亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        變系數(shù)反應(yīng)擴(kuò)散方程的雙參數(shù)分裂預(yù)處理方法

        2023-06-21 03:59:50蔣沁紗陳浩

        蔣沁紗 陳浩

        四川師范大學(xué)學(xué)報(bào)(自然科學(xué)版)第46卷第5期

        摘要:考慮一類空間變系數(shù)反應(yīng)擴(kuò)散方程的快速算法.針對二階改進(jìn)道格拉斯分裂時(shí)間離散所得線性代數(shù)系統(tǒng),構(gòu)造一類雙參數(shù)交替分裂迭代方法.分析格式的收斂性,給出最優(yōu)參數(shù)的取值,并獲得相應(yīng)預(yù)處理子.數(shù)值結(jié)果驗(yàn)證新方法的有效性及相比單參數(shù)分裂迭代格式的優(yōu)越性.

        關(guān)鍵詞:變系數(shù)反應(yīng)擴(kuò)散方程; 改進(jìn)道格拉斯分裂方法; 雙參數(shù); 交替分裂迭代方法; 預(yù)處理子

        中圖分類號:O241.82; O241.6 文獻(xiàn)標(biāo)志碼:A 文章編號:1001-8395(2023)05-0638-08

        1離散

        2交替分裂迭代算法

        3數(shù)值實(shí)驗(yàn)

        4結(jié)束語

        本文考慮了變系數(shù)反應(yīng)擴(kuò)散方程的快速算法,針對改進(jìn)道格拉斯分裂時(shí)間離散所得的線性代數(shù)系統(tǒng),構(gòu)造了一類雙參數(shù)交替分裂迭代法,分析了其收斂性及最優(yōu)參數(shù)的取值.同時(shí),將其與GMRES結(jié)合,構(gòu)造了一類預(yù)處理GMRES的方法,數(shù)值結(jié)果驗(yàn)證了新方法的收斂性.

        參考文獻(xiàn)

        [1] HUNDSDORFER W, VERWER J. Advection-diffusion Discretizations[M]. Berlin:Springer,2003:215-323.

        [2] 孫志忠. 非線性發(fā)展方程的有限差分方法[M]. 北京:科學(xué)出版社,2018.

        [3] ZHOU Z G, LIANG D. Mass-preserving time second-order explicit-implicit domain decomposition schemes for solving parabolic equations with variable coefficients[J]. Computational and Applied Mathematics,2018,37(4):4423-4442.

        [4] EVANS L C. Partial Differential Equations[M]. Providence:American Mathematical Society,1999.

        [5] HESTHAVEN J, GOTTLIEB S, GOTTLIEB D. Spectral Methods for Time-dependent Problems[M]. Cambridge:Cambridge University Press,2007.

        [6] ISERLES A. A First Course in the Numerical Analysis of Differential Equations[M]. Cambridge:Cambridge University Press,1996.

        [7] ARRARS A, INHOUT K J, HUNDSDORFER W, et al. Modified Douglas splitting methods for reaction-diffusion equations[J]. BIT Numerical Mathematics,2017,57(2):261-285.

        [8] PEACEMAN D W, RACHFORD H H Jr. The numerical solution of parabolic and elliptic differential equations[J]. Journal of the Society for Industrial and Applied Mathematics,1955,3(1):28-41.

        [9] DOUGLAS J. Alternating direction methods for three space variables[J]. Numerische Mathematik,1962,4(1):41-63.

        [10] BAI Z Z, GOLUB G H, NG M K. Hermitian and Skew-Hermitian splitting methods for non-Hermitian positive definite linear systems[J]. SIAM Journal on Matrix Analysis and Applications,2003,24(3):603-626.

        [11] CHEN H. A splitting preconditioner for the iterative solution of implicit Runge-Kutta and boundary value methods[J]. BIT Numerical Mathematics,2014,54(3):607-621.

        [12] CHEN H. Generalized Kronecker product splitting iteration for the solution of implicit Runge-Kutta and boundary value methods[J]. Numerical Linear Algebra With Applications,2015,22(2):357-370.

        [13] CHEN H, L W, ZHANG T T. A Kronecker product splitting preconditioner for two-dimensional space-fractional diffusion equations[J]. Journal of Computational Physics,2018,360:1-14.

        [14] BAI Z Z, LU K Y, PAN J Y. Diagonal and Toeplitz splitting iteration methods for diagonal-plus-Toeplitz linear systems from spatial fractional diffusion equations[J]. Numerical Linear Algebra With Applications,2017,24(4):e2093.

        [15] LIN X L, NG M K, SUN H W. A splitting preconditioner for Toeplitz-like linear systems arising from fractional diffusion equations[J]. SIAM Journal on Matrix Analysis and Applications,2017,38(4):1580-1614.

        [16] 蔣沁紗,陳浩. 空間變系數(shù)反應(yīng)擴(kuò)散方程的一類交替分裂預(yù)處理迭代方法[J]. 重慶師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,39(5):83-90.

        [17] HORN R A, JOHNSON C R. Topics in Matrix Analysis[M]. Cambridge:Cambridge University Press,1991.

        [18] SAAD Y. Iterative Methods for Sparse Linear Systems[M]. 2nd ed. Philadelphia:SIAM,2003.

        A Class of Alternating Splitting Preconditioning Method with Two Parameters

        for Reaction-Diffusion Equations with Variable Coefficients in SpaceJIANG Qinsha,CHEN Hao(School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331)

        Abstract:This paper consider fast algorithms for solving a class of reaction-diffusion equations with variable coefficients. We propose an alternating splitting iterative method with two parameters for solving the linear algebraic systems resulting from the modified Douglas splitting discretization of the reaction-diffusion equations. We show that the proposed scheme is convergent and the optimal parameters are given. A splitting preconditioner is also derived for the linear system. Numerical results show that the proposed methods is effective and superior to the splitting iterative scheme with a single parameter.

        Keywords:reaction-diffusion equation with variable coefficients; modified Douglas splitting method; two parameters; alternating splitting iteration method; preconditioner

        2020 MSC:65F10; 65L06; 65N22

        (編輯 余毅)

        又爽又黄又无遮挡的激情视频| 激情亚洲不卡一区二区| 少妇一级淫片中文字幕| 中文字幕乱码一区av久久不卡 | 加勒比色老久久爱综合网| 亚洲国产成人久久综合下载| 国产精品一久久香蕉国产线看观看| 精选二区在线观看视频| 中文字幕丰满人妻av| 中文字幕乱码亚洲精品一区| 午夜片无码区在线| 蜜桃视频在线免费观看一区二区| 精品人妻av一区二区三区麻豆 | 国产成人亚洲一区二区| 久久无码av一区二区三区| 99热免费精品| 中文字幕你懂的一区二区| 精品一二三四区中文字幕| 一本色综合久久| 国产v综合v亚洲欧美大天堂 | 亚洲毛片αv无线播放一区| 久久综合老鸭窝色综合久久| 白嫩丰满少妇av一区二区| 国产成人av片在线观看| 免费国产99久久久香蕉| 暴露的熟女好爽好爽好爽| 男女性爽大片视频| 人妻去按摩店被黑人按中出| 中文字幕乱码av在线| 日本人妻伦理在线播放 | 日韩精品极品免费观看| 亚洲精一区二区三av| 久久久久久国产精品无码超碰动画| 色www亚洲| 国产精品夜色视频久久| 乱中年女人伦av一区二区| 久热这里只有精品99国产| 亚洲国产线茬精品成av| 欧美精品欧美人与动人物牲交| 久久久久99精品成人片试看| 亚洲中文字幕不卡无码|