石峻銘 孟粉葉 胡吉永
摘 要:肌電是肌肉神經(jīng)疾病的重要病理信息,對其長時(shí)連續(xù)穩(wěn)定監(jiān)測是應(yīng)用關(guān)鍵。首先簡要回顧肌電監(jiān)測的電極種類及工作原理,然后詳細(xì)概述適合長時(shí)連續(xù)穩(wěn)定肌電監(jiān)測的織物干電極發(fā)展現(xiàn)狀,從其結(jié)構(gòu)與制備技術(shù)、性能表征及評價(jià)技術(shù)和肌電監(jiān)測服集成技術(shù)3個(gè)方面展開,總結(jié)分析目前面臨的技術(shù)局限和未來發(fā)展趨勢,指出提高織物干電極的應(yīng)變穩(wěn)定性以及耐汗性是當(dāng)前需要突破的技術(shù)。
關(guān)鍵詞:肌電;長時(shí)監(jiān)測;織物干電極;結(jié)構(gòu);性能
中圖分類號:TS106
文獻(xiàn)標(biāo)志碼:A
文章編號:1009-265X(2023)03-0263-11
基金項(xiàng)目:上海市自然科學(xué)基金項(xiàng)目(20ZR1400500; 22ZR14 00800), 2022年嘉興市公益性研究計(jì)劃項(xiàng)目(2022AY10008), 嘉職院雙高重點(diǎn)專項(xiàng)(jzyz202202)
作者簡介:石峻銘(1998—),男,河南洛陽人,碩士研究生,主要從事肌電監(jiān)測織物干電極方面的研究。
通信作者:胡吉永,E-mail:hujy@dhu.edu.cn
隨著社會的發(fā)展,帕金森、肌萎縮側(cè)索硬化癥以及纖維肌痛等肌肉神經(jīng)疾病嚴(yán)重危害到了人們的健康,需要一種能夠在日常生活中長時(shí)間連續(xù)穩(wěn)定監(jiān)測人們身體肌電信號的電極,實(shí)時(shí)觀察人們的健康狀態(tài),早發(fā)現(xiàn),早醫(yī)治,減輕肌肉疾病對人們生活質(zhì)量及生命的危害。
目前,肌電監(jiān)測電極有針電極[1]、線電極[2]、傳統(tǒng)電極以及織物干電極[3]4種。在肌電監(jiān)測時(shí),針電極和線電極會對人體造成創(chuàng)傷,傳統(tǒng)電極在長時(shí)間監(jiān)測過程中會出現(xiàn)皮膚過敏問題[4],因此他們都不適合長時(shí)間連續(xù)穩(wěn)定的肌電監(jiān)測??椢锔呻姌O具有可水洗、透濕、透氣、可重復(fù)使用等特點(diǎn),成為長時(shí)間連續(xù)穩(wěn)定肌電監(jiān)測電極的關(guān)注重點(diǎn)。本文將從肌電信號的產(chǎn)生與監(jiān)測出發(fā),分析使用織物干電極的必要性,然后從電極的結(jié)構(gòu)和制備、性能表征、肌電監(jiān)測服集成3個(gè)方面總結(jié)其技術(shù)現(xiàn)狀及未來發(fā)展趨勢。
1 肌電產(chǎn)生與監(jiān)測
1.1 肌電信號的形成原理
肌電信號是在肌肉活動(收縮/舒張)時(shí)由肌細(xì)胞內(nèi)外的離子濃度改變產(chǎn)生的微弱電信號[5]。肌肉的種類繁多,根據(jù)其結(jié)構(gòu)、收縮特性以及控制機(jī)制的差異大致可以分為心肌、骨骼肌以及平滑肌。其中,骨骼肌是獲得體表肌電信號的主要對象。
1.2 監(jiān)測方法與使用電極
肌電信號的監(jiān)測方法主要有侵入式和非侵入式兩種。侵入式監(jiān)測[6]如圖1(a)所示,是將針電極或者線電極插入皮膚,使電極與肌肉接觸,從而獲得肌肉活動過程中產(chǎn)生微弱電位差,即肌電信號,不適合長時(shí)間肌電監(jiān)測。非侵入式監(jiān)測[7]如圖1(b)所示,是將電極放在監(jiān)測肌肉的表皮上,通過皮膚獲得肌肉活動過程中產(chǎn)生的微弱電位差,即表面肌電信號,屬于無創(chuàng)監(jiān)測,適合長時(shí)間肌電監(jiān)測??椢锔呻姌O在長時(shí)間監(jiān)測時(shí)無皮膚過敏反應(yīng),且透氣舒適性比傳統(tǒng)電極好,因此它適合長時(shí)間健康舒適地進(jìn)行非侵入式肌電監(jiān)測。非侵入式監(jiān)測的表面肌電信號具有低頻率(10~500 Hz)、低幅度(0~10 mV)、多噪音以及不穩(wěn)定等特點(diǎn),但是隨著監(jiān)測設(shè)備以及處理分析技術(shù)的發(fā)展,表面肌電信號已經(jīng)用于帕金森[8]、肌萎縮側(cè)索硬化癥[9]以及纖維肌痛[10]等肌肉神經(jīng)疾病的識別分析。而且非侵入式監(jiān)測的表面肌電信號來自多個(gè)肌纖維,能夠觀察諸多肌纖維的運(yùn)動狀態(tài),所以使用織物干電極的非侵入式肌電監(jiān)測有更好的未來前景。
2 肌電監(jiān)測織物干電極
2.1 肌電監(jiān)測織物干電極的結(jié)構(gòu)和制備技術(shù)
肌電監(jiān)測織物干電極是采用導(dǎo)電纖維/紗形成的導(dǎo)電織物,或者是通過印刷(噴墨打印、絲網(wǎng)印刷)、沉積(化學(xué)(液體)、電化學(xué)以及氣相沉積等工藝將導(dǎo)電材料附著在織物上形成的導(dǎo)電織物,其性能與織物結(jié)構(gòu)、導(dǎo)電材料以及制備方法有關(guān)。
2.1.1 肌電監(jiān)測織物干電極的材料
導(dǎo)電材料將直接影響織物干電極性能。在進(jìn)行長時(shí)間連續(xù)肌電監(jiān)測時(shí),織物干電極會受到摩擦、彎曲以及汗液的作用,摩擦?xí)?dǎo)致與織物結(jié)合較弱的導(dǎo)電材料脫落[11],使得織物干電極導(dǎo)電性能變差;彎曲一方面會導(dǎo)致與織物結(jié)合較弱的導(dǎo)電材料的脫落,另一方面還會使得柔韌性差的導(dǎo)電層的開裂[12],從而降低織物干電極的導(dǎo)電性能;而汗液的存在,雖然可以充當(dāng)電解質(zhì),優(yōu)化織物干電極的導(dǎo)電性能,但是它也讓導(dǎo)電材料受到弱酸、鹽以及電化學(xué)腐蝕的多種腐蝕[13-14],使得導(dǎo)電材料變性、易脫落,甚至?xí)椢锔呻姌O的導(dǎo)電性能造成不可逆的惡化??椢锔呻姌O的導(dǎo)電性能的不穩(wěn)定,會引起肌電監(jiān)測時(shí)的信號的不穩(wěn)定,因此長時(shí)間連續(xù)肌電監(jiān)測織物干電極所選用的導(dǎo)電材料應(yīng)具有良好的導(dǎo)電性能的同時(shí),還需具有柔韌性、與織物有較強(qiáng)結(jié)合力以及耐汗液腐蝕性。
常用的導(dǎo)電材料可分為本征導(dǎo)電聚合物、含碳材料、金屬及其衍生物三類,本征導(dǎo)電聚合物的導(dǎo)電性能差,但是其具有價(jià)格低、易于制造、柔韌等優(yōu)點(diǎn)[15],所以經(jīng)常用于生物電信號監(jiān)測,且多數(shù)本征導(dǎo)電聚合物含有氧、氮元素能夠和纖維素、蛋白質(zhì)以及滌綸等含有氧、氮元素的織物形成氫鍵,通過氫鍵和范德華力共同連接,結(jié)合力相對較強(qiáng)。如Pani等[16]制作的肌電監(jiān)測聚3,4-乙烯二氧噻吩:聚苯乙烯磺酸(PEDOT:PSS)織物干電極,它的薄層電阻高達(dá)(390±60) Ω/sq(直徑24 mm),在鹽溶液濕潤的情況下,它所監(jiān)測的肌電信號的噪音幅度能與傳統(tǒng)電極高度相似,且能夠進(jìn)行長達(dá)30 min的具有一定質(zhì)量的動態(tài)表面肌電信號監(jiān)測。此類導(dǎo)電材料耐汗液腐蝕能力并沒有給出明確的說明,但PEDOT:PSS已經(jīng)在汗液監(jiān)測織物干電極上應(yīng)用[17-18];金屬及其衍生物雖然具有高導(dǎo)電性能,但是他們中的多數(shù)(銀、銅、鋁等)容易在水和汗水中腐蝕[19]、柔韌性差且與織物之間通過較弱的范德華力進(jìn)行結(jié)合。含碳材料(純碳與含碳復(fù)合材料),具有較好的耐腐蝕性[20],如炭黑[21]、碳化鈦(Ti3C2Tx) MXene[22]、氧化石墨烯[23](GO)等能夠在汗液中可保持穩(wěn)定,但純碳材料不易與紡織材料結(jié)合,且純碳層柔韌性差,在受到彎曲作用時(shí)易開裂,而含碳復(fù)合材料的導(dǎo)電性相對較低,以上材料性能總結(jié)列于表1。
2.1.2 肌電監(jiān)測織物干電極的結(jié)構(gòu)
肌電監(jiān)測織物干電極的結(jié)構(gòu)對其穿著舒適性以及肌電信號監(jiān)測的連續(xù)穩(wěn)定性有一定的影響。目前,機(jī)織、針織、非織以及刺繡紡織物等已經(jīng)廣泛運(yùn)用于織物干電極[24,26,28,33](見圖2)。
針織物干電極具有彈性好、透氣、舒適、柔軟等性能。Lee等[24]研究一種多通道表面肌電圖(sEMG)針織帶,用于截肢者佩戴的肌電假體,并與一次性電極的采集信號進(jìn)行相關(guān)性、平均信噪比值和整體分類準(zhǔn)確率比較,發(fā)現(xiàn)二者相當(dāng);但針織特有的線圈結(jié)構(gòu)導(dǎo)致其織物易變形、尺寸不穩(wěn)定等問題,這在動態(tài)監(jiān)測中將引起電極阻抗變化[25],從而影響肌電信號連續(xù)監(jiān)測的精準(zhǔn)和穩(wěn)定性。
非織造織物干電極具有良好柔軟性,且基布生產(chǎn)流程短、成本低,因此引起廣泛關(guān)注。Jiang等[26]在非織造布上進(jìn)行聚吡咯(PPy)涂層,制成PPy織物干電極,并將其縫合在彈性帶上,形成可與皮膚接觸緊密接觸的肌電監(jiān)測電極。但此類非織造織物干電極由涂層導(dǎo)電纖維構(gòu)成,織物表面導(dǎo)電纖維與皮膚的接觸狀態(tài)會不斷發(fā)生改變,從而引起接觸阻抗動態(tài)變化,產(chǎn)生復(fù)雜的信號噪音[27],這將影響織物干電極的肌電監(jiān)測質(zhì)量。
機(jī)織物干電極的種類繁多,目前平紋[28]、斜紋[29]、緞紋[30]以及蜂巢[28]等組織已經(jīng)廣泛的應(yīng)用到生物電信的監(jiān)測電極,但他們在肌電監(jiān)測織物干電極方面的應(yīng)用還正在研究??偟膩碚f,多數(shù)的機(jī)織物柔軟性差,與皮膚貼附性不如非織或者針織,在動態(tài)監(jiān)測時(shí)會因?yàn)殡姌O與皮膚的滑移產(chǎn)生運(yùn)動偽影[31],影響監(jiān)測肌電信號的質(zhì)量,但它們穩(wěn)定的結(jié)構(gòu)有利于監(jiān)測時(shí)電極阻抗的穩(wěn)定,提升長時(shí)間監(jiān)測的肌電信號的穩(wěn)定性。
刺繡織物干電極通過導(dǎo)電紗刺繡而成,其形狀尺寸設(shè)計(jì)靈活。Kim等[32]將導(dǎo)電紗線繡在運(yùn)動服裝上,形成可穿戴波型刺繡織物干電極,用于體表肌電信號監(jiān)測。Lee等[33]以鍍銀導(dǎo)電紗在織物背心表面刺繡電極,并與商用 Ag/AgCl 電極采集的肌電信號對比,發(fā)現(xiàn)刺繡電極可以精準(zhǔn)地采集肌電信號。但是現(xiàn)有多數(shù)導(dǎo)電紗性能不穩(wěn)定[34],再加上導(dǎo)電紗在刺繡時(shí)會因?yàn)榉磸?fù)摩擦、彎曲而造成性能損傷,這將極大影響到刺繡電極肌電監(jiān)測時(shí)的導(dǎo)電穩(wěn)定性,影響其肌電信號監(jiān)測性能。且刺繡電極在使用過程中,還會因?yàn)榇汤C工藝或者基布的尺寸不穩(wěn)定,引起刺繡電極起皺,影響其肌電信號監(jiān)測性能,如在柔軟基布上使用大刺繡張力或選用高密度針跡繡制導(dǎo)電圖案、或者棉織物基布遇水收縮等。因此刺繡電極對刺繡工藝以及基布有一定要求,刺繡工藝要根據(jù)基布的性能進(jìn)行調(diào)整,但目前還沒有研究報(bào)道該類刺繡工藝參數(shù)調(diào)整規(guī)則。上述織物干電極的結(jié)構(gòu)及性能優(yōu)缺點(diǎn)總結(jié)列于表2。
2.1.3 織物干電極制備技術(shù)
織物干電極導(dǎo)電織物的傳統(tǒng)制備技術(shù)是采用導(dǎo)電纖維/紗進(jìn)行針織、機(jī)織以及刺繡等,而將導(dǎo)電材料在不導(dǎo)電織物表面通過印刷(絲網(wǎng)印刷、噴墨打?。⒊练e(化學(xué)(液體)、電化學(xué)以及氣相沉積)等方法制備織物干電極是新興技術(shù)[35],如圖3所示。
印刷通常指將導(dǎo)電漿料印到織物上,從而形成導(dǎo)電織物。印刷工藝其主要包括絲網(wǎng)印刷、噴墨打印等。絲網(wǎng)印刷工藝具有簡單、可重復(fù)、高效和低成本等特點(diǎn)[35],所以常用于制備織物干電極。如Pani等[16]通過絲網(wǎng)印刷工藝制備的PEDOT:PSS織物干電極,見圖4(a)所示,用于脛骨前肌的肌電監(jiān)測,并與傳統(tǒng)電極進(jìn)行性能比較,發(fā)現(xiàn)在添加鹽溶液的情況下,傳統(tǒng)電極和紡織電極之間的噪聲幅度和皮膚-電極阻抗均具有高度相似性;但此工藝是將大量的較高黏度導(dǎo)電油墨通過刮刀以及絲網(wǎng)涂到織物表面,較高黏度油墨要求絲網(wǎng)孔徑不易過?。ㄟ^小易堵塞),且黏度高不利于油墨擴(kuò)散,因此制作的導(dǎo)電層偏厚,影響織物干電極的透氣性以及彎曲性能。噴墨打印與絲網(wǎng)印刷相比,是將低黏度導(dǎo)電油墨數(shù)字化印刷到織物表面,有利于形成薄導(dǎo)電層,它是一種正在開發(fā)的織物干電極制備方法,此工藝在油墨固化時(shí),會因?yàn)槿軇┱舭l(fā)和溶液體積減少之間的不平衡,促使導(dǎo)電材料從中心向邊緣流動這種咖啡環(huán)效應(yīng)[36],導(dǎo)致導(dǎo)電層薄膜沉積不均勻,影響織物干電極導(dǎo)電性能。
雖然上述工藝能在織物表面特定位置印刷形狀大小靈活的電極圖案,但織物表面凹凸不平的紋理結(jié)構(gòu)導(dǎo)致印刷導(dǎo)電層的均勻性差[37]。盡管增加導(dǎo)電漿料印刷層數(shù)可以改善導(dǎo)電均勻性,但是導(dǎo)電層厚度也增加,從而影響織物干電極的透氣性和耐彎曲性。而沉積是通過物理或者化學(xué)的方法將液體或者氣體中的導(dǎo)電材料沉積在織物表面,導(dǎo)電材料在織物表面分布比較均勻,其制備的導(dǎo)電層薄且均勻,這在一定程度上提高電極的導(dǎo)電穩(wěn)定性[35, 38],但目前沉積制備的織物干電極在肌電監(jiān)測方面的應(yīng)用稀少,Lim等[39]結(jié)合絲網(wǎng)印刷和電沉積技術(shù)在滌綸/棉混紡織物上,先印刷銀導(dǎo)電層,然后在銀導(dǎo)電層上電沉積金納米粒子,形成金/銀(Au/Ag)織物干電極,如圖4(b)所示,其與絲網(wǎng)印刷Ag織物干電極監(jiān)測的肌電信號相比,具有更高的信噪比,且此織物干電極在二頭肌鍛煉和手指運(yùn)動的肌電監(jiān)測中顯示出高靈敏度。
在進(jìn)行長時(shí)間連續(xù)肌電監(jiān)測時(shí),穩(wěn)定的肌電信號質(zhì)量以及監(jiān)測對象的舒適性是非常重要的。而印刷織物干電極的導(dǎo)電均勻性以及透氣性問題將影響長時(shí)肌電監(jiān)測的信號質(zhì)量以及舒適性,所以不適合制作長時(shí)連續(xù)穩(wěn)定肌電監(jiān)測織物干電極。
2.2 電極性能表征及評價(jià)技術(shù)
肌電監(jiān)測織物干電極的性能一般是通過阻抗、表面肌電圖兩個(gè)方面進(jìn)行表征。阻抗反映了織物干電極的導(dǎo)電性能,表面肌電圖反映了肌電信號監(jiān)測質(zhì)量。
2.2.1 阻抗測量
阻抗測量分為兩種:交流阻抗和皮膚-電極的接觸阻抗。交流阻抗是使用面對面放置的對電極,構(gòu)建電容器,然后施加正弦電壓(或電流),獲得對應(yīng)的電流(或電壓),計(jì)算其阻抗[40]。皮膚-電極的接觸阻抗測量方法大致分為三類:直接測量法、參比測量法以及模擬皮膚測量法[41]。
直接測量法根據(jù)有無創(chuàng)傷分為兩種:有創(chuàng)測量是將探頭插入皮膚組織,從而直接測量皮膚-電極阻抗。無創(chuàng)測量多用于雙電極,對電極之間阻抗進(jìn)行測量,從而獲得皮膚-電極阻抗。Lee等[24]在對自制針織物干電極進(jìn)行皮膚-電極的阻抗監(jiān)測時(shí),將皮膚-電極當(dāng)作一個(gè)整體,通過測量兩電極之間的阻抗以及人體組織液的阻抗,計(jì)算皮膚-電極的接觸阻抗,測量過程見圖5;Taji等[42]也采用此種方法,但是測量所得阻抗值較大(1 kΩ以上),而人體組織液的阻抗很小,約為150 Ω,所以忽略了人體組織液的阻抗,則此時(shí)電阻測量儀的讀數(shù)近似為皮膚-電極的阻抗的雙倍。雖然在直接測量法中有創(chuàng)測量比較真實(shí),但是由于監(jiān)測時(shí)受到創(chuàng)傷而不便實(shí)行。無創(chuàng)測量的操作簡單,但忽略人體組織液的阻抗,將對皮膚-電極阻抗的測量精確性有一定影響。
參比測量法,即間接測量法,也是對電極之間阻抗進(jìn)行測量,但引入了參照電極或者已知電阻。如Lee等[33]使用矢量歸納法對自制的肌電監(jiān)測刺繡織物干電極進(jìn)行皮膚-電極的阻抗監(jiān)測,其實(shí)例見圖6,圖6中Ze為參照電極的皮膚-電極阻抗(Ω),Zb是人體組織液的阻抗(Ω),采用兩個(gè)規(guī)格相同的參照電極b1和b2,并將織物干電極放在兩個(gè)參照電極的中間位置,然后測量各電極之間的阻抗,解方程組得到最終皮膚-電極的阻抗Zx。Xie等[43]采用四電極推導(dǎo)法,其根據(jù)串聯(lián)電路中電流相等的性質(zhì),通過已知電阻對皮膚-電極阻抗進(jìn)行表達(dá)。矢量導(dǎo)納測試法操作相對簡單,其選用的參考電極的性能對測量阻抗的精準(zhǔn)性有很大的影響。四電極推導(dǎo)法采用織物干電極的數(shù)目多且操作比較復(fù)雜,但是此方法能夠獲得阻抗與頻率的變化關(guān)系圖,而在進(jìn)行肌電監(jiān)測時(shí),皮膚-電極阻抗會隨著頻率的變化而變化,所以其測得阻抗更加符合實(shí)際[44]。
模擬皮膚測量法是構(gòu)建一個(gè)仿真皮膚,然后對仿真皮膚進(jìn)行皮膚-電極的阻抗測量。Lam等[45]通過瓊脂皮膚模型對自制的肌電監(jiān)測針織物干電極進(jìn)行皮膚-電極的阻抗測量。其皮膚模型是將4.5%瓊脂、0.97%氯化鈉和去離子水混合物進(jìn)行加熱直到煮沸,然后將混合物倒入玻璃容器冷卻和凝固而成。Priniotakis等[46]制作仿真皮膚,如圖7所示,薄膜模擬人體皮膚,電解質(zhì)溶液模擬體液,將電極放置在薄膜表面來完成皮膚-電極阻抗測量,但是此測量方法不能真實(shí)反映人體皮膚與電極之間的相互作用,所以其測量數(shù)據(jù)與真實(shí)情況有一定差異。
總的來說,雖然用于皮膚-電極阻抗測量方法有很多,但是考慮到測量時(shí)的舒適性、測量數(shù)據(jù)的準(zhǔn)確性,雙電極直接測量法、矢量歸納法以及四電極推導(dǎo)法能夠較好用于皮膚-電極阻抗的測量,但四電極推導(dǎo)法操作相對比較復(fù)雜,所以在實(shí)際運(yùn)用中,雙電極直接測量法以及矢量歸納法會被優(yōu)先考慮。
2.2.2 表面肌電圖
表面肌電圖是在動態(tài)或者靜態(tài)條件下對肌電信號進(jìn)行采集及顯示(見圖1)。在進(jìn)行長時(shí)間動態(tài)肌電監(jiān)測時(shí),由于織物干電極與皮膚的貼附固定性能差[47],織物干電極與皮膚間會出現(xiàn)相對移動,從而產(chǎn)生運(yùn)動偽影。因此需要減少織物電極的移動引起的噪音干擾,其減少方法可分為兩種,從噪音源出發(fā),減少噪音的產(chǎn)生,或從噪音特點(diǎn)出發(fā),對已采集的噪音進(jìn)行降噪處理。
從噪音源出發(fā),主要是改善織物干電極與皮膚的貼附固定性,減少織物干電極的滑移。Liu等[48]設(shè)計(jì)了肌電監(jiān)測織物干電極,其結(jié)構(gòu)如圖8(a)所示,由柔軟填充層、織物干電極、導(dǎo)線以及支撐墊。在力的作用下,柔軟填充層能夠確??椢锔呻姌O與皮膚良好接觸,改善織物干電極的貼附固定性;Ozturk[49]將制作的石墨烯紡織干電極附著在柔性泡沫表面,如圖8(b)所示,在進(jìn)行動態(tài)肌電監(jiān)測時(shí),柔性泡沫有助于改善織物干電極貼附性,將此電極用于小腿肌電監(jiān)測服,計(jì)算步長,準(zhǔn)確率達(dá)到商業(yè)步長監(jiān)測設(shè)備的98%。顯然,從噪音源進(jìn)行優(yōu)化有助于提升采集的肌電信號質(zhì)量,減輕后續(xù)降噪負(fù)擔(dān)。
從噪音特點(diǎn)出發(fā),主要在濾波階段,即根據(jù)表面肌電信號的頻率分布(范圍:0~500 Hz,主要區(qū)域:50~150 Hz)以及織物干電極滑移產(chǎn)生的運(yùn)動偽影的頻率分布選擇合適的濾波器。Clancy等[50]在研究肌電信號的采集以及降噪時(shí),提到運(yùn)動偽影主要分布在0~20 Hz,所以高通濾波器會其進(jìn)行有效的濾除,但為了減少濾波引起的肌電信號功率的損失,高通濾波器的截止頻率經(jīng)常設(shè)置為10 Hz,一般不高于20 Hz,這樣可以有效去除截止頻率以下信號以及噪音干擾。采用濾波器降噪,比較徹底,但是導(dǎo)致肌電信號功率的損失,所以應(yīng)合理使用。
在進(jìn)行長期動態(tài)肌電監(jiān)測時(shí),織物干電極監(jiān)測的肌電信號會受到運(yùn)動偽影的干擾,目前可以通過引入柔軟材料對成品織物干電極進(jìn)行改造和選用合適的濾波器等方法來減少噪音,其中濾波器降噪時(shí)需要考慮肌電信號功率的損失問題,所以需要合理使用。
2.3 肌電監(jiān)測織物電極與服裝集成
肌電監(jiān)測織物電極能夠直接使用,也可集成到服裝上。為了實(shí)現(xiàn)長期連續(xù)穩(wěn)定的肌電監(jiān)測,將其與服裝集成是不錯(cuò)的選擇。目前織物干電極與服裝的集成可分為導(dǎo)電材料與服裝集成、導(dǎo)電紗與服裝集成以及成品織物干電極與服裝集成這3種[51],實(shí)例如圖9所示。
導(dǎo)電材料與服裝集成,是將導(dǎo)電材料通過涂層的方式直接集成到服裝上,服裝作為織物干電極的基底。由于服裝只有特定區(qū)域需要進(jìn)行導(dǎo)電涂層處理,所以只能通過印刷工藝來完成,如Kim等[52]直接在腿套印刷銀與碳的導(dǎo)電油墨,形成外層碳、內(nèi)層銀的雙導(dǎo)電層織物干電極,當(dāng)電極直徑大于20 mm,監(jiān)測所提供壓力大于10 mm Hg時(shí),其監(jiān)測的體表肌電信號與Ag/AgCl電極的性能相當(dāng)。
導(dǎo)電紗與服裝集成,是將導(dǎo)電紗以縫紉或者刺繡的方式集成,服裝作為刺繡或者縫紉的載體。如前文提到的穿戴肌電監(jiān)測刺繡織物干電極[32-33]。此方式集成的織物干電極與皮膚接觸性好[53]、形狀尺寸靈活變化。但是導(dǎo)電紗與服裝集成時(shí),因?yàn)槠鋵?dǎo)電性能的不穩(wěn)定以及集成過程中的損傷,影響肌電信號質(zhì)量。
織物干電極與服裝的集成,是將織物干電極通過裁剪及縫紉方式集成到服裝載體上。此類集成有兩種形式:a) 與皮膚柔貼附性好的織物干電極可以直接與服裝結(jié)合,大多數(shù)為針織結(jié)構(gòu)或者非織結(jié)構(gòu)的織物干電極,如Barrera等[54]將針織結(jié)構(gòu)的鍍銀織物干電極直接縫在彈性帶用于肱二頭肌的監(jiān)測;b) 與皮膚貼附性不好的織物干電極,需要對織物干電極進(jìn)行改造,再與服裝集成,大多數(shù)為機(jī)織織物干電極,如前文圖2中的帶有海綿的鍍銀平紋織物干電極[28]以及背附泡沫的石墨烯織物干電極[49]。
3 總結(jié)與展望
目前,雖然這些不同種類的織物干電極還不能滿足長時(shí)連續(xù)穩(wěn)定的肌電監(jiān)測性能要求,但是在織物干電極的結(jié)構(gòu)和制備技術(shù)、電極性能表征與評價(jià)技術(shù)以及電極集成技術(shù)等方面取得了一定進(jìn)展。
a) 能夠與織物(含有氧、氮元素)形成氫鍵的導(dǎo)電材料(含有氧、氮元素)和能夠在凹凸不平的織物表面制備出薄且均勻的導(dǎo)電層的化學(xué)(液體)、電化學(xué)以及氣相沉積工藝,適合用于長時(shí)連續(xù)穩(wěn)定肌電監(jiān)測織物干電極的制備,但為了能夠更好的進(jìn)行長時(shí)間連續(xù)肌電監(jiān)測,仍然需要關(guān)注摩擦、彎曲以及汗液腐蝕作用對織物干電極信號監(jiān)測穩(wěn)定性的影響。
b) 在進(jìn)行織物干電極性能表征和評價(jià)時(shí),雙電極直接測量法以及矢量歸納法操作簡單、測量時(shí)無創(chuàng)傷、測量數(shù)據(jù)較準(zhǔn)確是皮膚-電極阻抗測量的優(yōu)選方法。而引入柔軟材料對織物干電極進(jìn)行改造和選用合適的濾波器是減少電極滑移產(chǎn)生的肌電噪音較有效的方法。
c) 在制作智能肌電監(jiān)測服時(shí),織物干電極與服裝集成會比導(dǎo)電材料或者導(dǎo)電紗與服裝集成所受限制少(制備工藝、服裝材質(zhì)),且此方式集成可以通過結(jié)構(gòu)設(shè)計(jì)增加織物干電極的貼附固定性能。同時(shí),現(xiàn)有研究沒有關(guān)注肌電監(jiān)測服集成時(shí)的信號傳輸導(dǎo)線及其與各部件之間的連接技術(shù)。
參考文獻(xiàn):
[1]KOUYOUMDJIAN J A, PAIVA G P, STLBERG E. Concentric needle jitter in 97 myasthenia gravis patients[J]. Frontiers in Neurology, 2020, 11: 600680.
[2]GINN K A, COOLS A, HALAKI M. Do surface electrodes validly represent lower trapezius activation patterns during shoulder tasks?[J]. Journal of Electromyography and Kinesiology, 2020, 53: 102427.
[3]YAMAGAMI M, PETERS K M, MILOVANOVIC I, et al. Assessment of dry epidermal electrodes for long-term electromyography measurements[J]. Sensors, 2018, 18(4): 1269.
[4]馬帥,侯世科,樊毫軍,等.智能心電信號監(jiān)測設(shè)備研究現(xiàn)狀[J].醫(yī)療衛(wèi)生裝備,2020,41(11):95-99.
MA Shuai, HOU Shike, FAN Haojun, et al. Research status of intelligent ECG signal monitoring equipment[J]. Chinese Medical Equipment Journal, 2020, 41(11): 95-99.
[5]REAZ M B I, HUSSAIN M S, MOHD-YASIN F. Tech-niques of EMG signal analysis: detection, processing, classification and applications[J]. Biological Procedures Online, 2006, 8(1): 11-35.
[6]GOHEL V, MEHENDALE N. Review on electromyography signal acquisition and processing[J]. Biophysical Reviews, 2020, 12(6): 1361-1367.
[7]FARINA D, HOLOBAR A. Characterization of human motor units from surface EMG decomposition[J]. Procee-dings of the IEEE, 2016, 104(2): 353-373.
[8]REZAEE K, SAVARKAR S, YU X F, et al. A hybrid deep transfer learning-based approach for parkinson's disease classification in surface electromyography signals[J]. Biomedical Signal Processing and Control, 2022,71:103161.
[9]BASHFORD J, MILLS K, SHAW C. The evolving role of surface electromyography in amyotrophic lateral sclerosis: A systematic review[J]. Clinical Neurophysiology, 2020, 131(4): 942-950.
[10]FALLA D, GALLINA A. New insights into pain-related changes in muscle activation revealed by high-density surface electromyography[J]. Journal of Electromyography and Kinesiology, 2020, 52: 102422.
[11]TAO X Y. Understanding the washing damage to textile ECG dry skin electrodes, embroidered and fabric-based; set up of equivalent laboratory tests[J]. Sensors, 2020, 20(5): 1272.
[12]WANG L, PAN Y L, HE D D, et al. Conductive polyester fabrics with high washability as electrocardiogram textile electrodes[J]. ACS Applied Polymer Materials, 2022, 4(2): 1440-1447.
[13]KANG Z X, HE Y Q, SANG J, et al. Superhydrophobic and conductive cotton fabric composite with excellent corrosion resistance for wearable electronics[J]. Advanced Materials Interfaces, 2021, 8(17): 2100651.
[14]YOGENDRA M S, MALLIKARJUNA REDDY M V, KARTIK S N, et al. Development of fabric electrode for bio-potential signal acquisition in wearable health monitoring and effect of perspiration on signal acquisition[J]. Journal of Industrial Textiles, 2021: 52(2):2148S-2162S.
[15]LIMAN M L R, ISLAM M T, HOSSAIN M M. Mapping the progress in flexible electrodes for wearable electronic textiles: materials, durability, and applications[J]. Advanced Electronic Materials, 2022, 8(1): 2100578.
[16]PANI D, ACHILLI A, SPANU A, et al. Validation of polymer-based screen-printed textile electrodes for surface EMG detection[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(7): 1370-1377.
[17]MANJAKKAL L, PULLANCHIYODAN A, YOGESWARAN N, et al. A wearable supercapacitor based on conductive PEDOT: PSS-coated cloth and a sweat electrolyte[J]. Advanced Materials, 2020, 32(24): 1907254.
[18]XU Z Y, SONG J Y, LIU B R, et al. A conducting polymer PEDOT: PSS hydrogel based wearable sensor for accurate uric acid detection in human sweat[J]. Sensors and Actuators B: Chemical, 2021, 348: 130674.
[19]TSEGHAI G B, MALENGIER B, FANTE K A, et al. Integration of conductive materials with textile structures, an overview[J]. Sensors, 2020, 20(23): 6910.
[20]NIGUSSE A B, MENGISTIE D A, MALENGIER B, et al. Wearable smart textiles for long-term electrocardiography monitoring:A review[J]. Sensors, 2021, 21(12): 4174.
[21]MA H, LI J, ZHOU J, et al. Screen-printed carbon black/recycled sericin@fabrics for wearable sensors to monitor sweat loss[J]. ACS Applied Materials & Interfaces, 2022, 14(9): 11813-11819.
[22]NAH J S, BARMAN S C, ZAHED M A, et al. A wearable microfluidics-integrated impedimetric immuno-sensor based on Ti3C2Tx MXene incorporated laser-burned graphene for noninvasive sweat cortisol detection[J]. Sensors and Actuators B: Chemical, 2021, 329: 129206.
[23]LIN K C, MUTHUKUMAR S, PRASAD S. Flex-GO (Flexible graphene oxide) sensor for electrochemical monitoring lactate in low-volume passive perspired human sweat[J]. Talanta, 2020, 214: 120810.
[24]LEE S, KIM M O, KANG T, et al. Knit band sensor for myoelectric control of surface EMG-based prosthetic hand[J]. IEEE Sensors Journal, 2018, 18(20): 8578-8586.
[25]許潤欣,肖學(xué)良,王志宇,等.織物電極在心電監(jiān)測服裝中的研究進(jìn)展[J].產(chǎn)業(yè)用紡織品,2022,40(2):1-6.
XU Runxin, XIAO Xueliang, WANG Zhiyu, et al. Research progress of fabric electrode in electrocardiogram monitoring clothing[J]. Technical Textiles, 2022, 40 (2): 1-6.
[26]JIANG Y L, SAKODA S, TOGANE M, et al. A highly usable and customizable sEMG sensor for prosthetic limb control using polypyrrole-coated nonwoven fabric sheet[C]//IEEE Sensors. IEEE, 2015: 1-4.
[27]劉振,劉曉霞.織物電極采集肌電信號的研究進(jìn)展[J].棉紡織技術(shù),2017,45(1):80-84.
LIU Zhen, LIU Xiaoxia. Research progress of myoelectric signal collecting with fabric electrode[J]. Cotton Textile Technology, 2017, 45 (1) : 80-84.
[28]XIAO X L, PIRBHULAL S, DONG K, et al. Performance evaluation of plain weave and honeycomb weave electrodes for human ECG monitoring[J]. Journal of Sensors, 2017, 2017: 7539840.
[29]葉華標(biāo).穿戴式織物心電電極的制備及性能研究[D].鄭州:中原工學(xué)院,2020.
YE Huabiao. Research on Preparation and Performance of Wearable Textile ECG Electrodes[D]. Zhengzhou: Zhongyuan University of Technology, 2020 .
[30]林璐,孫吉海,肖學(xué)良.五枚三飛經(jīng)面緞紋導(dǎo)電織物電極的心電采集性能[J].上海紡織科技,2021,49(10):50-53,56.
LIN Lu, SUN Jihai, XIAO Xueliang. Electrocardiograph acquisition performance of five pattern three flytype of warp-satin woven fabric as conductive electrode[J]. Shanghai Textile Science & Technology, 2021, 49(10): 50-53, 56.
[31]楊紅英,葉華標(biāo),周金利,等.可穿戴織物心電電極運(yùn)動偽跡的產(chǎn)生機(jī)制與抑制方法[J].紡織高校基礎(chǔ)科學(xué)學(xué)報(bào),2019,32(2):126-132.
YANG Hongying, YE Huabiao, ZHOU Jinli, et al. The causes and suppression methods of motion artifacts of wearable textile electrocardio-electrodes[J]. Basic Sciences Journal of Textile Universities, 2019, 32 (2): 126-132.
[32]KIM H, KIM S, LIM D, et al. Development and characterization of embroidery-based textile electrodes for surface EMG detection[J]. Sensors, 2022,22(13): 4746.
[33]LEE S, JAMIL B, KIM S, et al. Fabric vest socket with embroidered electrodes for control of myoelectric prosthesis[J]. Sensors, 2020, 20(4): 1196.
[34]SHAFTI A, MANERO R B R, BORG A M, et al. Embroidered electromyography: A systematic design guide[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(9): 1472-1480.
[35]OJSTREK A, PLOHL O, GORGIEVA S, et al. Metallisation of textiles and protection of conductive layers: an overview of application techniques[J]. Sensors, 2021, 21(10): 3508.
[36]DU Z H, ZHOU H, YU X H, et al. Controlling the polarity and viscosity of small molecule ink to suppress the contact line receding and coffee ring effect during inkjet printing[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602: 125111.
[37]WANG Z X, LOWE T, DERBY B. Fluid/fiber interactions and the conductivity of inkjet printed Ag on textile substrates[J]. ACS Applied Materials & Interfaces, 2020, 12(40): 45516-45524.
[38]張贏心,徐磊,王大偉,等.織物電極在生物電信號監(jiān)測中的研究進(jìn)展[J].現(xiàn)代紡織技術(shù),2022,30(4):42-49.
ZHANG Yingxin, XU Lei, WANG Dawei, et al. Research progress of fabric electrode in bioelectric signal monitoring[J]. Advanced Textile Technology, 2022, 30 (4) : 42-49.
[39]LIM T, ZHANG H N, LEE S. Gold and silver nanocomposite-based biostable and biocompatible electronic textile for wearable electromyographic biosensors[J]. APL Materials, 2021, 9(9): 091113.
[40]張馳,魏德健,曹慧.用于心電信號采集的織物電極技術(shù)的研究進(jìn)展[J].生物醫(yī)學(xué)工程學(xué)雜志,2018,35(5):811-816.
ZHANG Chi, WEI Dejian, CAO Hui. Research progress on fabric electrode technologies for electrocardiogram signal acquisition[J]. Journal of Biomedical Engineering, 2018, 35 (5) : 811-816.
[41]溫東偉,楊昆.心電檢測用織物電極的研究進(jìn)展[J].紡織導(dǎo)報(bào),2018(3):72-75.
WEN Dongwei, YANG Kun. Research progress of fabric electrodes for ECG detection [J]. China Textile Leader, 2018 (3) : 72-75.
[42]TAJI B, SHIRMOHAMMADI S, GROZA V, et al. Impact of skin-electrode interface on electrocardiogram measure-ments using conductive textile electrodes[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(6): 1412-1422.
[43]XIE L, YANG G, XU L L, et al. Characterization of dry biopotential electrodes[C]//35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2013: 1478-1481.
[44]宋晉忠,陳華,張輝,等.織物電極的皮膚-電極接觸阻抗測量方法分析[J].現(xiàn)代生物醫(yī)學(xué)進(jìn)展,2015,15(24):4777-4781.
SONG Jinzhong, CHEN Hua, ZHANG Hui, et al. Detection methods for skin-electrode contact impedance of textile electrodes[J]. Progress in Modern Biomedicine, 2015, 15 (24) : 4777-4781.
[45]LAM E, ALIZADEH-MEGHRAZI M, SCHLUMS A, et al. Exploring textile-based electrode materials for electrom-yography smart garments[J]. Journal of Rehabilitation and Assistive Technologies Engineering, 2022, 9: 1-18.
[46]PRINIOTAKIS G. Electrochemical impedance spectros-copy as an objective method for characterization of textileelectrodes[J]. Transactions of the Institute of Measurement & Control, 2007, 29(3/4): 271-281.
[47]DE LUCA C J, GILMORE L D, KUZNETSOV M , et al. Filtering the surface EMG signal: Movement artifact and baseline noise contamination[J]. Journal of Biome-chanics, 2010, 43(8): 1573-1579.
[48]LIU Z, LIU X X. Progress on fabric electrodes used in biological signal acquisition[J]. Journal of Minerals and Materials Characterization and Engineering, 2015, 3(3): 204-214.
[49]OZTURK O, YAPICI M K. Surface electromyography with wearable graphene textiles[J]. IEEE Sensors Journal, 2021, 21(13): 14397-14406.
[50]CLANCY E A, MORIN E L, MERLETTI R. Sampling, noise-reduction and amplitude estimation issues in surface electromyography[J]. Journal of Electromyography and Kinesiology, 2002, 12(1): 1-16.
[51]GUO L, SANDSJ L, ORTIZ-CATALAN M, et al. Systematic review of textile-based electrodes for long-term and continuous surface electromyography recording[J]. Textile Research Journal, 2020, 90(2): 227-244.
[52]KIM S, LEE S, JEONG W. Emg measurement with textile-based electrodes in different electrode sizes and clothing pressures for smart clothing design optimization[J]. Polymers, 2020, 12(10): 2406.
[53]龐莉娜,王春紅,王慧泉,等.織物心電電極研究進(jìn)展[J].產(chǎn)業(yè)用紡織品,2021,39(5):1-6.
PANG Lina, WANG Chunhong, WANG Huiquan, et al. Research progress of fabric ECG electrodes[J]. Technical Textiles, 2021,39 (5) : 1-6.
[54]BARRERA C S, PIA-MARTNEZ E, ROBERTS R, et al. Impact of size and shape for textile surface electrom-yography electrodes: A study of the biceps brachii muscle[J]. Textile Research Journal, 2022, 92(17/18): 3097-3110.
Abstract: In recent years, muscle nerve diseases have seriously harmed people's health. Therefore, people need a long-term continuous and stable electromyography monitoring electrode to monitor people's health status in real time, so as to find muscle abnormalities earlier for treatment, and reduce the damage of muscle nerve diseases to people's living quality and life.
At present, there are many kinds of EMG monitoring electrodes. Firstly, we briefly review the electrode types and working principles of EMG monitoring, and compare the characteristics of various electrodes and monitoring methods. It is found that the non-invasive fabric dry electrode can be healthy and comfortable for long-term EMG monitoring, which is the focus of long-term continuous stability of the EMG monitoring electrode. The development status of fabric dry electrodes for long continuous stable EMG monitoring is summarized in terms of three aspects: electrode structure and preparation technology, property characterization and evaluation technology and EMG monitoring suit integration technology. We introduce the influence of material, structure and preparation technology on the properties of fabric dry electrodes in the section on structure and preparation technology. In the section of performance characterization and evaluation techniques, we summarize both the impedance and surface EMG characterization and compare the methods, and characteristics of the surface EMG signal noise reduction with those of the skin-electrode contact impedance measurement method. In the section of EMG monitoring suit integration technolog, we analyze the methods and characteristics of integrating conductive materials, conductive yarns and finished fabric dry electrodes with clothing.
The existing research results show that although the existing fabric dry electrodes cannot meet the long-term continuous and stable EMG monitoring performance requirements, some progress has been made in the structure and preparation technology of fabric dry electrodes, electrode performance characterization and evaluation technology and electrode integration technology.First, conductive materials (containing oxygen and nitrogen elements) that can form hydrogen bonds with fabrics (containing oxygen and nitrogen elements) and chemical (liquid), electrochemical and vapor deposition processes that can prepare thin and uniform conductive layers on uneven fabric surfaces are suitable for the preparation of dry electrodes for long-term continuous and stable EMG monitoring fabrics. However, in order to better perform long-term continuous EMG monitoring, it is still necessary to pay attention to the effects of friction, bending and perspiration corrosion on the stability of dry electrode signal monitoring of fabrics. Second, when the fabric dry electrode is integrated with clothing, the modification of the fabric dry electrode by introducing soft materials can increase the adhesion performance of the fabric dry electrode to the skin, which is conducive to improving the signal stability of the fabric dry electrode during long-term continuous dynamic EMG monitoring. Generally, during long-term dynamic EMG monitoring, the fabric dry electrode will have unstable monitoring signals due to bending, friction and perspiration, and the unstable signal affects the identification and application of EMG, so improving the strain stability and perspiration corrosion resistance of fabric dry electrodes is the current technology that needs to be broken through.
Keywords: electromyography; long-time monitoring; fabric dry electrode; structure; performance