亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        無界域上一類隨機(jī)反應(yīng)擴(kuò)散方程不變測(cè)度的存在唯一性

        2023-06-21 09:20:39鄧海斌李曉軍

        鄧海斌 李曉軍

        摘要:研究定義在無界區(qū)域上的一類隨機(jī)反應(yīng)擴(kuò)散方程不變測(cè)度的存在性和唯一性.利用方程主部算子在權(quán)空間L2ρ(Rd+)上生成算子半群的指數(shù)衰減性,對(duì)方程的解進(jìn)行整體期望有界估計(jì),并得到隨機(jī)穩(wěn)態(tài)解的存在性和指數(shù)穩(wěn)定性,進(jìn)而得到穩(wěn)態(tài)解的分布為唯一的不變測(cè)度.

        關(guān)鍵詞:隨機(jī)反應(yīng)擴(kuò)散方程; 不變測(cè)度; 指數(shù)穩(wěn)定

        中圖分類號(hào):O175.26 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1001-8395(2023)05-0608-08

        1相關(guān)引理和概念

        2穩(wěn)態(tài)解的指數(shù)穩(wěn)定性和一致有界性

        3不變測(cè)度的存在唯一性

        參考文獻(xiàn)

        [1] DA PRATO G, ZABCZYK J. Ergodicity for Infinite Dimensional Systems[M]. Cambridge:Cambridge University Press,1996.

        [2] DA PRATO G, ZABCZYK J. Stochastic Equations in Infinite Dimensions[M]. Cambridge:Cambridge University Press,1992.

        [3] CERRAI S. Stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term[J]. Probability Theory and Related Fields,2003,125(2):271-304.

        [4] WANG B X. Dynamics of fractional stochastic reaction-diffusion equations on unbounded domains driven by nonlinear noise[J].Journal of Differential Equations,2019,268(1):1-59.

        [5] MISIATS O, STANZHYTSKYI O, YIP N K. Existence and uniqueness of invariant measures for stochastic reaction-diffusion equations in unbounded domains[J]. Journal of Theoretical Probability,2016,29(3):996-1026.

        [6] ASSING S, MANTHEY R. Invariant measures for stochastic heat equations with unbounded coefficients[J]. Stochastic Processes and Their Applications,2003,103(2):237-256.

        [7] BRZEZNIAK Z, MOTYL E, ONDREJAT M. Invariant measure for the stochastic Navier-Stokes equations in unbounded 2D domains[J]. The Annals of Probability,2017,45(5):3145-3201.

        [8] ECKMANN J, HAIRER M. Invariant measures for stochastic partial differential equations in unbounded domains[J]. Nonlinearity,2001,14(1):133-151.

        [9] TESSITORE G, ZABCZYK J. Invariant measures for stochastic heat equations[J]. Probability and Mathematical Statistics,1998,18(2):271-287.

        [10] BRZENIAK Z, ONDREJT M, SEIDLER J. Invariant measures for stochastic nonlinear beam and wave equations[J]. Journal of Differential Equations,2016,260(5):4157-4179.

        Existence and Uniqueness of Invariant Measures for a Class of

        Stochastic Reaction-Diffusion Equations on Unbounded DomainsDENG Haibin,LI Xiaojun(College of Science, Hohai University, Nanjing 211100, Jiangsu)

        Abstract:In this paper, we study the existence and uniqueness of invariant measures for a class of stochastic reaction-diffusion equations defined on unbounded domains. Using the exponential decay of the operator semigroup generated by the linear operator of the equation on the weight space L2ρ(Rd+), we get the global boundness of expectation estimation of solution, obtain the existence and exponential stability of the stochastic stationary solution, and deduce that the distribution of the stationary solution is the unique invariant measure.

        Keywords:stochastic reaction-diffusion equations; invariant measure; exponential stability 〖=〗

        2020 MSC:35K57; 60H15

        (編輯 余毅)

        日本一区二区三区人妻| 精品久久一区二区三区av制服 | 中文亚洲一区二区三区| 亚洲视频专区一区二区三区 | 青青青国产精品一区二区| 日韩国产一区| 免费一级国产大片| 亚洲一区二区不卡日韩| 亚洲一区二区av天堂| 国产日本精品一二三四区| 奇米影视7777久久精品| 一个人看的视频www免费| 无遮挡亲胸捏胸免费视频| 欧美xxxx新一区二区三区| 在线免费观看亚洲天堂av| 免费观看日本一区二区三区| 欧美肥妇毛多水多bbxx水蜜桃| 人妻少妇久久中中文字幕| 免费人成在线观看| 老熟妇仑乱视频一区二区| 乱子真实露脸刺激对白| 精品久久免费一区二区三区四区| 成人全部免费的a毛片在线看| 国产精品美女久久久网站三级| 国产精品18久久久| 成人免费视频在线观看| 五月婷婷影视| 午夜一区二区在线视频| 日本一二三区免费在线| 亚洲欧洲成人精品香蕉网| 国产精品久久国产三级国不卡顿 | 乌克兰少妇xxxx做受6| 亚洲欧美日韩国产精品一区| 日本免费一区二区精品| 国产精品一区二区av麻豆| 国内精品无码一区二区三区| 中文字幕不卡高清免费| 日本无吗一区二区视频| 日本一二三区免费在线| 久久久www免费人成精品| 日本a级特黄特黄刺激大片|