亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Some Fermat-type Indices of Sierpi′nski Graphs and Sierpi′nski Pyramid

        2023-06-29 11:00:22GUOLin郭林ZENGCheng曾成GANTing甘庭
        應用數(shù)學 2023年3期

        GUO Lin(郭林),ZENG Cheng(曾成),GAN Ting(甘庭)

        (1.School of Mathematics and Information Science,Shandong Technology and Business University,Yantai 264005,China;2.School of Computer Science,Wuhan University,Wuhan 430072,China)

        Abstract: In this study,we present our observations on some Fermat-type indices including Fermat eccentricity,Fermat radius and Fermat diameter.We determine Fermat radius and Fermat diameter of Sierpi′nski graphs and Sierpi′nski pyramid by encoding method.Normalizing distance in Sierpi′nski graphs,we give the precise value of average Fermat eccentricity of Sierpi′nski pyramid and therefore a asymptotic formula of Sierpi′nski graphs is obtained.

        Key words: Sierpi′nski graph;Sierpi′nski pyramid;Fermat distance;Fermat eccentricity;Self-similar measure

        1.Introduction

        LetG=(V(G),E(G)) be a simple and connected graph,whereV(G) denotes the vertex set andE(G)the edge set of the graphG.The Fermat distance functionFonV(G)×V(G)×V(G) is given byF(u,v,w)=minσ∈V(G){d(u,σ)+d(v,σ)+d(w,σ)},that is,the minimum size among all spanning trees ofGcontaining these three vertices.For an arbitrary vertexu ∈G,the Fermat eccentricityε3(u) ofuis defined as the maximum Fermat distance fromuto any other two vertices.Very recently,LI,YU and Klavˇar[1]investigated the Fermat eccentricity of trees and block graphs.The study of Fermat eccentricity provides theoretical support for some problems,such as minimizing maximum time delay and predicting anti-HIV activity[2].

        Fig.1 The graphs , , and their labeling

        Fig.2 The relation between and

        We now give the formal definition of the Sierpi′nski pyramid.Leta0,a1,···,apbe the coordinates of thepcorners of a (p ?1)-dimensional regular pyramidF ∈Rp?1,wherep ≥3.We letTi(x)=x/2 +ai/2 be the contracting similitude fori ∈[p]0.Then the (p ?1)-dimensional Sierpi′nski pyramidis the unique attractor of IFS (Iterated Function System).It is well known that dimH SPp=dimB SPp=logp/log 2.As the cross-research object of fractals and graph theory,the average distance of Sierpi′nski gasketSP3has been discussed in [6]by using the approaches of finite pattern and self-similar measure.However,there are yet no published works on the Fermat-type indices of Sierpi′nski graphs and Sierpi′nski pyramid.Our work is an attempt in this regard.

        In our paper,we focus on some Fermat-type indices of Sierpi′nski graphsand their corresponding Sierpi′nski pyramidsSPp,including Fermat eccentricity,Fermat diameter and two types of Fermat radius.

        2.Preliminaries

        We start with some notations which will be used throughout our paper.

        Let|S|be the cardinal number of the setS.Then the order ofGis|V(G)|and the size ofGis|E(G)|.The distancedG(u,v) (d(u,v) for short) between two verticesuandvofGis the length of the geodesic path inGconnectinguandv.The eccentricity of a vertexuinG,denoted byε2(u),is maxv∈V(G)d(u,v).The diameter and the radius of a graph are given byd(G)=maxu∈V(G)ε2(u) andr(G)=minu∈V(G)ε2(u),respectively.It is well known that

        Clearly,the Fermat distanceF(u,v,w) is an extension of distance.We call the vertexσthat realizesF(u,v,w) the Fermat vertex.The Fermat eccentricityε3(u;G) (ε3(u) for brevity) ofuisε3(u;G) :=max{F(u,v,w) :v,w ∈V(G)}.The Fermat radius and the Fermat diameter ofGare,respectively,the minimum and the maximum eccentricity,that is,Fr1(G):=min{ε3(u):u ∈V(G)}andFd(G):=max{ε3(u):u ∈V(G)}=max{F(u,v,w):u,v,w ∈V(G)}.We mark(G) as the average Fermat eccentricity ofG.The Fermat co-eccentricityε3,2(u,v;G) (ε3,2(u,v) for brevity) ofuandvinV(G),as the dual of the Fermat eccentricity,is naturally defined asε3,2(u,v;G):=max{F(u,v,w):w ∈V(G)},which deduces the second type of Fermat radius,that is,Fr2(G):=min{ε3(u,v):u,v ∈V(G)}.

        where we letQi=Ti(SPp),i ∈[p]0for notational convenience.

        3.Fermat Diameter and Fermat Radius

        In this section,we present analytical results on Fermat radius and Fermat diameter of Sierpi′nski graphs and Sierpi′nski pyramid by encoding method.We first list a basic lemma that appears in [3].

        where the Iverson convention (A)=1,if the statementAis true,and (A)=0,if it is false.Furthermore,

        Proposition 3.1For the Sierpi′nski graph

        ProofReplace the Fermat vertex of tripletu,v,wbyu,v,win turn,we obtain

        and the equality holds ifu,v,ware different extreme vertices.

        Lemma 3.2The Fermat distance of vertexuand two extreme vertices insatisfies

        Moreover,the Fermat eccentricity of a vertexu ∈is given by

        Eq.(3.2) can be easily derived by induction and Lemma 3.1.The second assertion of Lemma 3.2 comes straightforwardly from Eq.(3.2) and the definition ofε3(u).

        Lemma 3.2 demonstrates that to determine the Fermat eccentricity of a vertexu,it is sufficient to consider only the Fermat distance ofu ∈to extreme vertices.

        Note thatl ≥m.From Lemma 3.1 we of course deduce

        Hence we have the following proposition about Fermat radius of.

        Proposition 3.2Letp ≥3 andn ∈N+.Two types of Fermat radius are given in turn by

        ProofWe elaborate that the proposition holds in the following three cases.

        The proposition is therefore proved.

        Corollary 3.1For (p ?1)-dimensional Sierpi′nski pyramidSPpandp ≥3,we derive

        4.Fermat Eccentricity

        Directly from (2.1) and Lemma 3.2,we have the following intuitive lemma.

        Lemma 4.1Foru ∈Fk,

        ProofFor a given vertexu′=kun?1···u1∈kSn?1p,we have

        By the recursive definition of Sierpi′nski graphs and Lemma 3.2,we thus get

        Applying (2.1) to (4.1) leads to Lemma 4.1.

        We are now prepared for our main result.

        Theorem 4.1Forp ≥3,the average Fermat eccentricity ofSPpis given by

        Moreover,we have the asymptotic formula for,that is,

        wherek ∈[p ?1]0.

        By symmetry ofSPp,we have

        By Lemma 4.1 and self-similar measure inSPp,Mp?k,pcan be rewritten as

        Similarly,the initial valueM2,pis given by

        The second assertion of Theorem 4.1 comes straightforwardly from3(SPp) and (2.1).

        亚洲av天堂久久精品| 成人欧美一区二区三区1314| 久久棈精品久久久久久噜噜| 国产高清在线精品一区αpp| 精品奇米国产一区二区三区| 久久伊人这里都是精品| 人妻熟女一区二区三区app下载| 亚洲美女毛片在线视频| 在线观看亚洲第一黄片| 一本无码av中文出轨人妻| 色窝窝在线无码中文| 97久久综合区小说区图片区| 在线观看一区二区中文字幕| 久久97久久97精品免视看| 天堂sv在线最新版在线| 91日本在线精品高清观看| 日韩精品免费av一区二区三区 | 好大好湿好硬顶到了好爽视频| 97精品依人久久久大香线蕉97| 天啦噜国产精品亚洲精品| 一级内射免费观看视频| 四虎成人精品国产永久免费无码| 国产白嫩美女在线观看| bbbbbxxxxx欧美性| 国产一区二区三区在线大屁股| 亚洲人成网站色www| 国产精品短视频| 麻豆视频在线观看免费在线观看| 五月色丁香婷婷网蜜臀av| 在线观看午夜亚洲一区| 久久久久久久久久免免费精品| 亚洲一区二区三区在线最新| 天天摸夜夜摸夜夜狠狠摸| 国产欧美日产久久| 青青草伊人视频在线观看| 久久综网色亚洲美女亚洲av| 亚洲日本中文字幕天天更新| 久久亚洲国产欧洲精品一 | 巨爆中文字幕巨爆区爆乳| 少妇无码一区二区三区| japanese色国产在线看视频|