果的同時(shí),控制除草劑使用頻次及使用量,能有效降低除草劑抗性雜草的產(chǎn)生[3-4]。種植耐受多種除草劑的轉(zhuǎn)基因玉米時(shí),應(yīng)建立科學(xué)合理的除草劑輪換使用制度,避免常年連續(xù)使用一種除草劑或一類具有相同作用機(jī)制的除草劑[5]。此外,雜草綜合管理策略(IWM)是另一種有效的途徑,包括作物輪作、種植覆蓋作物、物理控制等[70-71]。作物輪作能顯著影響土壤中雜草種子庫(kù)的種類和密度[72],有利于降低雜草對(duì)除草劑產(chǎn)生抗性的風(fēng)險(xiǎn)[73]。種植覆蓋作物不僅減少了雜草在休耕期間的繁殖,而且增加了土壤微生物活性,有利于除草劑的降解,該方式在美國(guó)已廣泛應(yīng)用[74-75]。通過(guò)物理方法控制雜草種子生產(chǎn)、花粉分散、繁殖體傳播等,能夠減少抗性雜草個(gè)體的生存和繁殖[76-77]。

        3.2 我國(guó)抗蟲(chóng)棉抗性治理實(shí)踐

        自1997年轉(zhuǎn)基因抗蟲(chóng)棉推廣應(yīng)用以來(lái),我國(guó)已有20多年的Bt棉種植歷史,至今未在田間發(fā)現(xiàn)棉鈴蟲(chóng)、紅鈴蟲(chóng)等靶標(biāo)害蟲(chóng)對(duì)Bt棉產(chǎn)生實(shí)質(zhì)抗性。在Bt棉抗性治理實(shí)踐中總結(jié)的經(jīng)驗(yàn),可為我國(guó)轉(zhuǎn)基因玉米、大豆產(chǎn)業(yè)化后的抗性治理提供重要參考價(jià)值。一是通過(guò)第三方鑒定確保Bt棉高劑量表達(dá)殺蟲(chóng)蛋白。在發(fā)放安全證書(shū)前,由農(nóng)業(yè)農(nóng)村部組織有資質(zhì)的檢測(cè)機(jī)構(gòu),對(duì)申請(qǐng)安全證書(shū)的Bt棉品種進(jìn)行鑒定,鑒定指標(biāo)包括殺蟲(chóng)蛋白表達(dá)量及抗蟲(chóng)效率,確保進(jìn)入生產(chǎn)應(yīng)用的Bt棉品種滿足高劑量要求,且對(duì)棉鈴蟲(chóng)具有很好的抗蟲(chóng)性。二是采用自然庇護(hù)所策略延緩棉鈴蟲(chóng)抗性產(chǎn)生。結(jié)合靶標(biāo)害蟲(chóng)棉鈴蟲(chóng)的生物學(xué)特性、Bt棉推廣區(qū)域的農(nóng)業(yè)種植結(jié)構(gòu)及我國(guó)國(guó)情,提出了自然庇護(hù)所策略。依托Bt棉種植區(qū)周圍的大豆、花生、玉米等作物,為棉鈴蟲(chóng)提供自然庇護(hù)所,Bt棉上少量存活的棉鈴蟲(chóng)抗性個(gè)體與自然庇護(hù)所產(chǎn)生的敏感個(gè)體交配產(chǎn)生雜合個(gè)體,再利用Bt棉表達(dá)的殺蟲(chóng)蛋白殺死攜帶隱性抗性基因的棉鈴蟲(chóng)雜合個(gè)體。三是利用種子混合庇護(hù)所策略延緩紅鈴蟲(chóng)抗性產(chǎn)生。紅鈴蟲(chóng)是寄主專一性較強(qiáng)的害蟲(chóng),主要為害棉花,在Bt棉應(yīng)用的前10年,抗性等位基因頻率呈上升趨勢(shì),產(chǎn)生抗性的風(fēng)險(xiǎn)很大。隨著B(niǎo)t雜交棉的推廣應(yīng)用,一些育種機(jī)構(gòu)以F1代Bt雜交棉種子的后代(F2代)作為商品種子,由于F2代種子中約有25%為非轉(zhuǎn)基因棉花,這樣就形成了75%轉(zhuǎn)基因種子+25%非轉(zhuǎn)基因種子的種子混合庇護(hù)所模式。這類品種的推廣,使得紅鈴蟲(chóng)的抗性等位基因頻率顯著下降,從而延緩了紅鈴蟲(chóng)抗性的產(chǎn)生。

        4 我國(guó)轉(zhuǎn)基因玉米大豆應(yīng)用抗性治理策略

        4.1 總體方案

        以有序推進(jìn)轉(zhuǎn)基因玉米大豆產(chǎn)業(yè)化、延緩害蟲(chóng)和雜草抗性產(chǎn)生為目標(biāo),立足我國(guó)農(nóng)業(yè)基本國(guó)情,結(jié)合國(guó)內(nèi)外實(shí)踐,提出了我國(guó)轉(zhuǎn)基因玉米大豆應(yīng)用的抗性治理總方案。一是完善法規(guī)制度。進(jìn)一步梳理轉(zhuǎn)基因安全管理、種子管理法規(guī)等,從轉(zhuǎn)基因品種研發(fā)的目標(biāo)基因克隆、轉(zhuǎn)化、轉(zhuǎn)化體安全證書(shū)發(fā)放到品種審定、生產(chǎn)、銷售、種植和安全監(jiān)管全環(huán)節(jié),制定延緩和防止抗性產(chǎn)生的技術(shù)路徑和有效措施,確保轉(zhuǎn)基因品種的安全應(yīng)用和持續(xù)利用。二是完善標(biāo)準(zhǔn)體系。加強(qiáng)抗性治理相關(guān)標(biāo)準(zhǔn)體系建設(shè),根據(jù)法規(guī)制度,制定抗性治理的標(biāo)準(zhǔn),細(xì)化操作環(huán)節(jié),讓政策落地可行,確保落實(shí)研發(fā)者、銷售者的主體責(zé)任和當(dāng)?shù)剞r(nóng)業(yè)行政主管部門的屬地化管理責(zé)任。三是加強(qiáng)宣傳培訓(xùn)。加強(qiáng)抗性治理重要性和相關(guān)技術(shù)、措施的宣傳貫徹培訓(xùn)工作,讓研發(fā)者、生產(chǎn)者、使用者和管理者內(nèi)化于心、外化于行,使各方想做、能做、規(guī)范做、有效做好抗性治理工作。四是實(shí)施長(zhǎng)期抗性監(jiān)測(cè)計(jì)劃。依托現(xiàn)有部級(jí)檢測(cè)機(jī)構(gòu)網(wǎng)絡(luò),按生態(tài)區(qū)合理布局,長(zhǎng)年開(kāi)展主要靶標(biāo)害蟲(chóng)種群(抗蟲(chóng)玉米種植區(qū))和雜草自然種群(耐除草劑玉米和大豆種植區(qū))的監(jiān)測(cè)及抗性等位基因頻率檢測(cè)監(jiān)測(cè),建立區(qū)域性主要靶標(biāo)害蟲(chóng)和雜草抗性進(jìn)化模型,科學(xué)預(yù)測(cè)與防范風(fēng)險(xiǎn)。

        4.2 治理措施

        4.2.1 ???靶標(biāo)害蟲(chóng)抗性治理措施。

        首先,根據(jù)我國(guó)玉米主產(chǎn)區(qū)的靶標(biāo)害蟲(chóng)發(fā)生及遷移擴(kuò)散為害規(guī)律,按照整體布局、源頭治理的原則,做好周年繁殖蟲(chóng)源區(qū)抗性治理,從源頭控制抗性種群。其次,多環(huán)節(jié)加強(qiáng)種源控制。在轉(zhuǎn)化體研發(fā)方面,加強(qiáng)不同作用機(jī)制的抗蟲(chóng)基因研發(fā),防止交互抗性產(chǎn)生,同時(shí)加強(qiáng)多基因聚合產(chǎn)品的研究,有效降低抗性風(fēng)險(xiǎn);在轉(zhuǎn)化體審批方面,根據(jù)不同生態(tài)區(qū)環(huán)境因素和農(nóng)業(yè)種植結(jié)構(gòu),科學(xué)審批轉(zhuǎn)化體的應(yīng)用區(qū)域,因地制宜合理設(shè)置不同生態(tài)區(qū)、不同轉(zhuǎn)化體的庇護(hù)所策略;在品種審定方面,加強(qiáng)轉(zhuǎn)基因玉米品種的外源殺蟲(chóng)蛋白表達(dá)量測(cè)定及目標(biāo)性狀鑒定,確保產(chǎn)品符合高劑量要求。最后,建議因地制宜實(shí)行“一區(qū)一類基因一策”的害蟲(chóng)抗性治理措施。依據(jù)玉米種植區(qū)域特點(diǎn)及蟲(chóng)情發(fā)生規(guī)律進(jìn)行區(qū)域劃分,并確定各區(qū)域推薦的轉(zhuǎn)基因抗蟲(chóng)玉米基因類型和配套庇護(hù)所策略。建議我國(guó)轉(zhuǎn)基因抗蟲(chóng)玉米害蟲(chóng)抗性治理區(qū)域劃分為北方春播玉米區(qū)、黃淮平原夏播玉米區(qū)、西部玉米種植區(qū)和南部玉米種植區(qū),具體害蟲(chóng)抗性治理措施如表3所示。

        4.2.2 ????雜草抗性治理措施。

        從耐除草劑品種培育與推廣、目標(biāo)除草劑科學(xué)使用、抗性監(jiān)測(cè)等多個(gè)方面,綜合制定雜草抗性治理的策略和具體措施。一是培育和推廣耐受作用機(jī)理不同的多種除草劑的多基因聚合轉(zhuǎn)基因作物品種,每隔4~5年,輪換使用作用機(jī)理不同的目標(biāo)除草劑,減低除草劑選擇壓。二是對(duì)單基因耐除草劑作物品種,每隔4~5年,輪換種植另一類耐不同作用機(jī)理除草劑的轉(zhuǎn)化體,配套相應(yīng)的目標(biāo)除草劑,進(jìn)行可持續(xù)雜草防控。三是根據(jù)雜草抗性監(jiān)測(cè)情況,選擇性地使用能殺滅田間雜草、但對(duì)農(nóng)作物生長(zhǎng)沒(méi)有影響的常規(guī)除草劑進(jìn)行田間雜草防控,減低除草劑選擇壓。

        參考文獻(xiàn)

        [1] ?國(guó)際農(nóng)業(yè)生物技術(shù)應(yīng)用服務(wù)組織.2019年全球生物技術(shù)/轉(zhuǎn)基因作物商業(yè)化發(fā)展態(tài)勢(shì)[J].中國(guó)生物工程雜志,2021,41(1):114-119.

        [2] ILS I.An evaluation of insect resistance management in Bt field corn:A science-based framework for risk assessment and risk management[M].Washington,DC:ILSI Press,1998:78.

        [3] HOLM F A,KIRKLAND K J,STEVENSON F C.Defining optimum herbicide rates and timing for wild oat(Avena fatua)control in spring wheat(Triticum aestivum)[J].Weed Technol,2000,14(1):167-175.

        [4] BUSI R,POWLES S B,BECKIE H J,et al.Rotations and mixtures of soil-applied herbicides delay resistance[J].Pest Manag Sci,2020,76(2):487-496.

        [5] GREEN J M,HAZEL C B,F(xiàn)ORNEY D R,et al.New multiple-herbicide crop resistance and formulation technology to augment the utility of glyphosate[J].Pest Manag Sci,2008,64(4):332-339.

        [6] HUANG F N,LEONARD B R,COOK D R,et al.Frequency of alleles conferring resistance to Bacillus thuringiensis maize in Louisiana populations of the southwestern corn borer[J].Entomol Exp Appl,2007,122(1):53-58.

        [7] CRESPO A L,SPENCER T A,ALVES A P,et al.On-plant survival and inheritance of resistance to Cry1Ab toxin from Bacillus thuringiensis in a field-derived strain of European corn borer,Ostrinia nubilalis[J].Pest Manag Sci,2009,65(10):1071-1081.

        [8] FARINS G P,DE LA POZA M,HERNNDEZ-CRESPO P,et al.Resistance monitoring of field populations of the corn borers Sesamia nonagrioides and Ostrinia nubilalis after 5 years of Bt maize cultivation in Spain[J].Entomol Exp Appl,2004,110(1):23-30.

        [9] SIEGFRIED B D,RANGASAMY M,WANG H C,et al.Estimating the frequency of Cry1F resistance in field populations of the European corn borer(Lepidoptera:Crambidae)[J].Pest Manag Sci,2014,70(5):725-733.

        [10] ?THIEME T G M,BUUK C,GLOYNA K,et al.Ten years of MON 810 resistance monitoring of field populations of Ostrinia nubilalis in Europe[J].J Appl Entomol,2018,142(1/2):192-200.

        [11] BERNARDI O,BERNARDI D,RIBEIRO R S,et al.Frequency of resistance to Vip3Aa20 toxin from Bacillus thuringiensis in Spodoptera frugiperda(Lepidoptera:Noctuidae)populations in Brazil[J].Crop Prot,2015,76:7-14.

        [12] GHIMIRE M N,HUANG F N,LEONARD R,et al.Susceptibility of Cry1Ab-susceptible and-resistant sugarcane borer to transgenic corn plants containing single or pyramided Bacillus thuringiensis genes[J].Crop Prot,2011,30(1):74-81.

        [13] HUANG F N,GHIMIRE M N,LEONARD B R,et al.Extended monitoring of resistance to Bacillus thuringiensis Cry1Ab maize in Diatraea saccharalis(Lepidoptera:Crambidae)[J].GM Crops Food,2012,3(3):245-254.

        [14] ALCANTARA E,ESTRADA A,ALPUERTO V,et al.Monitoring Cry1Ab susceptibility in Asian corn borer(Lepidoptera:Crambidae)on Bt corn in the Philippines[J].Crop Prot,2011,30(5):554-559.

        [15] CAMARGO A M,ANDOW D A,CASTAERA P,et al.First detection of a Sesamia nonagrioides resistance allele to Bt maize in Europe[J].Sci Rep,2018,8(1):1-7.

        [16] 王月琴,何康來(lái),王振營(yíng).靶標(biāo)害蟲(chóng)對(duì)Bt玉米的抗性發(fā)展和治理策略[J].應(yīng)用昆蟲(chóng)學(xué)報(bào),2019,56(1):12-23.

        [17] 王月琴.亞洲玉米螟對(duì)不同Bt毒素的抗性演化規(guī)律研究[D].北京:中國(guó)農(nóng)業(yè)大學(xué),2018.

        [18] 李國(guó)平,姬婷婕,孫小旭,等.入侵云南草地貪夜蛾種群對(duì)5種常用Bt蛋白的敏感性評(píng)價(jià)[J].植物保護(hù),2019,45(3):15-20.

        [19] 張丹丹,吳孔明.國(guó)產(chǎn)Bt-Cry1Ab和Bt-(Cry1Ab+Vip3Aa)玉米對(duì)草地貪夜蛾的抗性測(cè)定[J].植物保護(hù),2019,45(4):54-60.

        [20] WANG Y Q,WANG Y D,WANG Z Y,et al.Genetic basis of Cry1F-resistance in a laboratory selected Asian corn borer strain and its cross-resistance to other Bacillus thuringiensis toxins[J].PLoS One,2016,11(8):1-12.

        [21] SHABBIR M Z,QUAN Y D,WANG Z Y,et al.Characterization of the Cry1Ah resistance in Asian corn borer and its cross-resistance to other Bacillus thuringiensis toxins[J].Sci Rep,2018,8(1):1-9.

        [22] ESTRUCH J J,WARREN G W,MULLINS M A,et al.Vip3A,a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects[J].Proc Natl Acad Sci USA,1996,93(11):5389-5394.

        [23] LEE M K,WALTERS F S,HART H,et al.The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1Ab δ-endotoxin[J].Appl Environ Microbiol,2003,69(8):4648-4657.

        [24] HERNNDEZ-MARTNEZ P,HERNNDEZ-RODRGUEZ C S,VAN RIE J,et al.Insecticidal activity of Vip3Aa,Vip3Ad,Vip3Ae,and Vip3Af from Bacillus thuringiensis against lepidopteran corn pests[J].J Invertebr Pathol,2013,113(1):78-81.

        [25] 張朝賢,黃紅娟,崔海蘭,等.抗藥性雜草與治理[J].植物保護(hù),2013,39(5):99-102.

        [26] YU Q,POWLES S.Metabolism-based herbicide resistance and cross-resistance in crop weeds:A threat to herbicide sustainability and global crop production[J].Plant Physiol,2014,166(3):1106-1118.

        [27] PETERSON M A,COLLAVO A,OVEJERO R,et al.The challenge of herbicide resistance around the world:A current summary[J].Pest Manag Sci,2018,74(10):2246-2259.

        [28] MATZRAFI M,GADRI Y,F(xiàn)RENKEL E,et al.Evolution of herbicide resistance mechanisms in grass weeds[J].Plant Sci,2014,229:43-52.

        [29] MOSS S.Integrated weed management(IWM):Why are farmers reluctant to adopt non-chemical alternatives to herbicides?[J].Pest Manag Sci,2019,75(5):1205-1211.

        [30] HEAP I.Global perspective of herbicide-resistant weeds[J].Pest Manag Sci,2014,70(9):1306-1315.

        [31] SCARABEL L,PANOZZO S,LODDO D,et al.Diversified resistance mechanisms in multi-resistant Lolium spp.in three European countries[J].Front Plant Sci,2020,11:1-12.

        [32] GOLMOHAMMADZADEH S,ROJANO-DELGADO A M,VZQUEZ-GARCA J G,et al.Cross-resistance mechanisms to ACCase-inhibiting herbicides in short-spike canarygrass(Phalaris brachystachys)[J].Plant Physiol Biochem,2020,151:681-688.

        [33] VZQUEZ-GARCA J G,TORRA J,PALMA-BAUTISTA C,et al.Point mutations and cytochrome p450 can contribute to resistance to ACCase-inhibiting herbicides in three Phalaris species[J].Plants(Basel),2021,10(8):1-12.

        [34] PORCIUNCULA L M,TEIXEIRA A R,SANTOS M F C,et al.Characterization data and kinetic studies of novel lipophilic analogues from 2,4-dichlorophenoxyacetic acid and Propanil herbicides[J/OL].Data Brief,2020,32[2022-05-25].https://doi.org/10.1016/j.dib.2020.106202.

        [35] PORCIUNCULA L M,TEIXEIRA A R,SANTOS M F C,et al.Novel lipophilic analogues from 2,4-D and Propanil herbicides:Biological activity and kinetic studies[J].Chem Phys Lipids,2020,231:1-9.

        [36] OETTMEIER W.Herbicide resistance and supersensitivity in photosystem II[J].Cell Mol Life Sci,1999,55(10):1255-1277.

        [37] FUNAR-TIMOFEI S,BOROTA A,CRISAN L.Combined molecular docking and QSAR study of fused heterocyclic herbicide inhibitors of D1 protein in photosystem II of plants[J].Mol Divers,2017,21(2):437-454.

        [38] O’LOONEY N,F(xiàn)RY S C.The novel herbicide oxaziclomefone inhibits cell expansion in maize cell cultures without affecting turgor pressure or wall acidification[J].New Phytol,2005,168(2):323-329.

        [39] TRESCH S,HEILMANN M,CHRISTIANSEN N,et al.Inhibition of saturated very-long-chain fatty acid biosynthesis by mefluidide and perfluidone,selective inhibitors of 3-ketoacyl-CoA synthases[J].Phytochemistry,2012,76:162-171.

        [40] OLORUNSOGO O O,MALOMO S O.Sensitivity of oligomycin-inhibited respiration of isolated rat liver mitochondria to perfluidone,a fluorinated arylalkylsulfonamide[J].Toxicology,1985,35(3):231-240.

        [41] SAMMONS R D,GRUYS K J,ANDERSON K S,et al.Reevaluating glyphosate as a transition-state inhibitor of EPSP synthase:Identification of an EPSP synthase.EPSP.glyphosate ternary complex[J].Biochemistry,1995,34(19):6433-6440.

        [42] LICHTENTHALER H K,ZEIDLER J,SCHWENDER J,et al.The non-mevalonate isoprenoid biosynthesis of plants as a test system for new herbicides and drugs against pathogenic bacteria and the malaria parasite[J].Z Naturforsch C ?Biosci,2000,55(5/6):305-313.

        [43] BECKIE H J,ASHWORTH M B,F(xiàn)LOWER K C.Herbicide resistance management:Recent developments and trends[J].Plants(Basel),2019,8(6):1-13.

        [44] NORSWORTHY J K,WARD S M,SHAW D R,et al.Reducing the risks of herbicide resistance:Best management practices and recommendations[J].Weed Sci,2012,60:31-62.

        [45] BECKIE H J,KIRKLAND K J.Implication of reduced herbicide rates on resistance enrichment in wild oat(Avena fatua)[J].Weed Technol,2003,17(1):138-148.

        [46] PFISTER K,STEINBACK K E,GARDNER G,et al.Photoaffinity labeling of an herbicide receptor protein in chloroplast membranes[J].Proc Nat Acad Sci USA,1981,78(2):981-985.

        [47] 龍迪,王彥輝,曾東強(qiáng).雜草對(duì)光系統(tǒng)Ⅱ抑制劑的抗藥性研究進(jìn)展[J].分子植物育種,2021,19(4):1383-1392.

        [48] BIANCHI A.Challenger:A new post-emergent herbicide to control Sorghum halepense and other weeds in maize[J].Malezas,1990,18(1):35-40.

        [49] MLLER K.Harmony-several years′ experience with the control of weeds in maize[R].Zeitschrift Für Pflanzenkrankheiten Und Pflanzenschutz,1992.

        [50] WOODWORTH A,ROSEN B,BERNASCONI P.Broad range resistance to herbicides targeting acetolactate synthase(ALS)in a field isolate of Amaranthus sp.is conferred by a Trp to Leu mutation in ALS gene[J].Plant Physiol,1996,111:1353.

        [51] PATZOLDT W L,TRANEL P J.Multiple ALS mutations confer herbicide resistance in waterhemp(Amaranthus tuberculatus)[J].Weed Sci,2007,55(5):421-428.

        [52] TRANEL P J.Herbicide resistance in Amaranthus tuberculatus[J].Pest Manag Sci,2021,77(1):43-54.

        [53] MUDGE L C,GOSSETT B J,MURPHY T R.Resistance of goosegrass(Eleusine indica)to dinitroaniline herbicides[J].Weed Sci,1984,32(5):591-594.

        [54] HORAK M J,PETERSON D E.Biotypes of Palmer amaranth(Amaranthus palmeri)and common waterhemp(Amaranthus rudis)are resistant to imazethapyr and thifensulfuron[J].Weed Technol,1995,9(1):192-195.

        [55] ANDERSON D D,ROETH F W,MARTIN A R.Occurrence and control of triazine-resistant common waterhemp(Amaranthus rudis)in field corn(Zea mays)[J].Weed Technol,1996,10(3):570-575.

        [56] DUKE S O.The history and current status of glyphosate[J].Pest Manag Sci,2018,74(5):1027-1034.

        [57] VAN GESSEL M J.Glyphosate-resistant horseweed from Delaware[J].Weed Sci,2001,49(6):703-705.

        [58] SIMARMATA M,KAUFMANN J E,PENNER D.Potential basis of glyphosate resistance in California rigid ryegrass(Lolium rigidum)[J].Weed Sci,2003,51(5):678-682.

        [59] BECKIE H J.Herbicide-resistant weed management:Focus on glyphosate[J].Pest Manag Sci,2011,67(9):1037-1048.

        [60] FERREIRA E A,GALON L,ASPIAZU ?' ?I,et al.Glyphosate translocation in hairy fleabane(Conyza bonariensis)biotypes[J].Planta Daninha,2008,26(3):637-643.

        [61] LEGLEITER T R,BRADLEY K W.Glyphosate and multiple herbicide resistance in common waterhemp(Amaranthus rudis)populations from Missouri[J].Weed Sci,2008,56(4):582-587.

        [62] VILA-AIUB M M,BALBI M C,GUNDEL P E,et al.Evolution of glyphosate-resistant johnsongrass(Sorghum halepense)in glyphosate-resistant soybean[J].Weed Sci,2007,55(6):566-571.

        [63] AVES C,BROSTER J,WESTON L,et al.Conyza bonariensis(flax-leaf fleabane)resistant to both glyphosate and ALS inhibiting herbicides in north-eastern Victoria[J].Crop Pasture Sci,2020,71(9):864-871.

        [64] WALSH M J,POWLES S B,BEARD B R,et al.Multiple-herbicide resistance across four modes of action in wild radish(Raphanus raphanistrum)[J].Weed Sci,2004,52(1):8-13.

        [65] SINGH V,DOS REIS F C,REYNOLDS C,et al.Cross and multiple herbicide resistance in annual bluegrass(Poa annua)populations from eastern Texas golf courses[J].Pest Manag Sci,2021,77(4):1903-1914.

        [66] MENGISTU L W,CHRISTOFFERS M J,LYM R G.A psbA mutation in Kochia scoparia(L)Schrad from railroad rights-of-way with resistance to diuron,tebuthiuron and metribuzin[J].Pest Manag Sci,2005,61(11):1035-1042.

        [67] LECLERE S,WU C X,WESTRA P,et al.Cross-resistance to dicamba,2,4-D,and fluroxypyr in Kochia scoparia is endowed by a mutation in an AUX/IAA gene[J].Proc Natl Acad Sci USA,2018,115(13):E2911-E2920.

        [68] BAGAVATHIANNAN M V,NORSWORTHY J K.Multiple-herbicide resistance is widespread in roadside Palmer amaranth populations[J].PLoS One,2016,11(4):1-9.

        [69] 張翼翾.全球抗草甘膦雜草的概況[J].世界農(nóng)藥,2018,40(3):38-45.

        [70] SWANTON C J,WEISE S F.Integrated weed management:The rationale and approach[J].Weed Technol,1991,5(3):657-663.

        [71] OLIVEIRA M C,OSIPITAN O A,BEGCY K,et al.Cover crops,hormones and herbicides:Priming an integrated weed management strategy[J/OL].Plant Sci,2020,301[2022-05-25].https://doi.org/10.1016/j.plants.2020.110550.

        [72] STEFAN L,ENGBERSEN N,SCHB C.Crop-weed relationships are context-dependent and cannot fully explain the positive effects of intercropping on yield[J].Ecol Appl,2021,31(4):1-12.

        [73] ?WEISBERGER D,NICHOLS V,LIEBMAN M.Does diversifying crop rotations suppress weeds? A meta-analysis[J].PLoS One,2019,14(7):1-12.

        [74] OWEN M D,BECKIE H J,LEESON J Y,et al.Integrated pest management and weed management in the United States and Canada[J].Pest Manag Sci,2015,71(3):357-376.

        [75] ?SCHMIDT J H,JUNGE S,F(xiàn)INCKH M R.Cover crops and compost prevent weed seed bank buildup in herbicide-free wheat-potato rotations under conservation tillage[J].Ecol Evol,2019,9(5):2715-2724.

        [76] WALSH M J,POWLES S B.Management of herbicide resistance in wheat cropping systems:Learning from the Australian experience[J].Pest Manag Sci,2014,70(9):1324-1328.

        [77] PEROTTI V E,LARRAN A S,PALMIERI V E,et al.Herbicide resistant weeds:A call to integrate conventional agricultural practices,molecular biology knowledge and new technologies[J/OL].Plant Sci,2020,290[2022-05-25].https://doi.org/10.1016/j.plantsci.2019.110255.

        天堂网av在线免费看| 国产尤物精品自在拍视频首页 | av一区二区三区亚洲| 免费啪啪视频一区| 18禁黄无遮挡免费网站| 亚洲国产日韩一区二区三区四区| 美国少妇性xxxx另类| 131美女爱做视频| 国产成人福利在线视频不卡| 国产丝袜一区丝袜高跟美腿| 十八禁视频网站在线观看| 国产精品美女久久久久久| 97成人精品| 国产视频不卡在线| 蜜桃噜噜一区二区三区| 欧美黑人又大又粗xxxxx| 国产极品久久久久极品| 国产成人精品男人的天堂网站| 日韩一区二区三区熟女| 在线精品无码字幕无码av| 肉体裸交丰满丰满少妇在线观看 | 久久亚洲日本免费高清一区| 在线观看国产自拍视频| 午夜免费电影| a国产一区二区免费入口| 国产女主播强伦视频网站| 亚洲免费一区二区三区四区| 我爱我色成人网| 国产女高清在线看免费观看| 蜜桃av多人一区二区三区| 亚洲激情综合中文字幕| 国产精品无码久久久久久| 亚洲aⅴ无码日韩av无码网站| 亚洲中文高清乱码av中文| 国产精品天干天干综合网| 国内揄拍国内精品少妇国语| 久久精品国产亚洲av麻豆四虎| 女人av天堂国产在线| 国产亚洲精品bt天堂精选| 中文字幕一区二区三区人妻精品 | 91久久大香伊蕉在人线国产|