亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Some Fermat-type Indices of Sierpi′nski Graphs and Sierpi′nski Pyramid

        2023-06-29 11:00:22GUOLin郭林ZENGCheng曾成GANTing甘庭
        應用數(shù)學 2023年3期

        GUO Lin(郭林),ZENG Cheng(曾成),GAN Ting(甘庭)

        (1.School of Mathematics and Information Science,Shandong Technology and Business University,Yantai 264005,China;2.School of Computer Science,Wuhan University,Wuhan 430072,China)

        Abstract: In this study,we present our observations on some Fermat-type indices including Fermat eccentricity,Fermat radius and Fermat diameter.We determine Fermat radius and Fermat diameter of Sierpi′nski graphs and Sierpi′nski pyramid by encoding method.Normalizing distance in Sierpi′nski graphs,we give the precise value of average Fermat eccentricity of Sierpi′nski pyramid and therefore a asymptotic formula of Sierpi′nski graphs is obtained.

        Key words: Sierpi′nski graph;Sierpi′nski pyramid;Fermat distance;Fermat eccentricity;Self-similar measure

        1.Introduction

        LetG=(V(G),E(G)) be a simple and connected graph,whereV(G) denotes the vertex set andE(G)the edge set of the graphG.The Fermat distance functionFonV(G)×V(G)×V(G) is given byF(u,v,w)=minσ∈V(G){d(u,σ)+d(v,σ)+d(w,σ)},that is,the minimum size among all spanning trees ofGcontaining these three vertices.For an arbitrary vertexu ∈G,the Fermat eccentricityε3(u) ofuis defined as the maximum Fermat distance fromuto any other two vertices.Very recently,LI,YU and Klavˇar[1]investigated the Fermat eccentricity of trees and block graphs.The study of Fermat eccentricity provides theoretical support for some problems,such as minimizing maximum time delay and predicting anti-HIV activity[2].

        Fig.1 The graphs , , and their labeling

        Fig.2 The relation between and

        We now give the formal definition of the Sierpi′nski pyramid.Leta0,a1,···,apbe the coordinates of thepcorners of a (p ?1)-dimensional regular pyramidF ∈Rp?1,wherep ≥3.We letTi(x)=x/2 +ai/2 be the contracting similitude fori ∈[p]0.Then the (p ?1)-dimensional Sierpi′nski pyramidis the unique attractor of IFS (Iterated Function System).It is well known that dimH SPp=dimB SPp=logp/log 2.As the cross-research object of fractals and graph theory,the average distance of Sierpi′nski gasketSP3has been discussed in [6]by using the approaches of finite pattern and self-similar measure.However,there are yet no published works on the Fermat-type indices of Sierpi′nski graphs and Sierpi′nski pyramid.Our work is an attempt in this regard.

        In our paper,we focus on some Fermat-type indices of Sierpi′nski graphsand their corresponding Sierpi′nski pyramidsSPp,including Fermat eccentricity,Fermat diameter and two types of Fermat radius.

        2.Preliminaries

        We start with some notations which will be used throughout our paper.

        Let|S|be the cardinal number of the setS.Then the order ofGis|V(G)|and the size ofGis|E(G)|.The distancedG(u,v) (d(u,v) for short) between two verticesuandvofGis the length of the geodesic path inGconnectinguandv.The eccentricity of a vertexuinG,denoted byε2(u),is maxv∈V(G)d(u,v).The diameter and the radius of a graph are given byd(G)=maxu∈V(G)ε2(u) andr(G)=minu∈V(G)ε2(u),respectively.It is well known that

        Clearly,the Fermat distanceF(u,v,w) is an extension of distance.We call the vertexσthat realizesF(u,v,w) the Fermat vertex.The Fermat eccentricityε3(u;G) (ε3(u) for brevity) ofuisε3(u;G) :=max{F(u,v,w) :v,w ∈V(G)}.The Fermat radius and the Fermat diameter ofGare,respectively,the minimum and the maximum eccentricity,that is,Fr1(G):=min{ε3(u):u ∈V(G)}andFd(G):=max{ε3(u):u ∈V(G)}=max{F(u,v,w):u,v,w ∈V(G)}.We mark(G) as the average Fermat eccentricity ofG.The Fermat co-eccentricityε3,2(u,v;G) (ε3,2(u,v) for brevity) ofuandvinV(G),as the dual of the Fermat eccentricity,is naturally defined asε3,2(u,v;G):=max{F(u,v,w):w ∈V(G)},which deduces the second type of Fermat radius,that is,Fr2(G):=min{ε3(u,v):u,v ∈V(G)}.

        where we letQi=Ti(SPp),i ∈[p]0for notational convenience.

        3.Fermat Diameter and Fermat Radius

        In this section,we present analytical results on Fermat radius and Fermat diameter of Sierpi′nski graphs and Sierpi′nski pyramid by encoding method.We first list a basic lemma that appears in [3].

        where the Iverson convention (A)=1,if the statementAis true,and (A)=0,if it is false.Furthermore,

        Proposition 3.1For the Sierpi′nski graph

        ProofReplace the Fermat vertex of tripletu,v,wbyu,v,win turn,we obtain

        and the equality holds ifu,v,ware different extreme vertices.

        Lemma 3.2The Fermat distance of vertexuand two extreme vertices insatisfies

        Moreover,the Fermat eccentricity of a vertexu ∈is given by

        Eq.(3.2) can be easily derived by induction and Lemma 3.1.The second assertion of Lemma 3.2 comes straightforwardly from Eq.(3.2) and the definition ofε3(u).

        Lemma 3.2 demonstrates that to determine the Fermat eccentricity of a vertexu,it is sufficient to consider only the Fermat distance ofu ∈to extreme vertices.

        Note thatl ≥m.From Lemma 3.1 we of course deduce

        Hence we have the following proposition about Fermat radius of.

        Proposition 3.2Letp ≥3 andn ∈N+.Two types of Fermat radius are given in turn by

        ProofWe elaborate that the proposition holds in the following three cases.

        The proposition is therefore proved.

        Corollary 3.1For (p ?1)-dimensional Sierpi′nski pyramidSPpandp ≥3,we derive

        4.Fermat Eccentricity

        Directly from (2.1) and Lemma 3.2,we have the following intuitive lemma.

        Lemma 4.1Foru ∈Fk,

        ProofFor a given vertexu′=kun?1···u1∈kSn?1p,we have

        By the recursive definition of Sierpi′nski graphs and Lemma 3.2,we thus get

        Applying (2.1) to (4.1) leads to Lemma 4.1.

        We are now prepared for our main result.

        Theorem 4.1Forp ≥3,the average Fermat eccentricity ofSPpis given by

        Moreover,we have the asymptotic formula for,that is,

        wherek ∈[p ?1]0.

        By symmetry ofSPp,we have

        By Lemma 4.1 and self-similar measure inSPp,Mp?k,pcan be rewritten as

        Similarly,the initial valueM2,pis given by

        The second assertion of Theorem 4.1 comes straightforwardly from3(SPp) and (2.1).

        亚洲av日韩一卡二卡| 免费高清日本中文| 一本色道久久综合亚洲精品蜜臀| 国产成人精品久久二区二区91| 呦系列视频一区二区三区| 国产免费丝袜调教视频| 国产无码十八禁| 91精品蜜桃熟女一区二区| 国产成人精品无码片区在线观看| 中文字幕人妻熟女人妻洋洋| 日韩国产成人精品视频| 久久精品国产亚洲av专区| 国产精品高清网站| 欧美大黑帍在线播放| 加勒比在线一区二区三区| 久久精品国产在热亚洲不卡| 初尝人妻少妇中文字幕| 国产亚洲av手机在线观看| 亚洲成AV人国产毛片| 中文字幕色偷偷人妻久久一区| 中国丰满人妻videoshd| 日韩AV无码免费二三区| 亚洲国产线茬精品成av| 无码人妻久久一区二区三区免费丨| www国产无套内射com| 久久精品国产亚洲AV香蕉吃奶 | 久久艹影院| 中文少妇一区二区三区| 看日本全黄色免费a级| 无码精品日韩中文字幕| 日本不卡一区二区高清中文| 天涯成人国产亚洲精品一区av| 午夜精品射精入后重之免费观看| 久久婷婷色综合一区二区 | 天天爽夜夜爽人人爽| 亚洲成在人线av| 亚洲日本在线中文字幕| 精品人妻一区二区三区浪人在线| 一本色道久久综合亚洲精品不卡| 欧洲国产精品无码专区影院| 北条麻妃在线中文字幕|