亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Some Fermat-type Indices of Sierpi′nski Graphs and Sierpi′nski Pyramid

        2023-06-29 11:00:22GUOLin郭林ZENGCheng曾成GANTing甘庭
        應用數(shù)學 2023年3期

        GUO Lin(郭林),ZENG Cheng(曾成),GAN Ting(甘庭)

        (1.School of Mathematics and Information Science,Shandong Technology and Business University,Yantai 264005,China;2.School of Computer Science,Wuhan University,Wuhan 430072,China)

        Abstract: In this study,we present our observations on some Fermat-type indices including Fermat eccentricity,Fermat radius and Fermat diameter.We determine Fermat radius and Fermat diameter of Sierpi′nski graphs and Sierpi′nski pyramid by encoding method.Normalizing distance in Sierpi′nski graphs,we give the precise value of average Fermat eccentricity of Sierpi′nski pyramid and therefore a asymptotic formula of Sierpi′nski graphs is obtained.

        Key words: Sierpi′nski graph;Sierpi′nski pyramid;Fermat distance;Fermat eccentricity;Self-similar measure

        1.Introduction

        LetG=(V(G),E(G)) be a simple and connected graph,whereV(G) denotes the vertex set andE(G)the edge set of the graphG.The Fermat distance functionFonV(G)×V(G)×V(G) is given byF(u,v,w)=minσ∈V(G){d(u,σ)+d(v,σ)+d(w,σ)},that is,the minimum size among all spanning trees ofGcontaining these three vertices.For an arbitrary vertexu ∈G,the Fermat eccentricityε3(u) ofuis defined as the maximum Fermat distance fromuto any other two vertices.Very recently,LI,YU and Klavˇar[1]investigated the Fermat eccentricity of trees and block graphs.The study of Fermat eccentricity provides theoretical support for some problems,such as minimizing maximum time delay and predicting anti-HIV activity[2].

        Fig.1 The graphs , , and their labeling

        Fig.2 The relation between and

        We now give the formal definition of the Sierpi′nski pyramid.Leta0,a1,···,apbe the coordinates of thepcorners of a (p ?1)-dimensional regular pyramidF ∈Rp?1,wherep ≥3.We letTi(x)=x/2 +ai/2 be the contracting similitude fori ∈[p]0.Then the (p ?1)-dimensional Sierpi′nski pyramidis the unique attractor of IFS (Iterated Function System).It is well known that dimH SPp=dimB SPp=logp/log 2.As the cross-research object of fractals and graph theory,the average distance of Sierpi′nski gasketSP3has been discussed in [6]by using the approaches of finite pattern and self-similar measure.However,there are yet no published works on the Fermat-type indices of Sierpi′nski graphs and Sierpi′nski pyramid.Our work is an attempt in this regard.

        In our paper,we focus on some Fermat-type indices of Sierpi′nski graphsand their corresponding Sierpi′nski pyramidsSPp,including Fermat eccentricity,Fermat diameter and two types of Fermat radius.

        2.Preliminaries

        We start with some notations which will be used throughout our paper.

        Let|S|be the cardinal number of the setS.Then the order ofGis|V(G)|and the size ofGis|E(G)|.The distancedG(u,v) (d(u,v) for short) between two verticesuandvofGis the length of the geodesic path inGconnectinguandv.The eccentricity of a vertexuinG,denoted byε2(u),is maxv∈V(G)d(u,v).The diameter and the radius of a graph are given byd(G)=maxu∈V(G)ε2(u) andr(G)=minu∈V(G)ε2(u),respectively.It is well known that

        Clearly,the Fermat distanceF(u,v,w) is an extension of distance.We call the vertexσthat realizesF(u,v,w) the Fermat vertex.The Fermat eccentricityε3(u;G) (ε3(u) for brevity) ofuisε3(u;G) :=max{F(u,v,w) :v,w ∈V(G)}.The Fermat radius and the Fermat diameter ofGare,respectively,the minimum and the maximum eccentricity,that is,Fr1(G):=min{ε3(u):u ∈V(G)}andFd(G):=max{ε3(u):u ∈V(G)}=max{F(u,v,w):u,v,w ∈V(G)}.We mark(G) as the average Fermat eccentricity ofG.The Fermat co-eccentricityε3,2(u,v;G) (ε3,2(u,v) for brevity) ofuandvinV(G),as the dual of the Fermat eccentricity,is naturally defined asε3,2(u,v;G):=max{F(u,v,w):w ∈V(G)},which deduces the second type of Fermat radius,that is,Fr2(G):=min{ε3(u,v):u,v ∈V(G)}.

        where we letQi=Ti(SPp),i ∈[p]0for notational convenience.

        3.Fermat Diameter and Fermat Radius

        In this section,we present analytical results on Fermat radius and Fermat diameter of Sierpi′nski graphs and Sierpi′nski pyramid by encoding method.We first list a basic lemma that appears in [3].

        where the Iverson convention (A)=1,if the statementAis true,and (A)=0,if it is false.Furthermore,

        Proposition 3.1For the Sierpi′nski graph

        ProofReplace the Fermat vertex of tripletu,v,wbyu,v,win turn,we obtain

        and the equality holds ifu,v,ware different extreme vertices.

        Lemma 3.2The Fermat distance of vertexuand two extreme vertices insatisfies

        Moreover,the Fermat eccentricity of a vertexu ∈is given by

        Eq.(3.2) can be easily derived by induction and Lemma 3.1.The second assertion of Lemma 3.2 comes straightforwardly from Eq.(3.2) and the definition ofε3(u).

        Lemma 3.2 demonstrates that to determine the Fermat eccentricity of a vertexu,it is sufficient to consider only the Fermat distance ofu ∈to extreme vertices.

        Note thatl ≥m.From Lemma 3.1 we of course deduce

        Hence we have the following proposition about Fermat radius of.

        Proposition 3.2Letp ≥3 andn ∈N+.Two types of Fermat radius are given in turn by

        ProofWe elaborate that the proposition holds in the following three cases.

        The proposition is therefore proved.

        Corollary 3.1For (p ?1)-dimensional Sierpi′nski pyramidSPpandp ≥3,we derive

        4.Fermat Eccentricity

        Directly from (2.1) and Lemma 3.2,we have the following intuitive lemma.

        Lemma 4.1Foru ∈Fk,

        ProofFor a given vertexu′=kun?1···u1∈kSn?1p,we have

        By the recursive definition of Sierpi′nski graphs and Lemma 3.2,we thus get

        Applying (2.1) to (4.1) leads to Lemma 4.1.

        We are now prepared for our main result.

        Theorem 4.1Forp ≥3,the average Fermat eccentricity ofSPpis given by

        Moreover,we have the asymptotic formula for,that is,

        wherek ∈[p ?1]0.

        By symmetry ofSPp,we have

        By Lemma 4.1 and self-similar measure inSPp,Mp?k,pcan be rewritten as

        Similarly,the initial valueM2,pis given by

        The second assertion of Theorem 4.1 comes straightforwardly from3(SPp) and (2.1).

        h视频在线免费观看视频| 香蕉色香蕉在线视频| 妺妺窝人体色www聚色窝| 国产精品免费久久久免费| 国产一区二区三区免费主播| 日韩一区二区三区精品视频| 亚洲国产成人av在线观看| 女人扒开屁股爽桶30分钟| 国产一区a| av无码特黄一级| 国产在线视频网友自拍| 蜜桃av噜噜一区二区三区9| 国产精品白丝久久av网站| 中国丰满熟妇xxxx| 最新69国产成人精品视频免费| 中文字幕巨乱亚洲| 日本一二三区在线视频观看| 国产精品久久久久久久久电影网| 国产乱子伦| 中文在线√天堂| 无码av免费精品一区二区三区| 亚洲av一区二区在线| 日本国产成人国产在线播放| 国产精品无码午夜福利| 精品国精品国产自在久国产应用| 视频一区精品自拍| 亚洲天堂av路线一免费观看| 国产精品成人一区二区不卡| 东北女人毛多水多牲交视频| 亚洲AⅤ永久无码精品AA| 日本一曲二曲三曲在线| 精品国产日韩一区2区3区| 无码人妻av免费一区二区三区| XXXXBBBB欧美| 亚洲三区av在线播放| 日本a片大尺度高潮无码| 麻豆av传媒蜜桃天美传媒| 真实国产网爆门事件在线观看| 中文字幕一区乱码在线观看| 中国无码人妻丰满熟妇啪啪软件| 无码国产午夜福利片在线观看|