畢效笙,馬瀟健,王大鵬,徐志程,趙 靜
(中國(guó)運(yùn)載火箭技術(shù)研究院 研究發(fā)展中心,北京 100076)
水面無(wú)人艇是無(wú)人武器裝備體系中的重要組成部分,在未來(lái)水面無(wú)人作戰(zhàn)領(lǐng)域高技術(shù)條件下的海戰(zhàn)中有著廣泛的用途,已經(jīng)成為武器裝備的發(fā)展趨勢(shì)之一。由于水面無(wú)人艇搭載的各種靈敏傳感器等裝備需要一個(gè)較為穩(wěn)定的平臺(tái)才能完全發(fā)揮出其最佳性能,而中遠(yuǎn)海海域的水面環(huán)境與沿海遮蔽海域相比,有著更復(fù)雜的風(fēng)、浪等惡劣的航行環(huán)境,水面無(wú)人艇急需一種能在惡劣海況下伴隨大型水面艦艇航行的新船型。
滑行艇在波浪激勵(lì)作用下除正常的垂蕩、縱搖與橫搖運(yùn)動(dòng)外,還可能發(fā)生非線性特征較強(qiáng)的砰擊、上浪以及噴濺現(xiàn)象,這種程度劇烈、非線性特征明顯的運(yùn)動(dòng),為耐波性的數(shù)值模擬與分析造成了很大的難度。IKEDA 等人[1]用綜合了試驗(yàn)方法與數(shù)值的方法,針對(duì)棱柱形滑行艇在規(guī)則與非規(guī)則波浪下的耐波性能進(jìn)行了預(yù)報(bào),并分析了附加質(zhì)量和阻尼系數(shù)對(duì)運(yùn)動(dòng)幅值的非線性影響,將耐波性試驗(yàn)中測(cè)得的水動(dòng)力系數(shù)與非線性效應(yīng)數(shù)值預(yù)報(bào)方法的結(jié)果進(jìn)行了比較,兩者吻合較好。這表明可以對(duì)船舶的非線性運(yùn)動(dòng)的數(shù)值模擬具備較高的精度。在滑行艇的非線性特征面,AZCUET 等人[2]基于自由面RANS 方程對(duì)滑行艇的阻力性能進(jìn)行了數(shù)值預(yù)報(bào),他們的結(jié)果表明針對(duì)船舶在波浪條件下的非線性運(yùn)動(dòng)的數(shù)值預(yù)報(bào)具備了較高的精度,證明該方法適用于預(yù)報(bào)滑行艇在波浪中的劇烈響應(yīng)。
2014年,BEGOVIC 等人[3–5]對(duì)波浪中滑行艇的運(yùn)動(dòng)響應(yīng)進(jìn)行了研究,得到了滑行艇在規(guī)則波和不規(guī)則波中運(yùn)動(dòng)響應(yīng)的幅值,并與相應(yīng)的試驗(yàn)數(shù)據(jù)進(jìn)行了對(duì)比。采用威布爾分布分析模型在不規(guī)則波下的運(yùn)動(dòng)響應(yīng),特別是與重心加速度的關(guān)系。由于針對(duì)不規(guī)則波中航行更接近實(shí)際海況中的航行狀態(tài),其研究更能反映實(shí)際的航行情況。
除滑行艇在航行中的快速性與耐波性等水動(dòng)力性能的預(yù)報(bào)以外,滑行艇在航行中可能出現(xiàn)的不穩(wěn)定運(yùn)動(dòng)也是近年來(lái)研究的重點(diǎn)與難點(diǎn)之一。朱鑫、段文洋等人[6–8]針對(duì)滑行艇在規(guī)則波浪中的運(yùn)動(dòng)響應(yīng)進(jìn)行了時(shí)域與頻域方面的分析,以及在迎浪運(yùn)動(dòng)中可能出現(xiàn)的砰擊現(xiàn)象線性進(jìn)行了研究。李亞軍[9]于2012年應(yīng)用2D+T 法針對(duì)滑行艇縱向不穩(wěn)定運(yùn)動(dòng)進(jìn)行了分析。數(shù)值預(yù)報(bào)了滑行艇發(fā)生海豚運(yùn)動(dòng),伴隨強(qiáng)迫振蕩時(shí)的阻尼系數(shù)與附加質(zhì)量,且與相應(yīng)的試驗(yàn)數(shù)據(jù)進(jìn)行對(duì)比,精度較高,具備足夠的可靠性。
對(duì)此,本文提出了一種變結(jié)構(gòu)滑行艇新船型,變結(jié)構(gòu)滑行艇在常規(guī)單體滑行艇基礎(chǔ)上,增加可自由收放的片體,通過改變兩側(cè)片體與中心體之間的間距來(lái)兼顧快速性和耐波性,為分析變結(jié)構(gòu)滑行艇設(shè)計(jì)對(duì)艇體橫向穩(wěn)定性的優(yōu)化效果,數(shù)值模擬滑行艇約束橫傾航行與斜浪航行,預(yù)報(bào)片體在約束橫傾中所提供的橫向力矩。分析了片體對(duì)滑行艇固有橫搖周期的影響,數(shù)值預(yù)報(bào)片體在斜浪航行中減橫搖效果。
綜合分析單體滑行艇、高速多體船等艇型的特點(diǎn),得到變結(jié)構(gòu)滑行艇初步艇型設(shè)計(jì)方案,使其能夠通過自主收放兩側(cè)片體實(shí)現(xiàn)變形,得到高速低阻的單體形態(tài)和高耐波的三體形態(tài),可根據(jù)海況在單體與三體形態(tài)之間自由轉(zhuǎn)換。
圖1 主艇體三維模型Fig.1 Three-dimensional model of the main hull
滑行艇主艇體主尺度和如表1所示。
表1 滑行艇主尺度數(shù)據(jù)Table 1 Principal dimensions of planing craft
為實(shí)現(xiàn)滑行艇單體與三體形態(tài)轉(zhuǎn)換,在主艇體兩側(cè)增設(shè)可以收放的片體。片體與滑行艇主艇體剛性固定,在釋放到極限位置后片體參與排水,片體設(shè)計(jì)為長(zhǎng)寬比較大的類船型。片體設(shè)計(jì)如圖2所示,片體尺度如表2所示。
表2 片體主尺度數(shù)據(jù)Table 2 Principal dimensions of demihull
圖2 片體三維模型Fig.2 Three-dimensional model of demihull
變結(jié)構(gòu)滑行艇兩側(cè)片體釋放后轉(zhuǎn)化為三體形態(tài),三體形態(tài)下片體的布局參考了盧曉平等[10–12]針對(duì)高速三體船片體布局優(yōu)化的研究結(jié)果,并綜合考慮片體收放裝置強(qiáng)度以及重心設(shè)計(jì)等因素。片體布局以及其相對(duì)主艇體3 個(gè)方向的偏移如圖3與表3所示。
表3 片體位置的偏移Table 3 Offset of demihull position
圖3 三體形態(tài)布置Fig.3 Arrangement of trimaran
變結(jié)構(gòu)滑行艇正常航行過程中,不可避免地遭遇斜浪。滑行艇由于自身耐波性較差,在斜浪航行中需要保持較低的航速與較小的浪向角以保證正常作業(yè)與航行安全。為分析片體在斜浪航行中對(duì)滑行艇橫搖運(yùn)動(dòng)的影響,對(duì)變結(jié)構(gòu)滑行艇2 種形態(tài)在不同波長(zhǎng),波高以及浪向角中的斜浪航行進(jìn)行數(shù)值模擬并分析其運(yùn)動(dòng)響應(yīng)與片體的減搖效果。
本章采用商用CFD 軟件STAR-CCM,基于RANSE 方法,SSTk–ω湍流方程計(jì)算艇體周圍流場(chǎng),采用Volume of Fluid method(VOF)方法模塊以實(shí)現(xiàn)對(duì)自由液面的捕捉,使用6–DOF 求解器以及重疊網(wǎng)格方法對(duì)滑行艇的姿態(tài)進(jìn)行模擬與求解。
為驗(yàn)證網(wǎng)格尺寸對(duì)數(shù)值結(jié)果精度與收斂性的影響,本節(jié)所采用的試驗(yàn)?zāi)P图霸囼?yàn)數(shù)據(jù)來(lái)自于沈海龍等人[13]于2011年進(jìn)行USV01 滑行艇模型的水動(dòng)力試驗(yàn)。
本節(jié)選擇了3 種網(wǎng)格參數(shù)進(jìn)行對(duì)比分析,針對(duì)不同的網(wǎng)格加密方式進(jìn)行修改,對(duì)網(wǎng)格的尺寸依照船長(zhǎng)進(jìn)行了無(wú)因次化處理,以使結(jié)果更具有普遍性。3 種網(wǎng)格參數(shù)的設(shè)置如表4所示。
表4 3 種網(wǎng)格的參數(shù)設(shè)置Table 4 Parameter setting of the 3 grids
采用這3 種網(wǎng)格對(duì)USV01 以8 m/s 航速靜水直航進(jìn)行模擬,預(yù)報(bào)USV01 的阻力、縱傾與升沉,以進(jìn)行網(wǎng)格無(wú)關(guān)性分析。
網(wǎng)格1–3 對(duì)船體附近區(qū)域與自由液面附近2 個(gè)加密區(qū)域均進(jìn)行加密,且網(wǎng)格尺寸減小,本節(jié)中的CFD 檢驗(yàn)基于ITTC 的推薦流程,模擬中針對(duì)滑行艇的艇體表面與加密區(qū)域內(nèi)采用切割體網(wǎng)格進(jìn)行加密。生成網(wǎng)格后,艇體周圍與自由液面的網(wǎng)格如圖4所示。3 種網(wǎng)格針對(duì)阻力、縱傾與升沉的數(shù)值結(jié)果與試驗(yàn)結(jié)果的對(duì)比如表5所示。
表5 3 種網(wǎng)格的數(shù)值結(jié)果Table 5 Numerical results of the 3 grids
圖4 自由液面的網(wǎng)格Fig.4 Grids of the free surface
在網(wǎng)格1–3 中,由于對(duì)必要加密區(qū)域進(jìn)行了網(wǎng)格加密,3 種網(wǎng)格加密的方案均能保證數(shù)值結(jié)果的正常收斂,但數(shù)值結(jié)果的精度存在差異。其中網(wǎng)格加密最精細(xì)的網(wǎng)格1 方案對(duì)應(yīng)的阻力的數(shù)值結(jié)果與試驗(yàn)結(jié)果對(duì)比的誤差為2.71%,按照ITTC 會(huì)議規(guī)定,包括滑行艇在內(nèi)的高性能船舶的數(shù)值預(yù)報(bào)誤差應(yīng)控制在10%以內(nèi),所以網(wǎng)格1 的加密方案能夠保證數(shù)值模擬的精度。后續(xù)數(shù)值預(yù)報(bào)中網(wǎng)格的加密方案均基于網(wǎng)格1。
在斜浪航行的數(shù)值模擬中,數(shù)值水池計(jì)算域的邊界條件與消波區(qū)域與迎浪航行數(shù)值模擬的設(shè)置存在一定差異。由于規(guī)則波浪從滑行艇正前方與右側(cè)的邊界不斷流入,并從正后方與左側(cè)的邊界不斷流出,所以邊界條件的定義發(fā)生了一定變化,計(jì)算域大小與邊界條件的定義如圖5與表6所示。
表6 斜浪航行數(shù)值模擬中計(jì)算域的邊界條件Table 6 Boundary conditions of computational domain in numerical simulation of oblique wave sailing
圖5 斜浪航行數(shù)值模擬中的計(jì)算域與網(wǎng)格Fig.5 Calculation domain and grid in numerical simulation of oblique wave sailing
浪向角βw為60°,U=2 m/s,H=50 mm,λ/L=2的規(guī)則波浪,其自由液面的數(shù)值模擬示意圖如圖6所示。
圖6 斜浪航行中自由液面的數(shù)值模擬Fig.6 Numerical simulation of free surface in oblique wave sailing
為分析單體與三體滑行在不同波長(zhǎng)不同浪向角下的橫向穩(wěn)定性選取了U=2 m/s,H=50 mm,波長(zhǎng)為1.5~4L的規(guī)則波進(jìn)行數(shù)值模擬,選擇了3 種浪向角(βw)分別為30°,45°以及60°,滑行艇模型參考真實(shí)的斜浪航行,開放垂蕩,縱搖與橫搖3個(gè)自由度,并對(duì)滑行艇3 個(gè)自由度上運(yùn)動(dòng)響應(yīng)的時(shí)歷曲線與幅值進(jìn)行數(shù)值預(yù)報(bào),規(guī)則波浪參數(shù)如表7所示。
表7 規(guī)則斜浪航行數(shù)值模擬的波浪工況表Table 7 Regular wave matrix in numerical simulation of oblique wave sailing
滑行艇的三體形態(tài)的橫搖周期明顯小于滑行艇單體形態(tài),這表明隨著滑行艇形態(tài)的改變,變結(jié)構(gòu)滑行艇2 種形態(tài)在不同波浪中的運(yùn)動(dòng)響應(yīng)變化趨勢(shì)與共振區(qū)域也隨之改變,本節(jié)應(yīng)用數(shù)值方法分析片體對(duì)滑行艇斜浪航行中運(yùn)動(dòng)響應(yīng)的影響。3 種不同浪向角下兩種滑行艇的運(yùn)動(dòng)響應(yīng)幅值對(duì)比如表8,圖7–9 所示。
表8 斜浪航行中滑行艇單體與三體形態(tài)運(yùn)動(dòng)響應(yīng)幅值的數(shù)值預(yù)報(bào)結(jié)果Table 8 RAOs of monohull and trimaran in oblique wave sailing
圖7 滑行艇的單體與三體形態(tài)在βw=30°時(shí)不同波長(zhǎng)下的運(yùn)動(dòng)響應(yīng)幅值Fig.7 RAOs of monohull and trimaran in different wavelengths when βw=30°
片體在滑行艇發(fā)生橫傾時(shí)能夠提供大量的橫向力矩作為橫搖阻尼,在斜浪航行,片體對(duì)滑行艇橫搖產(chǎn)生的影響非常明顯。首先是橫搖運(yùn)動(dòng)共振區(qū)域的不同,由于滑行艇的三體形態(tài)的固有橫搖周期小于單體形態(tài),滑行艇在橫搖運(yùn)動(dòng)中發(fā)生共振現(xiàn)象的必要條件是遭遇頻率與滑行艇固有橫搖頻率與遭遇頻率相近,滑行艇的三體形態(tài)橫向阻尼大幅增加,固有頻率的增加必然導(dǎo)致橫搖運(yùn)動(dòng)共振區(qū)域向短波長(zhǎng)的方向移動(dòng)?;型误w形態(tài)共振區(qū)域?qū)?yīng)的波長(zhǎng)為3L,轉(zhuǎn)換為三體形態(tài)時(shí)共振區(qū)域?qū)?yīng)的波長(zhǎng)移動(dòng)至小于1.5L處。
如圖8–10 所示,片體對(duì)滑行艇橫搖的幅值影響隨波長(zhǎng)變化存在一定差異,在到達(dá)滑行艇單體形態(tài)共振區(qū)域之前的短波長(zhǎng)波浪中(λ/L≤2),滑行艇橫向上的遭遇頻率大于單體形態(tài)固有橫搖頻率,共振現(xiàn)象沒有發(fā)生所以橫搖幅值減小。在相同的短波長(zhǎng)波浪中,由于滑行艇的三體形態(tài)自身橫搖周期更小,所以在λ/L≤2 的波浪中,由于其更接近其共振區(qū)域,雖然與滑行艇單體形態(tài)遭遇的波浪激勵(lì)相同,但橫向的強(qiáng)激勵(lì)被激發(fā),所以在短波長(zhǎng)波浪中,滑行艇的三體形態(tài)的橫搖幅值略大于滑行艇單體形態(tài)。
圖9 滑行艇的單體與三體形態(tài)在βw=60°時(shí)不同波長(zhǎng)下的運(yùn)動(dòng)響應(yīng)幅值Fig.9 RAOs of monohull and trimaran in different wavelengths when βw=60°
當(dāng)滑行艇遭遇波浪的波長(zhǎng)為3L時(shí),滑行艇的三體形態(tài)橫搖的幅值遠(yuǎn)小于在相同波浪的滑行艇單體形態(tài)。由于滑行艇在斜浪中橫向的強(qiáng)激勵(lì)作用被激發(fā),滑行艇發(fā)生大幅度橫搖運(yùn)動(dòng)。在激勵(lì)相同的情況下,片體所提供的橫向力矩作為橫搖阻尼,使強(qiáng)激勵(lì)難以改變滑行艇原有姿態(tài),從而減小滑行艇三體形態(tài)橫搖的幅值,同時(shí)由于滑行艇三體形態(tài)固有橫搖周期的減小,使此時(shí)遭遇頻率小于固有橫搖頻率,共振現(xiàn)象的減弱進(jìn)一步減小了橫搖運(yùn)動(dòng)的幅值,在二者聯(lián)合作用下片體能夠?qū)崿F(xiàn)在斜浪航行中減少滑行艇橫搖的效果。在βw=60°,λ/L=3 時(shí),片體最多能減少70.45%的橫搖幅值。隨著波長(zhǎng)的繼續(xù)增加,滑行艇越過共振區(qū)域,橫搖峰值下降,但滑行艇的三體形態(tài)的橫搖幅值依舊小于單體形態(tài),但減搖效果并沒有共振區(qū)域明顯。
本文主要內(nèi)容為數(shù)值分析變結(jié)構(gòu)滑行艇在波浪環(huán)境中的橫向穩(wěn)定性。采用數(shù)值模擬方法,預(yù)報(bào)滑行艇單體與三體形態(tài)在約斜浪航行中的運(yùn)動(dòng)響應(yīng)與,結(jié)果表明:滑行艇在斜浪運(yùn)動(dòng)中發(fā)生橫搖時(shí),片體所提供的橫向力矩作為橫搖阻尼能夠大幅減少滑行艇的橫搖幅值,片體的減橫搖效果在單體形態(tài)的共振區(qū)域內(nèi)最明顯,并且隨著浪向角的增加,片體的減搖效果會(huì)變得更加明顯,在βw=60°片體最多能減少70.45%的橫搖幅值。