庹武 郝瀟瀟 郭鑫 劉永亮 陳謙
摘要:為實現(xiàn)自動判別男西裝袖的弊病類型,提出了一種將圖像處理技術(shù)與BP神經(jīng)網(wǎng)絡(luò)相結(jié)合的判別方法。首先收集不同弊病類型的男西裝袖圖像,借用MATLAB平臺,對圖像進行灰度化、灰度增強、二值化等預(yù)處理,繪制褶皺部位的灰度曲線圖;然后基于灰度曲線圖以及二值化圖提取褶皺寬度、褶皺深度和褶皺斜率等3個特征參數(shù);最后將提取的特征參數(shù)和對應(yīng)的弊病類型輸入到BP神經(jīng)網(wǎng)絡(luò)中訓練和識別,對男西裝袖弊病圖像的類型進行分類。結(jié)果顯示,提出的方法對袖弊病類型的判別具有較高的準確率與穩(wěn)定性。
關(guān)鍵詞:男西裝袖;弊病類型;褶皺;圖像處理;BP神經(jīng)網(wǎng)絡(luò)
中圖分類號:TS941.26
文獻標志碼:A
文章編號:1009-265X(2023)02-0047-08
隨著人民生活水平的提高,服裝定制已成為行業(yè)熱點。當顧客試穿定制服裝出現(xiàn)服裝結(jié)構(gòu)不平衡時,可能產(chǎn)生不同形式的弊病褶皺,直接影響服裝的美觀性以及合體舒適性[1]。目前對弊病的判斷,主要是專業(yè)人員分析顧客著裝狀態(tài)并給出修正方案,這對專業(yè)人員的經(jīng)驗和技術(shù)要求較高且效率較低。因此,利用計算機圖像技術(shù)分析顧客著裝圖像判斷弊病類型,快速且智能地識別出服裝弊病類型是目前服裝定制企業(yè)需要解決的技術(shù)難題[2]。
目前關(guān)于國內(nèi)外著裝褶皺圖像的研究,主要是基于圖像空間域、頻域,通過圖像灰度處理技術(shù)、中值濾波處理、灰度增強、閾值分割等方法進行處理[3-4]。如國內(nèi)的劉婷利用多種圖像處理方法提取了褶皺的相關(guān)參數(shù),實現(xiàn)了對服裝平整度的客觀評價[5];張蒙蒙[6]通過著裝褶皺圖像的分析,量化不同褶皺以評價服裝的合體性;張俊等[7]通過MATLAB軟件對著裝圖像的褶皺灰度值分布分析,利用多元回歸方法,得到服裝著裝褶皺與寬松量的回歸模型,實現(xiàn)對服裝寬松程度的客觀評價; Hesarian等[8]將輪廓光線法與圖像處理技術(shù)相結(jié)合,實現(xiàn)褶皺等級的評價;Silvestre-Blanes等[9]運用了激光掃描技術(shù),并對獲取的圖像分析,設(shè)計了一個褶皺自動評價系統(tǒng);研究主要集中在褶皺與服裝合體性、服裝平整度的相關(guān)性、評價褶皺等級的研究,沒有進一步分析褶皺與服裝外觀弊病的聯(lián)系。
針對目前存在的問題,本文基于男西裝袖,提出一種圖像處理技術(shù)與BP神經(jīng)網(wǎng)絡(luò)相結(jié)合的袖弊病類型的判別方法,利用圖像灰度處理技術(shù)提取袖弊病圖像中的褶皺特征參數(shù),結(jié)合對應(yīng)的弊病類型構(gòu)建BP神經(jīng)網(wǎng)絡(luò)模型,以實現(xiàn)有效識別袖弊病類型的目的。
1袖弊病圖像與預(yù)處理
1.1袖弊病圖像分析
男西裝袖是最重要的部位之一,對男西裝的外觀具有重要影響[10]。當西裝袖出現(xiàn)弊病時,褶皺是直觀呈現(xiàn)在袖子表面的判斷指標,其分布規(guī)律和形態(tài)特征能夠反映袖子與著裝者之間的狀態(tài),如表1所示。當褶皺的寬窄程度、疏密程度、走勢方向不同時,形成的弊病類型也會有所不同。當橫向的寬度不夠或縱向的長度過多,會產(chǎn)生橫向的褶皺,如弊病袖肥橫褶和袖山橫褶分別是由于袖肥不夠和袖山高過高而產(chǎn)生的不同橫向褶皺。當縱向長度不夠或橫向上過多的寬度會引起縱向褶皺如弊病袖山直褶。當面料與人體接觸面受力不均衡時,袖子產(chǎn)生不同
程度的斜向褶皺,如袖子起裂、后袖打綹等弊?。?1]。因此,依據(jù)不同弊病的褶皺形態(tài),可提取表征褶皺形態(tài)的參數(shù)作為判斷弊病類型的依據(jù)。
為使判別弊病類型的結(jié)果穩(wěn)定,選取褶皺寬窄、疏密以及走勢等特征比較明顯的弊病著裝圖像作為實驗樣本,分別是袖山直褶、袖山橫褶、袖子起裂、后袖打綹等弊病圖像。收集服裝定制企業(yè)顧客的袖著裝圖像作為實驗的樣本(共有52個圖像樣本、4種弊病類),用于分類識別部分的訓練和預(yù)測,圖1為收集的4類袖弊病圖像的樣本之一。后續(xù)實驗所用到的著裝圖像樣本中的人體均是自然站立,手臂自然下垂,并且外觀弊病褶皺的產(chǎn)生,經(jīng)多名質(zhì)檢人員、版師及工藝師分析均是服裝結(jié)構(gòu)不平衡導致的。
1.2圖像預(yù)處理
對于存在弊病的袖圖像,預(yù)裁剪成3 000×1 000的像素大小,并旋轉(zhuǎn)至統(tǒng)一的方向,對圖像進行灰度化處理,褶皺部位的灰度變化反映了褶皺變化規(guī)律,利用直方圖均衡化方法進行灰度增強,使弊病圖像的特征易于顯現(xiàn)。最后通過最大熵閾值分割的算法,得到圖像的二值化圖,利于特征提?。?2]。弊病圖像預(yù)處理的變化過程如圖2。
2圖像信息分析與參數(shù)提取
在圖像處理技術(shù)中,有關(guān)圖像的各種信息都可以通過灰度圖的灰度值反映出來。基于圖像的灰度信息變化以及不同的算法,對褶皺形態(tài)特征、走勢變化進行數(shù)字化識別。
2.1圖像信息分析
弊病褶皺的凹凸對光線的反射效果不同,灰度圖的灰度值變化反映了這種特征,灰度值大則褶皺凸起,灰度值小,褶皺內(nèi)凹。本文對著裝弊病圖像進行灰度化相關(guān)的處理后,提取褶皺參數(shù)。
弊病部位的褶皺情況借助MATLAB圖像處理軟件進行描述,選擇褶皺部位平行于袖側(cè)邊或袖底邊的位置線進行數(shù)據(jù)采集,來描述整個弊病的褶皺。如圖3所示為采集線的灰度變化信息,橫坐標為像素點的位置,縱坐標為灰度值。當著裝圖像沒有褶皺時,灰度值波動較小,出現(xiàn)褶皺時,波動較大。圖3(a)所示的灰度曲線圖中,最初出現(xiàn)一個波峰,對應(yīng)袖弊病圖像在此處凸出的一個小褶皺,隨后出現(xiàn)了一個谷底,說明該處灰度值較低,對應(yīng)著弊病袖的第一個褶皺凹陷部位,在曲線圖橫坐標為620左右的位置上,又出現(xiàn)了一個顯著的谷底,對應(yīng)著弊病袖的第二個褶皺凹陷部位。因此,采集線的灰度分布可以明顯地看出灰度曲線與弊病褶皺的對應(yīng)關(guān)系。從圖3的灰度曲線圖中,可以明顯看出4個袖弊病圖像存在明顯的差異,當褶皺較寬時,灰度曲線中波谷之間的距離就較大,當褶皺較深時,波峰波谷的數(shù)值差值就大。因此,從灰度曲線圖中可獲取褶皺寬度、褶皺深度等信息,當出現(xiàn)多個弊病褶皺時,對應(yīng)的波峰波谷的個數(shù)相應(yīng)增多,因此計算每相鄰波峰(波谷)的間距取其平均值作為其中一類弊病的褶皺寬度和褶皺深度。
如圖4所示,經(jīng)過二值化的圖像,褶皺方向走勢能夠清晰地顯現(xiàn)出來。在MATLAB圖像處理軟件中,以圖像的左下角端點為坐標原點,圖像的下邊界線和左邊界線分別為x軸和y軸,依據(jù)每個褶皺方向,選取二值化圖像中褶皺方向線的兩點坐標(x1,y1)、(x2,y2),根據(jù)斜率公式k=x2-x1y2-y1計算出褶皺斜率作為表征褶皺走勢方向的參數(shù),當出現(xiàn)多個弊病褶皺時,計算所有褶皺方向的斜率取其平均值。
為了能夠利用圖像信息,從灰度曲線圖中和二值化圖中分別提取了褶皺寬度D、褶皺深度H、褶皺斜率K作為袖弊病的參數(shù)[13]。
褶皺寬度D:該參數(shù)表明檢測區(qū)域褶皺大小,包括波峰寬度(相鄰的兩波峰之間的位置間距)和波谷寬度(相鄰兩波谷之間的位置間距)。
褶皺深度H:該參數(shù)表明褶皺凹凸的高度差值,
即褶皺灰度曲線最大灰度值與最小灰度值的差值。
褶皺斜率K:該參數(shù)表明褶皺的走勢方向和傾斜程度。
2.2褶皺參數(shù)提取
通過對灰度曲線圖和二值圖的分析,提取了4種弊病類型共52個樣本的褶皺寬度、褶皺深度、褶皺斜率的參數(shù),如表2所示。
3BP神經(jīng)網(wǎng)絡(luò)模型構(gòu)建
3.1BP神經(jīng)網(wǎng)絡(luò)原理
BP神經(jīng)網(wǎng)絡(luò)是一種多層前饋神經(jīng)網(wǎng)絡(luò),如圖5所示為BP神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)圖,包括輸入層、隱層、和輸出層等三層。它可以通過反向傳播來不斷調(diào)整網(wǎng)絡(luò)的權(quán)值和閾值,使網(wǎng)絡(luò)的誤差平方和最小。
BP神經(jīng)網(wǎng)絡(luò)這種不斷進行反饋減少誤差的原則,可對圖像提取的特征值進行分類與識別。將提取的袖弊病褶皺特征值作為訓練樣本,通過褶皺特征與弊病類型之間的映射訓練,可以實現(xiàn)袖弊病類型的判別[14]。
3.2構(gòu)建BP神經(jīng)網(wǎng)絡(luò)模型
本文借助于MATLAB平臺編寫程序?qū)崿F(xiàn)神經(jīng)網(wǎng)絡(luò)的構(gòu)建,具體訓練實現(xiàn)步驟如下:
a)設(shè)置參數(shù)
借鑒經(jīng)驗公式h=i+j+c(式中:h為隱含層節(jié)點數(shù);i為3個神經(jīng)元的輸入層;j為4個神經(jīng)元的輸出層;c為區(qū)間1至10的整數(shù))確定訓練過程中隱層的節(jié)點數(shù)為7。隱含層和輸出層選用的激活函數(shù)分別為tansig函數(shù)和purelin函數(shù)。輸入、輸出函數(shù)的閾值分別設(shè)置為1和2,學習速率設(shè)置0.001,訓練次數(shù)設(shè)置為1000次[15]。
b)讀取數(shù)據(jù)
將已提取的特征值作為樣本,相對應(yīng)的弊病類型作為網(wǎng)絡(luò)期望輸出向量,并將已有的數(shù)據(jù)集按照7∶3的比例進行劃分,即36個樣本作為訓練集,16個樣本作為測試集。數(shù)據(jù)的輸入值為提取的弊病褶皺特征值,輸出值為弊病的數(shù)字類型,選擇one-hot編碼進行表示,即用0和1進行編碼,使輸出值表示四種弊病類型,即后袖打綹、袖山直褶、袖子起裂、袖山直褶等弊病的輸出類型編號分別為1、2、3、4,編碼形式分別為1000、0100、0010、0001。
c)數(shù)據(jù)歸一化
在MATLAB環(huán)境下,采用mapminmax函數(shù)對訓練數(shù)據(jù)進行歸一化處理。
d)建立BP神經(jīng)網(wǎng)絡(luò)模型
通過函數(shù)newff函數(shù)建立網(wǎng)絡(luò)模型。
e)訓練BP神經(jīng)網(wǎng)絡(luò)
重復(fù)訓練,直至網(wǎng)絡(luò)輸出的誤差平方和最小,或者達到設(shè)置的訓練次數(shù)為止[16]。
4結(jié)果與分析
基于上述步驟,對數(shù)據(jù)進行仿真試驗后,實驗結(jié)果顯示本文所建立的神經(jīng)網(wǎng)絡(luò)模型訓練迭代次數(shù)和時間較少,圖6顯示均方誤差值在訓練集和測試集中都有下降趨勢。根據(jù)神經(jīng)網(wǎng)絡(luò)模型分類的弊病類型與實際類別的回歸分析,計算R值。圖7中不論是測試集還是訓練集,本文模型的總體R值更接近于1,函數(shù)的擬合度較好。
從表3的識別結(jié)果可以看出來,BP神經(jīng)網(wǎng)絡(luò)模型對所提取的袖弊病褶皺特征值分類識別率均在90%以上,其中有兩種袖弊病類型的識別率達到了100%,這說明提取的3個特征值可表征不同的弊病類型,可用于袖弊病類型的自動判斷。
5結(jié)論
采用圖像處理技術(shù)對服裝定制企業(yè)的男西裝袖著裝弊病圖像進行處理,通過提取3個弊病褶皺特征參數(shù)作為特征值,搭建BP神經(jīng)網(wǎng)絡(luò)模型對樣本進行訓練,實現(xiàn)了4種男西裝袖弊病類型的自動判別,準確率較高,在91%~100%之間,為基于圖像處理技術(shù)提高服裝外觀質(zhì)量的檢測效率,推動服裝定制企業(yè)智能檢測技術(shù)的發(fā)展提供了參考。在后續(xù)研究中會收集更多識別率偏低的圖像樣本,通過提取更多褶皺特征值以進一步提高男西裝袖弊病類型的識別率。
參考文獻:
[1]張媛媛,安凌中,閆琳,等.特體男西裝樣版補正技術(shù)研究[J].毛紡科技,2019,47(8):53-56.
ZHANG Yuanyuan, AN Lingzhong, YAN Lin, et al. Research on correction technology of special body male suit sample edition[J]. Wool Textile Journal, 2019, 47 (8): 53-56.
[2]李紅星,陳素英.淺析男西裝數(shù)字化定制[J].山東紡織科技,2018,59(3):40-43.
LI Hongxing, CHEN Suying. A brief analysis of the digital customization of men's suits[J]. Shandong Textile Science and Technology, 2018, 59(3): 40-43.
[3]張艷紅,楊思,徐增波.數(shù)字圖像處理技術(shù)在服裝領(lǐng)域的應(yīng)用[J].毛紡科技,2019,47(10):83-88.
ZHANG Yanhong, YANG Si, XU Zengbo. Application of digital image processing technology in clothing[J]. Wool Textile Journal, 2019 , 47(10): 83-88.
[4]陳偉偉,陳雁.服裝褶皺效果的評價[J].紡織學報,2007,28(4):87-90.
CHEN Weiwei, CHEN Yan. Evaluation of garment folding effect[J]. Journal of Textile Research, 2007, 28(4): 87-90.
[5]劉婷.服裝肘部穿著平整度客觀評價方法研究[D].杭州:浙江理工大學,2016:20-40.
LIU Ting.Research on the Objective Evaluation Method of Clothing Elbow Wearing Flatness[D]. Hangzhou:
Zhejiang Sci-Tech University, 2016:20-40.
[6]張蒙蒙.基于褶皺圖像識別的著裝合體性研究[D].青島:青島大學,2019:11-44.
ZHANG Mengmeng. Study on Dress Fitting Based on Fold Image Recognition[D]. Qingdao: Qingdao University, 2019: 11-44.
[7]張俊,陶輝,林碧珺.基于褶皺灰度圖像的服裝寬松量的評價方法[J].服裝設(shè)計師,2020(8):96-101.
ZHANG Jun, TAO Hui, LIN Bijun. Evaluation method of clothing looseness based on wrinkle grayscale image[J]. Fashion China, 2020(8): 96-101.
[8]HESARIAN, MIR S, ESHKEVARI, et al. Angle analysis of fabric wrinkle by projected profile light line method, image processing and neuro-fuzzy system[J]. International Journal of Computer Integrated Manufacturing, 2020, 33(10/12): 1167-1184.
[9]SILVESTRE-BLANES J, BERENGUER-SEBASTI J, PREZ-LLORNS,R, et al. Garment smoothness appearance evaluation through computer vision[J]. Textile Research Journal, 2012, 82(3): 299-309.
[10]庹武,陳謙.基于改進BP神經(jīng)網(wǎng)絡(luò)的西服肩袖造型研究[J].紡織學報,2010,31(8):113-116.
TUO Wu, CHEN Qian. Research on the modeling of the rotator cuffs of suits based on improved BP neural network[J]. Journal of Textile Research, 2010, 31(8): 113-116.
[11]陸根芳.男女服裝弊病修正大全[M].上海:上海科學普及出版社,1990:10-35.
LU Genfang. Encyclopedia of Correction of Men's and Women's Clothing Shortcomings[M]. Shanghai: Shanghai Science Popularization Publishing House, 1990:10-35.
[12]閆敬文.數(shù)字圖像處理MATLAB版[M].北京:國防工業(yè)出版社.2011:40-88.
YAN Jingwen. Digital Image Processing MATLAB Edition[M]. Beijing: National Defense Industry Press. 2011:40-88.
[13]李蓓蓓.從服裝圖片中識別面料方法的研究[J].上海第二工業(yè)大學學報,2012,29(3):183-186.
LI Beibei. Research on clothes fabric specification from fashion images[J]. Journal of Shanghai Second Polytechnic University, 2012, 29(3): 183-186.
[14]庹武,王嘵玉,高雅昆,等.基于改進邊緣檢測算法的服裝款式識別[J].紡織學報,2021,42(10):157-162.
TUO Wu, WANG Xiaoyu, GAO Yakun, et al. Clothing style recognition based on improved edge detection algorithm[J]. Journal of Textile Research, 2021, 42(10): 157-162.
[15]張寧,潘如如,高衛(wèi)東.采用圖像處理的織物縫紉平整度自動評估[J].紡織學報,2017,38(4):145-150.
ZHANG Ning, PAN Ruru, GAO Weidong. Automatic evaluation of fabric sewing flatness using image processing[J]. Journal of Textile Research, 2017, 38(4): 145-150.
[16]王雅靜,宋丹.基于BP神經(jīng)網(wǎng)絡(luò)的女性服裝款式分類技術(shù)研究[J].輕工科技,2020,36(4):107-109.
WANG Yajing, SONG Dan. Research on classification technology of women's clothing styles based on BP neural network[J]. Light Industry Science and Technology, 2020, 36(4): 107-109.
Automatic identification of male suit sleeve drawback categories based on pleated feature parameters
TUO Wu1, HAO Xiaoxiao2, GUO Xin1, LIU Yongliang1, CHEN Qian2
(1.School of Fashion Technology, Zhongyuan University of Technology, Zhengzhou 451191, China;
2.College of Art and Design, Zhenzhou University of Industry Technology, Zhenzhou 450064, China)
Abstract: Computer image processing technology is more and more widely used in the field of textiles and garments. The technology can detect and extract the target information required in the image, and the cross-application of textile and garment promotes the development of intelligent detection technology in the production process, such as fabric defect detection and sewing flatness detection, improving the production efficiency. However, the intelligent detection technology of clothing appearance defects has developed slowly, mainly relying on experienced patternmakers to judge the types of defects, which is undoubtedly not conducive to the improvement of production efficiency. Therefore, the application of image processing technology in clothing appearance inspection, avoiding subjective accidents, enhancing the objectivity of judgment results, and reducing the demand for manpower and material resources are urgent problems for clothing enterprises.
In order to realize the automatic identification of clothing appearance defect types, we took the dress images of men's suit sleeves as the research object, and proposed a discrimination method combining image processing technology and BP neural network technology. Firstly, we analyzed the visual influencing factors of sleeve defect dress images, dissected the appearance fold characteristics of some sleeve defect types, and determined the parameters for quantifying sleeve defect folds. Then, with the help of image processing software MATLAB, we extracted the fold parameters of sleeve defect dress image samples, used the image grayscale, grayscale enhancement, image threshold segmentation set image binarization and other technologies to preprocess the dress image of the defect map, and extracted the parameters such as fold width and fold depth based on the grayscale curve chart, and on the basis of the processed binarization diagram, we extracted the slope of the fold direction of the parameters on the fold trend, and extracted the fold parameters of four types of defects in 52 samples. Finally, we wrote the program of BP neural network to identify the drawback model. 70% of the data was used as the training set and 30% was input to the BP neural network training as the test set. The input was the extracted three fold parameters, and the output was an encoded number representing the type of defects. It is verified that the model has high accuracy and stability, can identify the types of sleeve defects, and realize the automatic judgment of sleeve appearance defects.
The relationship between different sleeve defect types and their corresponding appearance folds provides enlightenment for the development of intelligent detection technology for clothing appearance quality, and the types of clothing appearance defects can be automatically determined by using image processing technology to to extract the characteristic parameters of different appearance folds and combining with the neural network model. The research results can provide reference guidance for the development of clothing appearance quality inspection technology.
Keywords: men's suit sleeves; defect type; folds; image processing; BP neural network; MATLAB
收稿日期:20220506
網(wǎng)絡(luò)出版日期:20220915
基金項目:河南省高等學校重點科研項目(19A540004,23A540007)
作者簡介:庹武(1968—),女,河南南陽人,教授,碩士,主要從事服裝結(jié)構(gòu)技術(shù)方面的研究。