亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于模糊化鄰域系統(tǒng)的模糊粗糙集模型

        2023-06-21 03:59:50候婷冉虹馬歡秦克云

        候婷 冉虹 馬歡 秦克云

        摘要:基于鄰域系統(tǒng)的粗糙集模型是Pawlak粗糙集模型的重要推廣形式.討論基于模糊化鄰域系統(tǒng)的模糊粗糙集模型,給出模型中模糊粗糙近似算子的構(gòu)造方法并討論算子的基本性質(zhì).另外,當(dāng)模糊化鄰域系統(tǒng)串行、自反、對(duì)稱、一元和傳遞時(shí)刻畫了相關(guān)近似算子的代數(shù)結(jié)構(gòu).

        關(guān)鍵詞:模糊化鄰域系統(tǒng); 上近似算子; 下近似算子; 粗糙集; 模糊集

        中圖分類號(hào):TP182 文獻(xiàn)標(biāo)志碼:A 章編號(hào):1001-8395(2023)05-0652-08

        粗糙集理論是由波蘭數(shù)學(xué)家Pawlak[1]在1982年提出的,它是一種處理不確定性問題的重要數(shù)學(xué)工具.經(jīng)過40多年的發(fā)展,粗糙集理論已經(jīng)在機(jī)器學(xué)習(xí)[2]、決策分析[3]、模式識(shí)別[4]與數(shù)據(jù)挖掘[5]等領(lǐng)域被廣泛應(yīng)用.

        經(jīng)典粗糙集模型是基于一個(gè)等價(jià)關(guān)系來建立近似空間.在現(xiàn)實(shí)生活中,基于等價(jià)關(guān)系的粗糙集模型在其它領(lǐng)域的應(yīng)用具有一定的局限性.因此,眾多學(xué)者對(duì)經(jīng)典的粗糙集模型進(jìn)行擴(kuò)展.用一般二元關(guān)系代替等價(jià)關(guān)系,Yao[6]提出了基于一般二元關(guān)系的廣義粗糙集模型.將等價(jià)關(guān)系弱化為相似關(guān)系[7]、容差關(guān)系[8]、優(yōu)勢(shì)關(guān)系[9]等,等價(jià)關(guān)系確定的劃分就擴(kuò)展成了論域的覆蓋.于是,經(jīng)典粗糙集模型拓展到了覆蓋廣義粗糙集模型[10-11].

        Lin[12]借助拓?fù)鋵W(xué)中內(nèi)點(diǎn)和閉包的概念,提出了基于鄰域系統(tǒng)的粗糙集模型.基于一般二元關(guān)系的粗糙集模型、基于覆蓋的粗糙集模型以及模糊粗糙集模型都是基于鄰域系統(tǒng)的粗糙集模型的特例[13].因此,研究基于鄰域系統(tǒng)的粗糙集模型具有重要的理論意義.另外,鄰域系統(tǒng)在群決策問題研究中具有直接的應(yīng)用.Zhu等[14]建立了基于模糊鄰域系統(tǒng)的決策評(píng)價(jià)模型,將相應(yīng)的評(píng)價(jià)問題表示為模糊鄰域信息系統(tǒng),并討論了系統(tǒng)的屬性約簡(jiǎn)問題.Zhang等[15]系統(tǒng)研究了基于鄰域系統(tǒng)的粗糙集模型中近似算子的相關(guān)性質(zhì).而模糊化鄰域系統(tǒng)是鄰域系統(tǒng)的一種推廣形式,它把鄰域從經(jīng)典集擴(kuò)展到模糊集.Li等[16]研究了經(jīng)典集在模糊化鄰域系統(tǒng)下近似集的基本性質(zhì),以及當(dāng)模糊化鄰域系統(tǒng)自反、串行和對(duì)稱等時(shí)討論了相關(guān)近似算子的性質(zhì).

        文獻(xiàn)[16]中定義的近似算子的被近似對(duì)象是經(jīng)典集,近似的結(jié)果是模糊集.本文是在文獻(xiàn)[16]的基礎(chǔ)上把近似算子的被近似對(duì)象從經(jīng)典集推廣到模糊集,給出了模糊粗糙近似算子的定義,導(dǎo)出了基于模糊化鄰域系統(tǒng)的模糊粗糙集模型.本文主要研究模糊集在模糊化鄰域系統(tǒng)下模糊粗糙近似集的基本性質(zhì).此外,當(dāng)模糊化鄰域系統(tǒng)自反、對(duì)稱和傳遞等時(shí),文中進(jìn)一步刻畫了模糊粗糙近似算子的代數(shù)結(jié)構(gòu).

        1 預(yù)備知識(shí)

        1.1 粗糙集

        1.2 模糊集

        1.3 基于鄰域系統(tǒng)的粗糙集

        2 基于模糊化鄰域系統(tǒng)的模糊粗糙集模型

        下面是在Li等[16]提出的基于模糊化鄰域系統(tǒng)的粗糙集模型的基礎(chǔ)上,給出了模糊粗糙近似算子的定義,導(dǎo)出基于模糊化鄰域系統(tǒng)的模糊粗糙集模型.本節(jié)主要研究模糊粗糙近似算子的基本性質(zhì),以及討論模糊化鄰域系統(tǒng)在串行、自反、對(duì)稱、一元和傳遞時(shí)模糊粗糙近似算子的代數(shù)結(jié)構(gòu).

        參考文獻(xiàn)

        [1] PAWLAK Z. Rough sets[J]. International Journal of Computer & Information Sciences,1982,11(5):341-356.

        [2] AVISO K B, JANAIRO J I B, PROMENTILLA M A B, et al. Prediction of CO2 storage site integrity with rough set-based machine learning[J]. Clean Technologies and Environmental Policy,2019,21(8):1655-1664.

        [3] DAI J H, LIU Z B, HU H, et al. Rough set model for cognitive expectation embedded interval-valued decision systems[J]. Chinese Journal of Electronics,2018,27(4):675-679.

        [4] LIANG J Y, WANG F, DANG C Y, et al. An efficient rough feature selection algorithm with a multi-granulation view[J]. International Journal of Approximate Reasoning,2012,53(6):912-926.

        [5] ZHANG J B, LI T R, CHEN H M. Composite rough sets for dynamic data mining[J]. Information Sciences,2014,257:81-100.

        [6] YAO Y Y. Constructive and algebraic methods of the theory of rough sets[J]. Information Sciences,1998,109(1/2/3/4):21-47.

        [7] STEFANOWSKI J, TSOUKIAS A. Incomplete information tables and rough classification[J]. Computational Intelligence,2001,17(3):545-566.

        [8] LEUNG Y. Maximal consistent block technique for rule acquisition in incomplete information systems[J]. Information Sciences,2003,153:85-106.

        [9] GRECO S, MATARAZZO B, SLOWINSKI R. Rough sets theory for multicriteria decision analysis[J]. European Journal of Operational Research,2001,129(1):1-47.

        [10] ZHU W. Topological approaches to covering rough sets[J]. Information Sciences,2007,177(6):1499-1508.

        [11] ZHU W, WANG F Y. On three types of covering-based rough sets[J]. IEEE Transactions on Knowledge and Data Engineering,2007,19(8):1131-1143.

        [12] LIN T Y. Granular Computing:Practices,Theories,and Future Directions[M]. New York:Springer,2012:1404-1420.

        [13] ?SYAU Y R, LIN E B, LIAU C J. Neighborhood systems:rough set approximations and definability[J]. Fundamenta Informaticae,2018,159(4):429-450.

        [14] ?ZHU P, XIE H Y, WEN Q Y. A unified view of consistent functions[J]. Soft Computing,2017,21(9):2189-2199.

        [15] ZHANG Y L, LI C Q, LIN M L, et al. Relationships between generalized rough sets based on covering and reflexive neighborhood system[J]. Information Sciences,2015,319:56-67.

        [16] LI L Q, JIN Q, YAO B X, et al. A rough set model based on fuzzifying neighborhood systems[J]. Soft Computing,2020,24(8):6085-6099.

        [17] YAO Y Y. Two views of the theory of rough sets in finite universes[J]. International Journal of Approximate Reasoning,1996,15(4):291-317.

        [18] ZADEH L A. Fuzzy sets[J]. Information and Control,1965,8(3):338-353.

        [19] SYAU Y R, LIN E B. Neighborhood systems and covering approximation spaces[J]. Knowledge-Based Systems,2014,66:61-67.

        [20] ZHAO F F, LI L Q. Axiomatization on generalized neighborhood system-based rough sets[J]. Soft Computing,2018,22(18):6099-6110.

        [21] FANG J M, YUE Y L. K. Fans theorem in fuzzifying topology[J]. Information Sciences,2004,162(3/4):139-146.

        [22] FANG J M, CHEN P W. One-to-one correspondence between fuzzifying topologies and fuzzy preorders[J]. Fuzzy Sets and Systems,2007,158(16):1814-1822.

        [23] HERRLICH H, ZHANG D X. Categorical properties of probabilistic convergence spaces[J]. Applied Categorical Structures,1998,6(4):495-513.

        [24] YING M S. A new approach for fuzzy topology (I)[J]. Fuzzy Sets and Systems,1991,39(3):303-321.

        Fuzzy Rough Set Model Based on Fuzzifying Neighborhood Systems

        HOU Ting RAN Hong MA Huan QIN Keyun

        (School of Mathematics, Southwest Jiaotong University, Chengdu 611756, Sichuan)

        Abstract:The generalized rough set in neighborhood system is an important extension of the Pawlaks rough set model. This paper discusses the fuzzy rough set model based on the fuzzifying neighborhood system. The construction method of the fuzzy rough approximation operators in the model is presented and the basic properties of the operators are investigated. In addition, when the fuzzifying neighborhood system is serial, reflexive, symmetric, unary and transitive, the algebraic structures of the related approximation operators are examined.

        Keywords:fuzzifying neighborhood system; upper approximation operator; low approximation operator; rough set; fuzzy set

        2020 MSC:47H99

        (編輯 余毅)

        亚洲国产精品成人一区二区在线| 国产精品成人av在线观看| 国产91色在线|亚洲| 精品一区二区久久久久久久网站| 国产精品九九热| 亚洲va成无码人在线观看| 亚洲天堂色婷婷一区二区| 国产av一区二区制服丝袜美腿| 亚洲一区二区三区偷拍视频| 精品福利一区二区三区| 国产亚洲精品色婷婷97久久久| 亚洲小说区图片区色综合网| 国产老熟女网站| 激情欧美日韩一区二区| 久久成人麻豆午夜电影| 亚洲精品成人av观看| 日韩女优中文字幕在线| 亚洲国产精品国自拍av| 摸进她的内裤里疯狂揉她动图视频| 成人欧美一区二区三区的电影| 国产亚洲AV无码一区二区二三区 | 日本一道高清在线一区二区| 久久91精品国产一区二区| 中国亚洲一区二区视频| 久久久老熟女一区二区三区| 在线观看视频一区| 亚洲AV无码成人精品区H| 少妇高潮精品在线观看| 99久久无码一区人妻| 少妇高潮惨叫久久久久久电影| 亚洲欧美日韩国产色另类| 日韩女同一区在线观看| 欧美性猛交xxx嘿人猛交| 久热国产vs视频在线观看| 欧美丰满大屁股ass| 成黄色片视频日本秘书丝袜| 日韩精品极品免费在线视频| av免费播放网站在线| 免费a级毛片无码a∨男男| 国产福利免费看| 少妇人妻字幕一区二区|