亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        轉(zhuǎn)錄因子調(diào)控番茄抗旱性研究進(jìn)展

        2023-06-04 06:23:37董舒超凌嘉怡趙麗萍宋劉霞王銀磊趙統(tǒng)敏
        江蘇農(nóng)業(yè)科學(xué) 2023年9期

        董舒超 凌嘉怡 趙麗萍 宋劉霞 王銀磊 趙統(tǒng)敏

        摘要:番茄原產(chǎn)自熱帶地區(qū),是全世界栽培面積最大的蔬菜之一。農(nóng)業(yè)生產(chǎn)上,干旱脅迫是限制番茄產(chǎn)量和品質(zhì)的主要制約因素。因此,挖掘抗旱基因用于番茄抗旱育種意義重大。番茄的抗旱性狀是由多基因控制的復(fù)雜性狀,而轉(zhuǎn)錄因子能通過轉(zhuǎn)錄級(jí)聯(lián)效應(yīng)同時(shí)調(diào)控干旱脅迫響應(yīng)通路上的多個(gè)基因來調(diào)節(jié)植物的抗旱性,是培育抗旱番茄品種的重要遺傳資源。本文對(duì)近年來有關(guān)轉(zhuǎn)錄因子調(diào)節(jié)番茄抗旱性和參與干旱脅迫響應(yīng)的最新研究成果進(jìn)行了歸納總結(jié),綜述了bHLH、MYB、NAC、bZIP、ERF、WRKY、HD-Zip等家族轉(zhuǎn)錄因子調(diào)控番茄響應(yīng)干旱脅迫的研究進(jìn)展。在干旱脅迫下,這些轉(zhuǎn)錄因子參與的調(diào)節(jié)網(wǎng)絡(luò)主要涉及脫落酸(ABA)和活性氧等相關(guān)通路。對(duì)轉(zhuǎn)錄因子在培育番茄抗育品種中的應(yīng)用進(jìn)行了討論,提出增強(qiáng)轉(zhuǎn)錄因子遺傳改良在時(shí)空水平的特異性用于抗旱番茄品種選育的方法,旨在為番茄抗旱育種研究提供新思路。

        關(guān)鍵詞:番茄;抗旱性;干旱脅迫響應(yīng);轉(zhuǎn)錄因子;育種;脫落酸

        中圖分類號(hào):S641.201??文獻(xiàn)標(biāo)志碼:A??文章編號(hào):1002-1302(2023)09-0009-08

        基金項(xiàng)目:國(guó)家自然科學(xué)基金青年科學(xué)基金(編號(hào):32202489);江蘇省自然科學(xué)基金青年基金(編號(hào):BK20220743);江蘇省重點(diǎn)研發(fā)計(jì)劃現(xiàn)代農(nóng)業(yè)項(xiàng)目(編號(hào):BE2022339);江蘇現(xiàn)代農(nóng)業(yè)(蔬菜)產(chǎn)業(yè)技術(shù)體系(編號(hào):JATS[2022]433)。

        作者簡(jiǎn)介:董舒超 (1991—),女,湖北人,博士,助理研究員,主要從事番茄抗旱性狀調(diào)控分子機(jī)理研究。E-mail:20221007@jaas.ac.cn。

        通信作者:趙統(tǒng)敏,碩士,研究員,主要從事高品質(zhì)番茄育種研究。E-mail:tmzhaomail@163.com。

        隨著全球氣候變暖的趨勢(shì)加劇,干旱災(zāi)害發(fā)生越來越頻繁,給全球農(nóng)業(yè)造成的問題越來越嚴(yán)重。在眾多非生物脅迫中,干旱缺水對(duì)作物生產(chǎn)是最具破壞性的,是限制作物品質(zhì)和產(chǎn)量的一個(gè)重要影響因素[1]。根據(jù)聯(lián)合國(guó)發(fā)布的《2022年干旱數(shù)字報(bào)告》顯示,自21世紀(jì)以來,全球干旱災(zāi)害持續(xù)時(shí)間和發(fā)生頻次增加了約29%,其中我國(guó)遭受了近 20 次干旱災(zāi)害。在過去的10年中,干旱造成的全球作物減產(chǎn)損失總計(jì)約 300億美元[2]。例如被譽(yù)為魚米之鄉(xiāng)的江蘇省也曾在2019年秋季遭遇了60年一遇的大面積干旱。為了應(yīng)對(duì)愈發(fā)干旱的自然環(huán)境并保障人類社會(huì)對(duì)作物產(chǎn)量日益增長(zhǎng)的需求,亟需增強(qiáng)作物抗旱能力。

        番茄(Solanum lycopersicum L.)富含維生素C、葉酸、番茄紅素、鉀等各類營(yíng)養(yǎng)物質(zhì),是全球栽培最廣泛的蔬菜作物之一。我國(guó)是目前全球番茄生產(chǎn)量和種植面積最大的國(guó)家,3種類型的番茄:大果型、中果型、櫻桃番茄在山東、江蘇、廣西等地都有廣泛種植。番茄在我國(guó)蔬菜產(chǎn)業(yè)中的商業(yè)價(jià)值極高。番茄原產(chǎn)自南美洲熱帶地區(qū),種植需水量較多,然而中國(guó)是全球人均淡水資源最貧乏的國(guó)家之一,農(nóng)業(yè)生產(chǎn)所用的淡水資源十分匱乏。

        1?干旱脅迫對(duì)番茄的影響

        在干旱初期或輕微干旱條件下,番茄根系首先感知土壤中的水分脅迫,引起番茄的根系深扎、根表面積增加、淺層根系減少;干旱后期隨著脅迫加劇番茄根系的正常生長(zhǎng)受到顯著抑制,表現(xiàn)為根表面積、根長(zhǎng)和側(cè)根數(shù)等降低[3]。此外,干旱脅迫誘導(dǎo)多種離子如Ca2+進(jìn)出保衛(wèi)細(xì)胞,使得保衛(wèi)細(xì)胞內(nèi)滲透壓發(fā)生變化,并改變保衛(wèi)細(xì)胞形態(tài),并改變?nèi)~片的生理生化特性,如造成氣孔關(guān)閉、卷葉、蒸騰速率下降、凈光合作用速率降低、氣孔導(dǎo)度和胞間CO2濃度下降、光呼吸速率升高,引起番茄葉片光系統(tǒng)損傷。此外,干旱脅迫能觸發(fā)活性氧(reactive oxygen species,ROS)的積累,對(duì)細(xì)胞造成氧化脅迫,導(dǎo)致脂質(zhì)過氧化、膜結(jié)構(gòu)遭到破壞、蛋白質(zhì)和核酸變性等[4]。因此干旱脅迫會(huì)減緩番茄植株的生長(zhǎng)發(fā)育速率、影響干物質(zhì)積累和開花坐果。干旱脅迫嚴(yán)重時(shí),會(huì)造成番茄植株死亡[5]。

        2?抗旱機(jī)制

        植物采用多種策略來應(yīng)對(duì)干旱脅迫,并通過多種信號(hào)途徑調(diào)節(jié)生理生化狀態(tài)以適應(yīng)干旱[6] 。植物適應(yīng)干旱的機(jī)制分為以下3類:(1)避旱,即在干旱來臨之前植物通過加速生長(zhǎng)發(fā)育,縮短生命周期來避開干旱脅迫;(2)耐旱,即植物對(duì)內(nèi)部低含水量條件的耐受性,主要是利用一系列的緩解機(jī)制來維持細(xì)胞結(jié)構(gòu)的穩(wěn)定性;(3)御旱,即在干旱脅迫初期植物通過調(diào)整地上部和地下部性狀以減少水分損失,從而維持植物體內(nèi)含水量并預(yù)防組織損傷;其中耐旱性和御旱性被統(tǒng)稱為抗旱性,而在育種研究和生產(chǎn)中增強(qiáng)植物抗旱力相較于避旱力更具有實(shí)踐意義[7]。

        干旱脅迫會(huì)激發(fā)一系列應(yīng)激保護(hù)機(jī)制,包括:觸發(fā)抗氧化防御系統(tǒng)以維持氧化還原穩(wěn)態(tài),并利用抗氧化劑和活性氧清除劑防止急性細(xì)胞損傷,由此維持膜完整性;在嚴(yán)重干旱脅迫下,降低光合酶活性、降低光合作用等生理生化反應(yīng)速率,維持細(xì)胞結(jié)構(gòu)的穩(wěn)定性;促進(jìn)甘露醇、脯氨酸、海藻糖等代謝物的產(chǎn)生,而這些代謝物能作為滲透劑有助于維持細(xì)胞滲透勢(shì)、離子平衡、生物膜的完整性,以及防止細(xì)胞內(nèi)水分散失[4,6]。

        另外,干旱脅迫也能觸發(fā)植物激素信號(hào)傳導(dǎo)途徑,包括脫落酸(abscisic acid,ABA)、赤霉素、油菜素內(nèi)酯和乙烯等[8-11]。這些干旱脅迫響應(yīng)的信號(hào)通路存在互作,不同的應(yīng)激機(jī)制能夠相互影響。其中ABA信號(hào)是干旱脅迫響應(yīng)最重要的信號(hào)通路。ABA是一種以異戊二烯為基本結(jié)構(gòu)單位的倍半萜類植物抗逆激素,干旱脅迫能迅速誘導(dǎo)ABA的合成[12]。ABA能促進(jìn)氣孔關(guān)閉從而降低蒸騰速率并減少水分流失、作為信號(hào)分子感知并傳遞干旱脅迫信號(hào)、調(diào)節(jié)干旱脅迫響應(yīng)相關(guān)基因的表達(dá)以協(xié)助植物適應(yīng)干旱環(huán)境[13]。

        3?轉(zhuǎn)錄因子介導(dǎo)的番茄抗旱性調(diào)控

        3.1?番茄轉(zhuǎn)錄因子

        植物轉(zhuǎn)錄因子(transcription factor,TF)是通過調(diào)控靶基因轉(zhuǎn)錄行使其生物功能的一類蛋白,在調(diào)節(jié)植物生長(zhǎng)發(fā)育和脅迫響應(yīng)中發(fā)揮關(guān)鍵作用[14-16]。研究表明,植物轉(zhuǎn)錄因子能夠通過同時(shí)調(diào)控干旱響應(yīng)通路上的多個(gè)基因來調(diào)節(jié)植物的抗旱性,包括氧化調(diào)控相關(guān)基因、ABA相關(guān)基因、滲透調(diào)節(jié)相關(guān)基因等[17-18]。因此,轉(zhuǎn)錄因子在抗旱育種中具有較高的潛在利用價(jià)值。植物轉(zhuǎn)錄因子數(shù)據(jù)庫(http://planttfdb.gao-lab.org/index.php)顯示番茄(Solanum lycopersicum)基因組共包含1 845個(gè)轉(zhuǎn)錄因子,根據(jù)蛋白序列和結(jié)構(gòu)特征這些轉(zhuǎn)錄因子被劃分為包括bHLH、MYB、NAC、bZIP、ERF、WRKY等在內(nèi)的共58個(gè)家族[19,20]。由表1可見,目前被報(bào)道參與番茄對(duì)干旱脅迫的響應(yīng)和調(diào)節(jié)抗旱性的轉(zhuǎn)錄因子家族主要包括bHLH、MYB、NAC、bZIP、ERF、WRKY、HD-Zip[21-24]。

        3.2?bHLH轉(zhuǎn)錄因子

        bHLH(basic helix-loop-helix)是真核生物中最大的轉(zhuǎn)錄因子家族[45]。該家族轉(zhuǎn)錄因子在調(diào)節(jié)植物抗旱性中發(fā)揮重要作用,例如最新的研究顯示花生bHLH轉(zhuǎn)錄因子AhbHLH112能增強(qiáng)花生的抗旱能力,且干旱能顯著誘導(dǎo)其表達(dá)[46]。玉米bHLH轉(zhuǎn)錄因子ZmPTF1通過促進(jìn)根系發(fā)育及ABA合成來調(diào)節(jié)玉米對(duì)干旱脅迫的耐受性[47]。

        番茄bHLH轉(zhuǎn)錄因子家族共包含125個(gè)基因,根據(jù)蛋白結(jié)構(gòu)域特征被進(jìn)一步劃分為26個(gè)亞家族[48]。Gong等通過分析抗旱性不同的材料之間基因表達(dá)量的差異發(fā)現(xiàn),與對(duì)照材料相比bHLH轉(zhuǎn)錄因子SGN-U215556、SGN-U215557、SGN-U238928、SGN-U217931在抗旱性強(qiáng)的材料中表達(dá)水平顯著升高[25]。目前關(guān)于番茄bHLH家族轉(zhuǎn)錄因子參與干旱脅迫響應(yīng)的研究報(bào)道較少,其調(diào)控抗旱性的分子機(jī)理還有待深入研究。

        3.3?MYB轉(zhuǎn)錄因子

        Li等在番茄基因組共鑒定出MYB家族轉(zhuǎn)錄因子127個(gè),基于蛋白結(jié)構(gòu)特征和系統(tǒng)進(jìn)化分析這些轉(zhuǎn)錄因子被進(jìn)一步劃分為18個(gè)亞家族[49]。在擬南芥和一些作物中的研究顯示MYB轉(zhuǎn)錄因子參與了干旱脅迫的響應(yīng),例如調(diào)控氣孔運(yùn)動(dòng)、葉片發(fā)育、類黃酮和細(xì)胞壁的合成[50]。目前已有直接試驗(yàn)結(jié)果證明番茄MYB轉(zhuǎn)錄因子能調(diào)節(jié)番茄抗旱性,例如過表達(dá)SlMYB49的番茄對(duì)干旱脅迫的耐受性相比野生型顯著提高[26]。最近,Chen等的研究指出MYB家族轉(zhuǎn)錄因子SlMYB55是ABA和干旱響應(yīng)基因,沉默SlMYB55的并表達(dá)能顯著提升番茄的抗旱性。此外,SlMYB55能調(diào)控ABA的合成及信號(hào)通路[27]。

        3.4?NAC轉(zhuǎn)錄因子

        NAC家族轉(zhuǎn)錄因子是植物特有的,包含NAM、ATAF 和CUC 等3個(gè)結(jié)構(gòu)域。在不同物種中均有報(bào)道說明NAC轉(zhuǎn)錄因子參與植物抗旱性的調(diào)節(jié)。例如煙草NAC轉(zhuǎn)錄因子NtNAC053能增強(qiáng)煙草在干旱脅迫下的存活率[51]。番茄基因組中共含有93個(gè)NAC轉(zhuǎn)錄因子,根據(jù)其結(jié)構(gòu)特征被分為5個(gè)亞家族[14]。Wang等的研究發(fā)現(xiàn)過表達(dá)NAC家族轉(zhuǎn)錄因子SlNAP1顯著提升番茄的抗旱性[28]。番茄SlNAC4 RNAi沉默株系對(duì)干旱脅迫的耐受性低于野生型,說明SlNAC4是調(diào)控番茄抗旱性的正因子[30]。干旱處理能誘導(dǎo)NAC轉(zhuǎn)錄因子SlNAC35的表達(dá),在煙草中過表達(dá)番茄NAC轉(zhuǎn)錄因子SlNAC35能促進(jìn)根部生長(zhǎng)發(fā)育并提升轉(zhuǎn)基因植株的抗旱性[32]。Jian等研究指出SlNAC6的表達(dá)量在ABA和干旱處理后顯著上升,RNAi沉默SlNAC6表達(dá)的轉(zhuǎn)基因番茄植株比野生型矮小,且對(duì)干旱脅迫的耐受性降低,而SlNAC6的過表達(dá)株系抗旱力增強(qiáng)[31]。此外,在煙草中過表達(dá)番茄NAC轉(zhuǎn)錄因子SlNAC2能提升轉(zhuǎn)基因煙草的抗旱性[29]。Thirumalaikumar等的研究結(jié)果顯示利用VIGS技術(shù)在番茄葉片中沉默NAC轉(zhuǎn)錄因子SlNAC042的表達(dá)后,植株對(duì)干旱脅迫的耐受力顯著低于對(duì)照,說明SlNAC042正向調(diào)控番茄抗旱性[18]。

        3.5?bZIP轉(zhuǎn)錄因子

        番茄基因組共鑒定出69個(gè)bZIP轉(zhuǎn)錄因子,并根據(jù)系統(tǒng)發(fā)育分析的結(jié)果將這些轉(zhuǎn)錄因子分為9個(gè)亞家族[52]。 bZIP家族轉(zhuǎn)錄因子與干旱脅迫響應(yīng)的關(guān)聯(lián)在不同物種都有文獻(xiàn)報(bào)道,例如水稻bZIP轉(zhuǎn)錄因子OsbZIP62能提升水稻的抗旱性,且干旱脅迫能誘導(dǎo)OsbZIP62的表達(dá)[53]。棉花bZIP轉(zhuǎn)錄因子GhABF2具有類似功能,其表達(dá)量在干旱處理后上調(diào),過表達(dá)GhABF2能顯著提升棉花的抗旱性,而沉默GhABF2的轉(zhuǎn)基因棉花對(duì)干旱脅迫相比野生型更敏感[54]。

        迄今為止大部分研究都顯示番茄bZIP轉(zhuǎn)錄因子對(duì)番茄抗旱性起到正向調(diào)節(jié)作用,例如Zhu等發(fā)現(xiàn)通過RNAi技術(shù)沉默SlbZIP1基因表達(dá)后,轉(zhuǎn)基因番茄材料SlbZIP1-RNAi對(duì)干旱脅迫的耐受性相較野生型顯著下降。此外,基因沉默株系中ABA含量、抗氧化酶活性及抗逆相關(guān)基因的表達(dá)量也比野生型低[33]。2個(gè)bZIP轉(zhuǎn)錄因子SlAREB1(abscisic acid-responsive element binding)和SlAREB2在番茄根部和莖中的表達(dá)受干旱脅迫誘導(dǎo),過表達(dá)SlAREB1顯著提升了番茄的抗旱性,而SlAREB1沉默株系抗旱性相較于野生型顯著下降。利用DNA 微陣列技術(shù)分析基因表達(dá)量,結(jié)果顯示SlAREB1參與了氧化脅迫及ABA信號(hào)通路相關(guān)基因的調(diào)控[21]。此外,也有與上述bZIP轉(zhuǎn)錄因子功能不同的報(bào)道。有研究顯示干旱處理導(dǎo)致SlbZIP38表達(dá)量下調(diào),且過表達(dá)SlbZIP38的轉(zhuǎn)基因番茄植株的抗旱性比野生型低[34]。

        3.6?ERF轉(zhuǎn)錄因子

        ERF(ethylene response factors)是植物特有的轉(zhuǎn)錄因子家族,在植物防御各種脅迫逆境中起著重要作用。Yang等在番茄基因組中共鑒定出134個(gè)ERF轉(zhuǎn)錄因子,通過系統(tǒng)發(fā)育分析進(jìn)一步將該家族的基因分為12個(gè)亞家族[55]。關(guān)于番茄ERF家族轉(zhuǎn)錄因子參與干旱脅迫響應(yīng)的文獻(xiàn)報(bào)道正逐年增多。

        早期的研究發(fā)現(xiàn)水稻中超表達(dá)番茄ERF轉(zhuǎn)錄因子TSRF1能顯著提升水稻的抗旱能力并促進(jìn)ABA合成基因的表達(dá)[35]。另外一項(xiàng)關(guān)于番茄ERF轉(zhuǎn)錄因子在水稻中的研究發(fā)現(xiàn),過表達(dá)JERF1能增強(qiáng)水稻對(duì)干旱脅迫的耐受力,且ABA能誘導(dǎo)該基因的表達(dá)[36]。此外,被報(bào)道參與調(diào)節(jié)抗旱性的番茄ERF轉(zhuǎn)錄因子還包括ERF5 、SlERF84 和SlERF.B1。其中ERF5的表達(dá)受干旱處理誘導(dǎo),過表達(dá)ERF5能顯著提升番茄的抗旱性[37]。Li等研究發(fā)現(xiàn)干旱或ABA處理能顯著誘導(dǎo)番茄ERF轉(zhuǎn)錄因子SlERF84的表達(dá),在擬南芥中過表達(dá)SlERF84能顯著提升轉(zhuǎn)基因擬南芥對(duì)干旱脅迫的耐受力[38]。最近的研究報(bào)道顯示,SlERF.B1的表達(dá)受干旱脅迫的誘導(dǎo),而ABA處理卻抑制其表達(dá)。過表達(dá)SlERF.B1的番茄和擬南芥都表現(xiàn)出對(duì)干旱脅迫的超敏感表型,說明SlERF.B1是番茄抗旱性的負(fù)調(diào)控因子[39]。

        3.7?WRKY轉(zhuǎn)錄因子

        經(jīng)分析鑒定番茄基因組共包含83個(gè)WRKY轉(zhuǎn)錄因子,根據(jù)蛋白結(jié)構(gòu)特征被分為3個(gè)亞家族,它們中的大多數(shù)是調(diào)控生物和非生物脅迫響應(yīng)的關(guān)鍵因子[56]。Huang等發(fā)現(xiàn)番茄基因組中部分WRKY家族的轉(zhuǎn)錄因子的表達(dá)能受干旱脅迫誘導(dǎo),包括SlWRKY1、SlWRKY25、SlWRKY31、SlWRKY32、SlWRKY74 [40]。最近,Ahammed 等研究發(fā)現(xiàn)SlWRKY81能減少脯氨酸合成并降低番茄對(duì)干旱的耐受性[42]。最近,該團(tuán)隊(duì)又發(fā)現(xiàn)SlWRKY81的表達(dá)量在干旱條件下上調(diào),SlWRKY81沉默后,番茄氣孔在干旱脅迫下閉合加快,且干旱引起的損傷明顯減輕[41]。另外,過表達(dá)SlWRKY8能加快氣孔閉合,促進(jìn)脅迫響應(yīng)基因SlAREB、SlDREB2A、SlRD29的表達(dá),增加脯氨酸的積累,減少H2O2和MDA(malondialdehyde,丙二醛)的積累,從而提升番茄的抗旱性[43]。

        3.8?HD-Zip轉(zhuǎn)錄因子

        HD-Zip家族是植物特有的轉(zhuǎn)錄因子,番茄基因組共含有51個(gè)HD-Zip轉(zhuǎn)錄因子(SlHZ01~SlHZ51),根據(jù)外顯子、內(nèi)含子以及蛋白的結(jié)構(gòu)特征被分為HD-Zip Ⅰ~Ⅳ 4個(gè)亞家族[16]。其中 HD-ZipⅠ 和Ⅱ亞家族的轉(zhuǎn)錄因子通常參與將外界環(huán)境信號(hào)傳導(dǎo)至植物體內(nèi),是調(diào)節(jié)植物生長(zhǎng)發(fā)育以適應(yīng)環(huán)境脅迫的重要因子[57]。例如,Ebrahimian-Motlagh等研究指出超表達(dá)擬南芥HD-ZipⅠ轉(zhuǎn)錄因子AtHB13能顯著提高幼苗的抗旱性,且超表達(dá)株系能維持正常生長(zhǎng)發(fā)育[58]。Zhao等在蘋果(Malus domestica)中的研究顯示,HD-ZipⅠ轉(zhuǎn)錄因子MdHB7能增強(qiáng)轉(zhuǎn)基因蘋果植株的抗旱性,且轉(zhuǎn)基因蘋果植物能正常生長(zhǎng)[24]。超表達(dá)桉樹(Eucalyptus camaldulensis) HD-Zip Ⅱ轉(zhuǎn)錄因子EcHB1能顯著提高桉樹的抗旱性,且超表達(dá)株系的株高相較于野生型顯著提高[59]。Hu等研究報(bào)道了番茄HD-Zip轉(zhuǎn)錄因子在干旱脅迫響應(yīng)中的功能,研究結(jié)果顯示HD-ZipⅠ轉(zhuǎn)錄因子SlHB2的表達(dá)受ABA和干旱處理誘導(dǎo),SlHB2-RNAi沉默轉(zhuǎn)基因株系在干旱條件下失水率和MDA含量明顯低于野生型,具有更強(qiáng)的抗旱力[44]。

        3.9?其他家族轉(zhuǎn)錄因子

        除了上述主要的轉(zhuǎn)錄因子家族外,還有其他家族的轉(zhuǎn)錄因子也參與了調(diào)節(jié)番茄干旱脅迫響應(yīng)和抗旱的性轉(zhuǎn)錄因子。例如Filichikin等發(fā)現(xiàn)干旱處理能誘導(dǎo)一些NF-Y和SPL家族轉(zhuǎn)錄因子的表達(dá)[60]。Li 等研究SR/CAMTA家族轉(zhuǎn)錄因子時(shí)發(fā)現(xiàn),沉默SlSR1表達(dá)的轉(zhuǎn)基因番茄對(duì)干旱脅迫的耐受性降低,且參與干旱響應(yīng)的基因表達(dá)量降低,說明SlSR1正向調(diào)節(jié)番茄抗旱性[61] 。植物特有的LBD(lateral organ boundaries domain)轉(zhuǎn)錄因子家族成員SlLBD40被敲除后番茄抗旱性顯著提高[62]。與野生型相比,超表達(dá) MADS-box轉(zhuǎn)錄因子SlMBP22的轉(zhuǎn)基因番茄抗旱力增強(qiáng),且葉綠素、可溶性糖和淀粉含量更高,此外干旱處理能顯著誘導(dǎo)其表達(dá)量[63]。番茄SlNPR1(nonexpressor of pathogenesis-related gene 1)編碼的蛋白能夠激活下游基因表達(dá),其功能缺失突變體對(duì)干旱脅迫的耐受力明顯弱于野生型[64]。過表達(dá)GATA家族的轉(zhuǎn)錄因子SlGATA17能通過增強(qiáng)抗氧化酶活性和脯氨酸合成來提升番茄的抗旱性[65]。

        有研究顯示番茄ZF-HDs(zinc finger-homeodomain proteins) 家族轉(zhuǎn)錄因子SlZH13在葉片中的表達(dá)量受干旱處理顯著誘導(dǎo),利用VIGS (virus-induced gene silencing) 技術(shù)沉默SlZH13導(dǎo)致番茄抗旱性顯著降低。此外,干旱處理后SlZH13沉默株系中抗氧化酶的活性和脯氨酸含量比對(duì)照植物低,積累更多的ROS和MDA[66]。GRAS家族轉(zhuǎn)錄因子SlGRAS4是干旱脅迫響應(yīng)基因,RNAi沉默SlGRAS4的株系相比野生型對(duì)干旱脅迫更敏感,而過表達(dá)株系對(duì)干旱脅迫有更高的耐受性。SlGRAS4影響了番茄體內(nèi)ROS的積累、ROS清除基因的表達(dá)和ABA信號(hào)通路[67]。

        4?展望

        番茄抗旱性是由多基因控制的復(fù)雜性狀,受環(huán)境影響大。盡管目前已經(jīng)有一些途徑能夠改善番茄的抗旱性,但抗旱性狀的遺傳和生理復(fù)雜程度高,使得提高抗旱性和培育抗旱品種的工作進(jìn)展緩慢。干旱脅迫危害番茄的生長(zhǎng)發(fā)育,并觸發(fā)干旱脅迫響應(yīng)信號(hào)通路,同時(shí)能誘導(dǎo)或抑制響應(yīng)干旱的轉(zhuǎn)錄因子的表達(dá);相關(guān)轉(zhuǎn)錄因子通過轉(zhuǎn)錄級(jí)聯(lián)效應(yīng)同時(shí)調(diào)控干旱響應(yīng)通路上的多個(gè)基因來調(diào)節(jié)番茄的抗旱性,它們的調(diào)控網(wǎng)絡(luò)涉及對(duì)抗氧化系統(tǒng)、脫落酸信號(hào)途徑、代謝活動(dòng)等的調(diào)控;而這些信號(hào)通路對(duì)轉(zhuǎn)錄因子的表達(dá)又能起到反饋調(diào)節(jié)的作用(圖1)。通過合理改造這些調(diào)節(jié)番茄干旱脅迫響應(yīng)的轉(zhuǎn)錄因子能有效運(yùn)用于番茄抗旱育種。

        轉(zhuǎn)錄因子是調(diào)節(jié)植物生長(zhǎng)發(fā)育與抗逆性之間平衡的閥門,通常生長(zhǎng)發(fā)育性狀優(yōu)良的材料抗逆性不夠,而抗逆性強(qiáng)的材料生長(zhǎng)發(fā)育有缺陷,這提升了育種中將品質(zhì)和產(chǎn)量相關(guān)的優(yōu)良性狀與抗逆性聚合的難度。例如有些轉(zhuǎn)錄因子雖然能提高番茄的抗旱性,但同時(shí)也影響了番茄正常的生長(zhǎng)發(fā)育。Nir 等研究發(fā)現(xiàn)番茄GRAS家族的轉(zhuǎn)錄因子PROCERA(PRO),能通過提高保衛(wèi)細(xì)胞對(duì)ABA的敏感性來促進(jìn)氣孔關(guān)閉,從而提高番茄抗旱性。組成型過表達(dá)PRO的轉(zhuǎn)基因番茄抗旱性得到顯著提升,但植株表現(xiàn)出嚴(yán)重矮化[17]。另外,Jian等發(fā)現(xiàn)過表達(dá)NAC家族轉(zhuǎn)錄因子SlNAC6能促進(jìn)ABA通路相關(guān)基因表達(dá)、加快氣孔閉合從而顯著提升番茄的抗旱性,但同時(shí)也導(dǎo)致了番茄果實(shí)早熟[31]。因此,組成型過表達(dá)這些抗旱轉(zhuǎn)錄因子在培育抗旱番茄品種中不可取。Nir等還發(fā)現(xiàn)當(dāng)利用KST1啟動(dòng)子驅(qū)動(dòng)PRO在保衛(wèi)細(xì)胞中特異性過表達(dá)時(shí),轉(zhuǎn)基因番茄的抗旱性得到顯著提升,且能維持正常生長(zhǎng)發(fā)育[17]。除了在特定的組織細(xì)胞中改良抗旱基因的表達(dá)提升番茄的抗旱性以外,通過調(diào)整抗旱基因在特定生長(zhǎng)條件下的表達(dá)模式,如當(dāng)植株受到干旱脅迫時(shí),也能有效提升番茄對(duì)干旱的耐受力。RD29A是受干旱強(qiáng)誘導(dǎo)的基因,利用RD29A啟動(dòng)子驅(qū)動(dòng)NAC轉(zhuǎn)錄因子AtJUB1表達(dá),能有效解決組成型過表達(dá)造成擬南芥生長(zhǎng)缺陷的問題,并能顯著提升轉(zhuǎn)基因材料的抗旱能力[58]。類似方法利用RD29A啟動(dòng)子的研究在番茄中也有報(bào)道,例如RD29A啟動(dòng)子驅(qū)動(dòng)AtDREB1A/CBF3在番茄中過表達(dá)能增強(qiáng)轉(zhuǎn)基因番茄材料的的抗旱性、提升抗氧化酶活性和ABA累積量、降低ROS水平[68]。

        此外,隨著CRISPR-Cas9基因編輯技術(shù)的優(yōu)化和發(fā)展,該技術(shù)在特定的組織中編輯基因的應(yīng)用越來越廣泛[69]。例如Lei等建立了在棉花花粉中特異性發(fā)揮作用的CRISPR-Cas9基因編輯技術(shù)體系[70]。利用在番茄果實(shí)中特性表達(dá)的基因PPC2的啟動(dòng)子驅(qū)動(dòng)Cas9的表達(dá),實(shí)現(xiàn)了特異性在番茄果實(shí)中沉默靶基因表達(dá)的目的[71]。

        綜上所述,通過遺傳改造抗旱轉(zhuǎn)錄因子來提升番茄抗旱性需要提升特異性。即在特定的組織或細(xì)胞中,或在特定的生育期或生長(zhǎng)環(huán)境中編輯目標(biāo)抗旱基因,從時(shí)空表達(dá)2個(gè)方向更精準(zhǔn)地調(diào)整抗旱基因的表達(dá)來實(shí)現(xiàn)抗旱育種的目標(biāo),同時(shí)也更有利于聚合其他高產(chǎn)和品質(zhì)性狀。

        參考文獻(xiàn):

        [1]Sallam A,Alqudah A M,Dawood M F A,et al. Drought stress tolerance in wheat and barley:advances in physiology,breeding and genetics research [J]. International Journal of Molecular Sciences,2019,20(13):3137-3163.

        [2]Gupta A,Rico-Medina A,Cao-Delgado A I. The physiology of plant responses to drought [J]. Science,2020,368(6488):266-269.

        [3]Chun H C,Lee S,Choi Y D,et al. Effects of drought stress on root morphology and spatial distribution of soybean and adzuki bean [J]. Journal of Integrative Agriculture,2021,20(10):2639-2651.

        [4]Takahashi F,Kuromori T,Urano K,et al. Drought stress responses and resistance in plants:from cellular responses to long-distance intercellular communication [J]. Frontiers in Plant Science,2020,11:556972.

        [5]Zhou R,Yu X,Ottosen C O,et al. Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress [J]. BMC Plant Biology,2017,17(1):24.

        [6]Xu Z,Zhou G,Shimizu H. Plant responses to drought and rewatering [J]. Plant Signaling & Behavior,2010,5(6):649-654.

        [7]Basu S,Ramegowda V,Kumar A,et al. Plant adaptation to drought stress [J]. F1000Research,2016,5:1554.

        [8]Dubois M,van den Broeck L,Inzé D. The pivotal role of ethylene in plant growth [J]. Trends in Plant Science,2018,23(4):311-323.

        [9]Fàbregas N,Lozano-Elena F,Blasco-Escámez D,et al. Overexpression of the vascular brassinosteroid receptor BRL3 confers drought resistance without penalizing plant growth [J]. Nature Communications,2018,9(1):4680.

        [10]Yu W,Zhao R,Wang L,et al. ABA signaling rather than ABA metabolism is involved in trehalose-induced drought tolerance in tomato plants [J]. Planta,2019,250(2):643-655.

        [11]Shohat H,Eliaz Ni,Weiss D. Gibberellin in tomato:metabolism,signaling and role in drought responses [J]. Molecular Horticulture,2021,1:15.

        [12]Roca Paixo J F,Gillet F X,Ribeiro T P,et al. Improved drought stress tolerance in Arabidopsis by CRISPR/dCas9 fusion with a histone acetyl transferase [J]. Scientific Reports,2019,9(1):8080.

        [13]Zhang J,Jia W,Yang J,et al. Role of ABA in integrating plant responses to drought and salt stresses[J]. Field Crops Research,2006,97(1):111-119.

        [14]Jin J,Zhang H,Kong L,et al. PlantTFDB 3.0:a portal for the functional and evolutionary study of plant transcription factors [J]. Nucleic Acids Research,2014,42(D1):D1182-D1187.

        [15]Joshi R,Wani Sh,Singh B,et al. Transcription factors and plants response to drought stress:current understanding and future directions [J]. Frontiers in Plant Science,2016,7:1029.

        [16]Zhang J,Wu J,Guo M,et al. Genome-wide characterization and expression profiling of Eucalyptus grandis HD-Zip gene family in response to salt and temperature stress [J]. BMC Plant Biology,2020,20(1):451.

        [17]Nir I,Shohat H,Panizel I,et al. The tomato DELLA protein procera acts in guard cells to promote stomatal closure [J]. The Plant Cell,2017,29(12):3186-3197.

        [18]Thirumalaikumar V P,Devkar V,Mehterov N,et al. NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato [J]. Plant Biotechnol J,2018,16(2):354-366.

        [19]Jin J,Tian F,Yang D C,et al. PlantTFDB 4.0:toward a central hub for transcription factors and regulatory interactions in plants [J]. Nucleic Acids Research,2017,45(D1):D1040-D1045.

        [20]Tian F,Yang D C,Meng Y Q,et al. PlantRegMap:charting functional regulatory maps in plants [J]. Nucleic Acids Research,2020,48(D1):D1104-D1113.

        [21]Orellana S,Yaez M,Espinoza A,et al. The transcription factor SlAREB1 confers drought,salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato [J]. Plant,Cell & Environment,2010,33(12):2191-2208.

        [22]Luo L,Xia H,Lu B R. Editorial:crop breeding for drought resistance [J]. Frontiers in Plant Science,2019,10:314.

        [23]Bian Z,Wang Y,Zhang X,et al. A transcriptome analysis revealing the new insight of green light on tomato plant growth and drought stress tolerance [J]. Frontiers in Plant Science,2021,12:649283.

        [24]Zhao S,Gao H,Jia X,et al. The HD-Zip I transcription factor MdHB-7 regulates drought tolerance in transgenic apple (Malus domestica) [J]. Environmental and Experimental Botany,2020,180:104246.

        [25]Gong P,Zhang J,Li H,et al. Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction,and biochemical pathways in tomato [J]. Journal of Experimental Botany,2010,61(13):3563-3575.

        [26]Cui J,Jiang N,Zhou X,et al. Tomato MYB49 enhances resistance to Phytophthora infestans and tolerance to water deficit and salt stress [J]. Planta,2018,248(6):1487-1503.

        [27]Chen Y,Li L,Tang B,et al. Silencing of SlMYB55 affects plant flowering and enhances tolerance to drought and salt stress in tomato [J]. Plant Sci,2022,316:111166.

        [28]Wang J,Zheng C,Shao X,et al. Transcriptomic and genetic approaches reveal an essential role of the NAC transcription factor SlNAP1 in the growth and defense response of tomato [J]. Horticulture Research,2020,7(1):209.

        [29]van Beek C R,Guzha T,Kopana N,et al. The SlNAC2 transcription factor from tomato confers tolerance to drought stress in transgenic tobacco plants [J]. Physiology and Molecular Biology of Plants,2021,27(5):907-921.

        [30]Zhu M,Chen G,Zhang J,et al. The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum) [J]. Plant Cell Reports,2014,33(11):1851-1863.

        [31]Jian W,Zheng Y,Yu T,et al. SlNAC6,A NAC transcription factor,is involved in drought stress response and reproductive process in tomato [J]. Journal of Plant Physiology,2021,264:153483.

        [32]Wang G,Zhang S,Ma X,et al. A stress-associated NAC transcription factor (SlNAC35) from tomato plays a positive role in biotic and abiotic stresses [J]. Physiologia Plantarum,2016,158(1):45-64.

        [33]Zhu M,Meng X,Cai J,et al. Basic leucine zipper transcription factor SlbZIP1 mediates salt and drought stress tolerance in tomato [J]. BMC Plant Biology,2018,18(1):83.

        [34]Pan Y,Hu X,Li C,et al. SlbZIP38,a tomato bzip family gene downregulated by abscisic acid,is a negative regulator of drought and salt stress tolerance [J]. Genes (Basel),2017,8(12):402.

        [35]Quan R,Hu S,Zhang Z,et al. Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance [J]. Plant Biotechnology Journal,2010,8(4):476-488.

        [36]Zhang Z,Li F,Li D,et al. Expression of ethylene response factor JERF1 in rice improves tolerance to drought [J]. Planta,2010,232(3):765-774.

        [37]Pan Y,Seymour G B,Lu C,et al. An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato [J]. Plant Cell Reports,2012,31(2):349-360.

        [38]Li Z,Tian Y,Xu J,et al. A tomato ERF transcription factor,SlERF84,confers enhanced tolerance to drought and salt stress but negatively regulates immunity against Pseudomonas syringae pv. tomato DC3000 [J]. Plant Physiology and Biochemistry,2018,132:683-695.

        [39]Wang Y,Xia D,Li W,et al. Overexpression of a tomato AP2/ERF transcription factor SlERF.B1 increases sensitivity to salt and drought stresses [J]. Scientia Horticulturae,2022,304:111332.

        [40]Huang S,Gao Y,Liu J,et al. Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum[J]. Mol Genet Genomics,2012,287(6):495-513.

        [41]Ahammed G J,Li X,Mao Q,et al. The SlWRKY81 transcription factor inhibits stomatal closure by attenuating nitric oxide accumulation in the guard cells of tomato under drought [J]. Physiologia Plantarum,2021,172(2):885-895.

        [42]Ahammed G J,Li X,Wan H,et al. SlWRKY81 reduces drought tolerance by attenuating proline biosynthesis in tomato [J]. Scientia Horticulturae,2020,270:109444.

        [43]Gao Y F,Liu J K,Yang F M,et al. The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum [J]. Physiologia Plantarum,2020,168(1):98-117.

        [44]Hu J,Chen G,Yin W,et al. Silencing of SlHB2 improves drought,salt stress tolerance,and induces stress-related gene expression in tomato [J]. Journal of Plant Growth Regulation,2017,36(3):578-589.

        [45]Sun X,Wang Y,Sui N. Transcriptional regulation of bHLH during plant response to stress [J]. Biochemical and Biophysical Research Communications,2018,503(2):397-401.

        [46]Li C,Yan C,Sun Q,et al. The bHLH transcription factor AhbHLH112 improves the drought tolerance of peanut [J]. BMC Plant Biology,2021,21(1):540.

        [47]Li Z,Liu C,Zhang Y,et al. The bHLH family member ZmPTF1 regulates drought tolerance in maize by promoting root development and abscisic acid synthesis [J]. Journal of Experimental Botany,2019,70(19):5471-5486.

        [48]Wang J,Hu Z,Zhao T,et al. Genome-wide analysis of bHLH transcription factor and involvement in the infection by yellow leaf curl virus in tomato (Solanum lycopersicum) [J]. BMC Genomics,2015,16(1):39.

        [49]Li Z,Peng R,Tian Y,et al. Genome-wide identification and analysis of the MYB transcription factor superfamily in Solanum lycopersicum[J]. Plant & Cell Physiology,2016,57(8):1657-1677.

        [50]Baldoni E,Genga A,Cominelli E. Plant MYB transcription factors:Their role in drought response mechanisms [J]. International Journal of Molecular Sciences,2015,16(7):15811-15851.

        [51]Li X,Wang Q,Guo C,et al. NtNAC053,A novel NAC transcription factor,confers drought and salt tolerances in tobacco [J]. Frontiers in Plant Science,2022,13:817106.

        [52]Li D,F(xiàn)u F,Zhang H,et al. Genome-wide systematic characterization of the bZIP transcriptional factor family in tomato (Solanum lycopersicum L.) [J]. BMC Genomics,2015,16:771.

        [53]Yang S,Xu K,Chen S,et al. A stress-responsive bZIP transcription factor OsbZIP62 improves drought and oxidative tolerance in rice [J]. BMC Plant Biology,2019,19(1):260.

        [54]Liang C,Meng Z,Meng Z,et al. GhABF2,a bZIP transcription factor,confers drought and salinity tolerance in cotton (Gossypium hirsutum L.) [J]. Scientific Reports,2016,6:35040.

        [55]Yang H,Sun Y,Wang H,et al. Genome-wide identification and functional analysis of the ERF2 gene family in response to disease resistance against Stemphylium lycopersici in tomato [J]. BMC Plant Biology,2021,21(1):72.

        [56]Bai Y,Sunarti S,Kissoudis C,et al. The role of tomato WRKY genes in plant responses to combined abiotic and biotic stresses [J]. Frontiers in Plant Science,2018,9.

        [57]Harris Jc,Hrmova M,Lopato S,et al. Modulation of plant growth by HD-Zip class Ⅰ and Ⅱ transcription factors in response to environmental stimuli [J]. New Phytol 2011,190(4):823-837.

        [58]Ebrahimian-Motlagh S,Ribone P A,Thirumalaikumar V P,et al. JUNGBRUNNEN1 confers drought tolerance downstream of the HD-ZipⅠ transcription factor AtHB13 [J]. Frontiers in Plant Science,2017,8:2118.

        [59]Sasaki K,Ida Y,Kitajima S,et al. Overexpressing the HD-Zip class Ⅱ transcription factor EcHB1 from Eucalyptus camaldulensis increased the leaf photosynthesis and drought tolerance of Eucalyptus [J]. Scientific Reports,2019,9(1):14121.

        [60]Filichkin S A,Ansariola M,F(xiàn)raser V N,et al. Identification of transcription factors from NF-Y,NAC,and SPL families responding to osmotic stress in multiple tomato varieties [J]. Plant Science,2018,274:441-450.

        [61]Li X,Huang L,Zhang Y,et al. Tomato SR/CAMTA transcription factors SlSR1 and SlSR3L negatively regulate disease resistance response and SlSR1L positively modulates drought stress tolerance [J]. BMC Plant Biology,2014,14(1):286.

        [62]Liu L,Zhang J,Xu J,et al. CRISPR/Cas9 targeted mutagenesis of SlLBD40,a lateral organ boundaries domain transcription factor,enhances drought tolerance in tomato [J]. Plant Science,2020,301:110683.

        [63]Li F,Chen X,Zhou S,et al. Overexpression of SlMBP22 in tomato affects plant growth and enhances tolerance to drought stress [J]. Plant Science,2020,301:110672.

        [64]Li R,Liu C,Zhao R,et al. CRISPR/Cas9-mediated SlNPR1 mutagenesis reduces tomato plant drought tolerance [J]. BMC Plant Biology,2019,19(1):38.

        [65]Zhao T,Wu T,Pei T,et al. Overexpression of SlGATA17 promotes drought tolerance in transgenic tomato plants by enhancing activation of the phenylpropanoid biosynthetic pathway [J]. Frontiers in Plant Science,2021,12:634888.

        [66]Zhao T,Wang Z,Bao Y,et al. Downregulation of SL-ZH13 transcription factor gene expression decreases drought tolerance of tomato [J]. Journal of Integrative Agriculture,2019,18(7):1579-1586.

        [67]Liu Y,Wen L,Shi Y,et al. Stress-responsive tomato gene SlGRAS4 function in drought stress and abscisic acid signaling [J]. Plant Science,2021,304:110804.

        [68]Rai G K,Rai N P,Rathaur S,et al. Expression of rd29A::AtDREB1A/CBF3 in tomato alleviates drought-induced oxidative stress by regulating key enzymatic and non-enzymatic antioxidants [J]. Plant Physiology and Biochemistry,2013,69:90-100.

        [69]Koreman G T,Xu Y,Hu Q,et al. Upgraded CRISPR/Cas9 tools for tissue-specific mutagenesis in Drosophila[J]. Proceedings of the National Academy of Sciences,2021,118(14):e2014255118.

        [70]Lei J,Dai P,Li J,et al. Tissue-Specific CRISPR/Cas9 system of cotton pollen with GhPLIMP2b and GhMYB24 promoters [J]. Journal of Plant Biology,2021,64(1):13-21.

        [71]Feder A,Jensen S,Wang A,et al. Tomato fruit as a model for tissue-specific gene silencing in crop plants [J]. Horticulture Research,2020,7(1):142.

        久久精品国产亚洲av豆腐| 精品性影院一区二区三区内射| av色综合网站| 久久天堂精品一区专区av| 黄污在线观看一区二区三区三州| 日韩精品久久久久久久电影蜜臀| 无遮挡亲胸捏胸免费视频| 美女熟妇67194免费入口| 亚洲精品大全中文字幕| 三个男吃我奶头一边一个视频| 国产美女露脸口爆吞精| 久久频精品99香蕉国产| 五十路一区二区中文字幕| 亚洲av综合色区无码另类小说| 三级特黄60分钟在线观看| 婷婷第四色| 美女狂喷白浆网站视频在线观看| 精品无人区无码乱码毛片国产| 色八区人妻在线视频免费| 91视频爱爱| 91人妻一区二区三区蜜臀| 日韩欧美亚洲国产精品字幕久久久 | 99视频全部免费精品全部四虎| 亚洲高清国产拍精品熟女| 国产成人精品一区二区20p| 国产麻豆成人精品av| 动漫在线无码一区| 亚洲av综合色区久久精品| 97久久婷婷五月综合色d啪蜜芽| 欧美成人一区二区三区| 2020久久精品亚洲热综合一本| 国产毛片视频一区二区三区在线| 少妇性bbb搡bbb爽爽爽| 成人伊人亚洲人综合网站222| 一区二区三区熟妇人妻18| 久久人妻av无码中文专区| 欧产日产国产精品精品| 在线观看av片永久免费| 中文字幕免费人成在线网站| 中文无码久久精品| 91美女片黄在线观看|