任凱麗 孔維萍 唐桃霞 程鴻
摘要:植物SWEET蛋白是一類(lèi)重要的轉(zhuǎn)運(yùn)蛋白,研究其生理生化功能,有助于分子輔助育種,縮短育種年限。本文基于文獻(xiàn)資料,梳理歸納了近年來(lái)國(guó)內(nèi)外的植物SWEET蛋白的結(jié)構(gòu)、分類(lèi)、轉(zhuǎn)運(yùn)底物和功能方面的相關(guān)研究進(jìn)展,闡述表明SWEET蛋白是植物中廣泛存在的一類(lèi)糖轉(zhuǎn)運(yùn)體,既能轉(zhuǎn)運(yùn)單糖又能轉(zhuǎn)運(yùn)蔗糖,屬于Mt N3家族。不同植物間的SWEET蛋白具有一定的保守性,根據(jù)親緣關(guān)系SWEET家族可以分為四類(lèi)。植物SWEET蛋白是位于膜系統(tǒng)上,參與糖分的跨膜轉(zhuǎn)運(yùn),在植物生長(zhǎng)發(fā)育及逆境脅迫中均有不同程度的調(diào)控作用,如調(diào)控花蜜的分泌、花粉的營(yíng)養(yǎng)、灌漿期種子的發(fā)育、果實(shí)發(fā)育、植物抗逆性和抗病性等。然而不同植物的SWEET蛋白轉(zhuǎn)運(yùn)底物和調(diào)控功能不同,目前僅在擬南芥等少數(shù)植物中研究較為深入。
關(guān)鍵詞:SWEET;糖轉(zhuǎn)運(yùn)蛋白;糖;結(jié)構(gòu);分類(lèi);功能
中圖分類(lèi)號(hào):S184;Q51? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼:A? ? ? ? ? ? 文章編號(hào):2097-2172(2023)01-0005-08
doi:10.3969/j.issn.2097-2172.2023.01.002
Advances in Structure, Classification and Functions of
SWEET Protein in Plants
REN Kaili, KONG Weiping, TANG Taoxia, CHENG Hong
(Institute of Vegetables, Gansu Academy of Agricultural Sciences, Lanzhou Gansu 730070, China)
Abstract: The yield and quality of crops depend on sugar transport and regulation. In this paper, we reviewed the structure, classification, transport substrates and functions of SWEET protein, in order to lay a foundation for the study of SWEET protein in other plants. SWEET transporter is a newly discovered sugar transporter located in membrane system, which can transport both hexose and sucrose and belongs to Mt N3 family. SWEET proteins are conserved in different plants, and the SWEET family can be divided into four groups according to their relatives. plant SWEET protein plays an important role in plant growth and development, biological and abiotic stress response, such as regulating nectar secretion, pollen nutrition, seed development during grain filling, fruit development, plant stress resistance and disease resistance. However, the transport substrates and regulatory functions of SWEET proteins are different in different plants, and only in a few plants such as Arabidopsis thaliana had this protein been studied in depth.
Key words: SWEET; Sugar transporter; Sugar; Structure; Classification; Function
糖是植物的重要能源。植物葉片通過(guò)光合作用進(jìn)行碳固定,形成糖類(lèi)物質(zhì),除自身消耗外,其余大部分運(yùn)輸?shù)綆?kù)器官,供庫(kù)器官生長(zhǎng)發(fā)育,而糖類(lèi)物質(zhì)從源到庫(kù)的運(yùn)輸離不開(kāi)糖轉(zhuǎn)運(yùn)蛋白的參與。植物的糖轉(zhuǎn)運(yùn)蛋白分為3類(lèi),即蔗糖轉(zhuǎn)運(yùn)蛋白(Sucrose transporters,SUTs)、單糖轉(zhuǎn)運(yùn)蛋白(Monosaccharide transporters,MSTs)和SWEET糖轉(zhuǎn)運(yùn)蛋白(Sugars Will Eventually be Exported Transporters)[1 ]。單糖轉(zhuǎn)運(yùn)蛋白和蔗糖轉(zhuǎn)運(yùn)蛋白分別主要負(fù)責(zé)單糖和蔗糖的轉(zhuǎn)運(yùn),而SWEET蛋白既能轉(zhuǎn)運(yùn)單糖又能轉(zhuǎn)運(yùn)蔗糖[2 ],是植物中最新發(fā)現(xiàn)的一類(lèi)轉(zhuǎn)運(yùn)蛋白,除了糖轉(zhuǎn)運(yùn)外SWEET蛋白在植物生長(zhǎng)發(fā)育和抗逆性等方面均發(fā)揮著重要的作用[3 - 5? ]。
SWEET蛋白最先在擬南芥(Arabidopsis thaliana)中發(fā)現(xiàn)并鑒定[6 ],隨后逐漸在水稻(Oryza sativa)、葡萄(Vitis vinifera)、木薯(Manihot esculenta)、蘋(píng)果(Malus domestica)、甜橙(Citrus sinensis)等作物中陸續(xù)被鑒定[7 - 11 ]。目前,SWEET蛋白在模式植物擬南芥中的研究較為深入,很多其他植物的報(bào)道少且深度不夠。我們綜述了近年來(lái)已經(jīng)鑒定的SWEET蛋白相關(guān)研究,以期為其他植物的SWEET轉(zhuǎn)運(yùn)蛋白研究提供參考。
1? ?植物SWEET蛋白結(jié)構(gòu)與分類(lèi)
SWEET蛋白是植物、動(dòng)物和微生物中廣泛存在的、定位于膜結(jié)構(gòu)的糖轉(zhuǎn)運(yùn)蛋白[6, 12 - 14 ],屬于Mt N3家族。真核生物SWEET蛋白具有7個(gè)TM螺旋(transmembrane domains),N端THB由TMs 1-3組成,C端THB由TMs 5-7制成,且N端與C端THB結(jié)構(gòu)相似,均以平行方向排列,各自為1個(gè)單元(圖1)。TM4作為連接螺旋,連接N端和C端的THB,不同SWEET蛋白中連接螺旋的蛋白序列是不保守的(圖1)[14 - 16 ]。原核生物的semiSWEET蛋白僅含有單個(gè)THB結(jié)構(gòu),也具有糖轉(zhuǎn)運(yùn)功能[13, 17 - 18 ]。Yuan等[7 ]認(rèn)為真核生物SWEET基因可能是原核生物semiSWEET基因復(fù)制的結(jié)果,TM4是轉(zhuǎn)運(yùn)體的一部分;而Hu等[19 ]提出一個(gè)基因融合假設(shè)理論,認(rèn)為在進(jìn)化過(guò)程中當(dāng)產(chǎn)甲烷古菌吞噬細(xì)菌時(shí),會(huì)導(dǎo)致semiSWEET基因轉(zhuǎn)移到宿主基因組中,因此細(xì)菌的semiSWEET和寄主基因結(jié)合形成了1個(gè)雙THB的SWEET,但保守的TM4是如何在2個(gè)THB之間插入或產(chǎn)生的仍不清楚?;驈?fù)制和基因融合是SWEET轉(zhuǎn)運(yùn)體進(jìn)化的主流理論,然而不論哪種進(jìn)化理論,SWEET中涉及糖運(yùn)輸?shù)年P(guān)鍵殘基在進(jìn)化過(guò)程中是保守的[20 ]。
隨著SWEET家族研究的深入,不少植物的SWEET蛋白被鑒定,表1為已經(jīng)發(fā)表的幾種植物SWEET蛋白家族成員數(shù)量。對(duì)擬南芥的17個(gè)、水稻的21個(gè)、黃瓜的17個(gè)SWEET家族蛋白成員利用MAGA11軟件采用鄰接發(fā)構(gòu)建系統(tǒng)進(jìn)化樹(shù),結(jié)果見(jiàn)圖2。植物的SWEET家族蛋白分為4個(gè)分支。以擬南芥為例,分支Ⅰ有AtSWEET1-3,分支Ⅱ有AtSWEET4-8,分支Ⅲ有AtSWEET9-15,分支Ⅳ有AtSWEET16和AtSWEET17[2, 6, 21 ]。
2? ?植物SWEET蛋白轉(zhuǎn)運(yùn)底物
植物SWEET蛋白大多位于質(zhì)膜,少數(shù)位于液泡膜,具有不依賴(lài)能量的跨膜轉(zhuǎn)運(yùn)糖分的功能。擬南芥SWEET1蛋白具有跨膜轉(zhuǎn)模葡萄糖的功能[6 ],SWEET2蛋白跨膜轉(zhuǎn)運(yùn)2-脫氫葡萄糖[55 ],SWEET4蛋白跨膜轉(zhuǎn)運(yùn)葡萄糖和果糖[56 ],SWEET5蛋白跨膜轉(zhuǎn)運(yùn)葡萄糖和半乳糖[57 ],SWEET8蛋白跨膜轉(zhuǎn)運(yùn)葡萄糖[58 ],SWEET9、SWEET11、SWEET12、SWEET13、SWEET14和SWEET15蛋白跨膜轉(zhuǎn)運(yùn)蔗糖[59 - 62 ],SWEET16蛋白跨膜轉(zhuǎn)運(yùn)葡萄糖、果糖和蔗糖[2 ],SWEET17蛋白跨膜轉(zhuǎn)運(yùn)果糖(表2)[21 ]。
此外,不同植物間SWEET蛋白的轉(zhuǎn)運(yùn)底物也略有不同。茶樹(shù)的SWEET1a蛋白可跨膜轉(zhuǎn)運(yùn)葡萄糖、半乳糖和蔗糖[43 ],SWEET16蛋白可跨膜轉(zhuǎn)運(yùn)葡萄糖、果糖和蔗糖[43 ],SWEET17蛋白可跨膜轉(zhuǎn)運(yùn)葡萄糖、果糖、半乳糖、甘露糖和蔗糖等多種糖分[43 ];葡萄SWEET4、SWEET10蛋白可跨膜轉(zhuǎn)運(yùn)葡萄糖和果糖的功能[5, 63 ];百脈根SWEET3蛋白可跨膜轉(zhuǎn)運(yùn)蔗糖的功能[35 ];番茄SWEET7a、SWEET14蛋白可跨膜轉(zhuǎn)運(yùn)葡萄糖、果糖和蔗糖(表2)[3 ]。
3? ?植物SWEET蛋白功能
植物SWEET蛋白參與糖分的轉(zhuǎn)運(yùn),而糖不僅可以作為養(yǎng)分物質(zhì)供植株生長(zhǎng),也可作為信號(hào)因子,因此SWEET蛋白在植物生長(zhǎng)發(fā)育、響應(yīng)生物與非生物逆境脅迫過(guò)程中均有不同程度的調(diào)控作用(表2)。
3.1? ?植物SWEET蛋白的生理功能
SWEET蛋白可以調(diào)控花蜜的分泌。擬南芥SWEET1蛋白具有給配子體或花蜜提供營(yíng)養(yǎng)的作用[6 ],擬南芥和蕪菁的SWEET9蛋白也具有調(diào)控花蜜分泌的功能[59 ]。SWEET蛋白可以調(diào)控花粉的發(fā)育,擬南芥的SWEET5、SWEET8、SWEET13、SWEET14蛋白均具有調(diào)控花粉營(yíng)養(yǎng)與萌發(fā)的功 能[57 - 58, 61 ]。SWEET蛋白可以調(diào)控灌漿期種子的發(fā)育,例如Chen等[62 ]的研究表明,擬南芥SWEET11、SWEET12和SWEET15蛋白可以調(diào)控種子發(fā)育。此外,SWEET蛋白可以調(diào)控果實(shí)發(fā)育,如葡萄SWEET10蛋白介導(dǎo)了果實(shí)中糖分的積累[63 ]。
3.2? ?植物SWEET蛋白對(duì)逆境脅迫的調(diào)控
SWEET蛋白可以調(diào)控植物對(duì)非生物脅迫的抗性。過(guò)表達(dá)茶樹(shù)SWEET1a、SWEET16與SWEET17基因和過(guò)表達(dá)擬南芥SWEET4與SWEET16基因,可以提高茶樹(shù)和擬南芥對(duì)冷脅迫的耐受性[2, 43, 56, 64 ];擬南芥水分脅迫下通過(guò)調(diào)控SWEET11和SWEET12基因的表達(dá)將更多的糖分從葉片運(yùn)輸?shù)礁?,以維持根的生長(zhǎng)發(fā)育,從而增強(qiáng)對(duì)水分脅迫的適應(yīng)性[60 ];擬南芥SWEET11和SWEET12可協(xié)同作用調(diào)控植株抗凍性,冷脅迫處理下擬南芥SWEET11和SWEET12表達(dá)下調(diào),且sweet11和sweet12雙突變體表現(xiàn)出抗凍性[60 ];擬南芥sweet17敲除突變體表現(xiàn)出側(cè)根減少和側(cè)根發(fā)育相關(guān)轉(zhuǎn)錄因子表達(dá)減少,導(dǎo)致耐旱性降低[66 ]。
SWEET蛋白可以調(diào)控植物對(duì)生物脅迫的抗性。過(guò)表達(dá)SWEET2可以增強(qiáng)擬南芥對(duì)腐霉的抗性;過(guò)表達(dá)葡萄SWEET4可促進(jìn)具有真菌抗性的黃酮類(lèi)化合物的生物合成,增強(qiáng)對(duì)真菌的抗性[5 ];過(guò)表達(dá)甘薯SWEET10可通過(guò)降低甘薯的糖含量來(lái)增強(qiáng)了對(duì)尖孢菌的抗性[4 ];擬南芥SWEET11和SWEET12蛋白參與病原體驅(qū)動(dòng)下胚軸內(nèi)蔗糖分布的調(diào)控,進(jìn)而對(duì)甘藍(lán)根腫菌的侵染產(chǎn)生負(fù)面影響[65 ]。
4? ?小結(jié)與展望
SWEET蛋白是植物中廣泛存在的一類(lèi)糖轉(zhuǎn)運(yùn)體,其既能轉(zhuǎn)運(yùn)單糖又能轉(zhuǎn)運(yùn)蔗糖,屬于Mt N3家族。不同植物間的SWEET蛋白具有一定的保守性,根據(jù)親緣關(guān)系SWEET家族可以分為四類(lèi)。植物SWEET蛋白是位于膜系統(tǒng)上,參與糖分的跨膜轉(zhuǎn)運(yùn),在植物生長(zhǎng)發(fā)育及逆境脅迫中均有不同程度的調(diào)控作用,例如調(diào)控花蜜的分泌、花粉的營(yíng)養(yǎng)、灌漿期種子的發(fā)育、果實(shí)發(fā)育、植物抗逆性和抗病性等。因此,植物SWEET蛋白是一類(lèi)重要的轉(zhuǎn)運(yùn)蛋白,研究其生理生化功能,有助于分子輔助育種,縮短育種年限。
目前,SWEET蛋白在模式植物擬南芥中的研究較為深入,在其他植物的研究還相對(duì)較少且深度不夠。今后的研究重點(diǎn)應(yīng)從以下幾點(diǎn)入手,一是作物生長(zhǎng)調(diào)控,如水稻、玉米等作物,研究營(yíng)養(yǎng)器官與生殖器官的關(guān)系,保證充足營(yíng)養(yǎng)面積的基礎(chǔ)上更多的糖分轉(zhuǎn)運(yùn)到種子/果實(shí)中,以提高產(chǎn)量和品質(zhì);二是園藝瓜果植物的高品質(zhì)育種,深入研究葡萄、蘋(píng)果、甜瓜、西瓜等園藝植物SWEET蛋白的功能,利用生物技術(shù)手段進(jìn)行高品質(zhì)育種;三是植物抗性育種,挖掘植物SWEET蛋白的功能,通過(guò)SWEET蛋白對(duì)糖的調(diào)控增強(qiáng)植物對(duì)生物與非生物脅迫的耐受性,結(jié)合分子生物學(xué)手段,達(dá)到抗性育種的目的。
參考文獻(xiàn):
[1] 耿艷秋,董肖昌,張春梅.? 園藝作物糖轉(zhuǎn)運(yùn)蛋白研究進(jìn)展[J]. 園藝學(xué)報(bào),2021,48(4):676-688.
[2] KLEMENS P A W, PATZKE K, DEITMER J, et al. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis[J].? Plant Physiology, 2013, 163(3): 1338-1352.
[3] ZHANG X, FENG C, WANG M, et al.? Plasma membrane-localized SlSWEET7a and SlSWEET14 regulate sugar transport and storage in tomato fruits[J].? Horticulture Research, 2021, 8:186.
[4] LI Y, WANG Y N, ZHANG H, et al. The plasma membrane-localized sucrose transporter IbSWEET10 contributes to the resistance of sweet potato to Fusarium oxysporum[J]. Frontiers in Plant Science, 2017, 8(e44467): 197.
[5] METEIER E, LA CAMERA S, GODDARD ML, et al. Overexpression of the VvSWEET4 Transporter in Grapevine Hairy Roots Increases Sugar Transport and Contents and Enhances Resistance to Pythium irregulare, a SoilbornePathoge[J].? Frontiers in Plant Science, 2019, 10: 884
[6] CHEN L Q, HOU B H, LALONDE S, et al.? Sugar transporters for intercellular exchange and nutrition of pathogens[J].? Nature, 2010, 468(7323): 527-532.
[7] YUAN M, WANG S. Rice Mt N3/saliva/SWEET family genes and their homologs in cellular organisms[J].? Molecular Plant, 2013, 6: 665-674.
[8] CHONG J, PIRON MC, MEYER S, et al.? The SWEET family of sugar transporters in grapevine: VvSWEET4 is involved in the interaction with Botrytis cinerea[J]. Journal of Experimental Botany, 2014, 65(22): 6589-6601.
[9] COHN M, BART R S, SHYBUT M, et al. Xanthomonas axonopodis virulence is promoted by a transcription activator-like effector-mediated induction of a SWEET sugar transporter in cassava[J].? Molecular Plant-Microbe Interactions, 2014, 27(1): 1186-1198.
[10] WEI X, LIU F, CHEN C, et al. The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars[J].? Frontiers in Plant Science, 2014, 5: 569.
[11] ZHENG Q, TANG Z, XU Q, et al.? Isolation, phylogenetic relationship and expression profiling of sugar transporter genes in sweet orange (Citrus sinensis)[J].? Plant Cell, Tissue and Organ Culture, 2014, 119(3): 609-624.
[12] CHEN LQ, CHEUNG L, FENG L, et al. Transport of sugars[J].? Annual Review of Biochemistry, 2015, 84: 865-894.
[13] XUAN YH, HU YB, CHEN LQ, et al. Functional role of oligomerization for bacterial and plant SWEET sugar transporter family[J].? Proceedings of the National Academy of Sciences, 2013, 110(39): e3685-3694.
[14] XU Y, TAO YY, CHEUNG LS, et al.? Structures of bacterial homologues of SWEET transporters in two distinct conformations[J].? Nature, 2014, 515(7527): 448-452.
[15] HAN L, ZHU Y, LIU M, et al. Molecular mechanism of substrate recognition and transport by the AtSWEET13 sugar transporter[J].? Proceedings of the National Academy of Sciences, 2017, 114(38): 10089-10094.
[16] JEENA GS, KUMAR S, SHUKLA RK.? Structure, evolution and diverse physiological roles of SWEET sugar transporters in plants[J].? Plant Molecular Biology, 2019, 100(4): 351-365.
[17] FENG L, FROMMER W B. Structure and function of SemiSWEET and SWEET sugar transporters[J].? Trends in Biochemical Sciences, 2015, 40(8): 480-486.
[18] LEE Y, NISHIZAWA T, YAMASHITA K, et al. Structural basis for thefacilitative diffusion mechanism by semiSWEET transporter[J]. Nature Communications, 2015, 6(1): 1-8.
[19] HU Y B, SOSSO D, QU X Q, et al. Phylogenetic evidence for a fusion of archaeal and bacterial SemiSWEETs to form eukaryotic SWEETs and identification of SWEET hexose transporters in the amphibian chytrid pathogen Batrachochytrium dendrobatidis[J].? The FASEB Journal, 2016, 30(10): 3644-3654.
[20] JIA B, ZHU X F, PU Z J, et al.? Integrative view of the diversity and evolution of SWEET and SemiSWEET sugar transporters[J].? Frontiers in Plant Science, 2017, 8: 2178.
[21] CHARDON F, BEDU M, CALENGE F, et al. Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis[J].? Current Biology, 2013, 23(8): 697-702.
[22] EOM J S, CHEN L Q, SOSSO D, et al.? SWEETs, transporters for intracellular and intercellular sugar translocation[J].? Current Opinion in Plant Biology, 2015, 25: 53-62.
[23] FENG C Y, HAN J X, HAN X X, JIANG J. Genome-wide identification, phylogeny, and expression analysis of the SWEET gene family in tomato[J].? Gene, 2015, 573: 261-272.
[24] PATIL G, VALLIYODAN B, DESHMUKH R, et al. Soybean(Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis[J].? BMC Genomics, 2015, 16(1): 1-16.
[25] SOSSO D, LUO D, LI Q, et al. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport[J].? Nature Genetics, 2015, 47(12): 1489-1493.
[26] HU B, WU H, HUANG W, et al.? SWEET Gene Family in Medicago truncatula: Genome-Wide Identification, Expression and Substrate Specificity Analysis[J].? Plants, 2019, 8(9): 338.
[27] KRYVORUCHKO I S, SINHAROY S, TORRES-JEREZ I, et al. MtSWEET11, a nodule-specific sucrose transporter of Medicago truncatula[J].? Plant Physiology, 2016, 171(1): 554-565.
[28] MANCK-G?魻TZENBERGER J, REQUENA N. Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family[J].? Frontiers in Plant Science, 2016, 7: 487.
[29] MIZUNO H, KASUGA S, KAWAHIGASHI H. The sorghum SWEET gene family: stem sucrose accumulation as revealed through transcriptome profiling[J]. Biotechnology for Biofuels, 2016, 9(1): 1-12.
[30] COX K L, MENG F, WILKINS K E, et al. TAL effector driven induction of a SWEET gene confers susceptibility to bacterial blight of cotton[J].? Nature Communications, 2017, 8(1): 1-14.
[31] HU L P, ZHANG F, SONG S H, et al. Genome-wide identification, characterization, and expression analysis of the SWEET gene family in cucumber[J].? Journal of Integrative Agriculture, 2017, 16(7): 1486-1501.
[32] LIY X, FENG S, MAS, et al. Spatiotemporal Expression and Substrate Specificity Analysis of the Cucumber SWEET Gene Family[J].? Frontiers in Plant Science,2017, 8: 1855.
[33] LI J, QIN M, QIAO X, et al. A new insight into the evolution and functional divergence of SWEET transporters in Chinese white pear(Pyrus bretschneideri)[J].? Plant and Cell Physiology, 2017, 58(4): 839-850.
[34] MIAO H, SUN P, LIU Q, et al. Genome-wide analyses of SWEET family proteins reveal involvement in fruit development and abiotic/biotic stress responses in banana[J].? Scientific Reports, 2017, 7(1): 1-15.
[35] SUGIYAMA A, SAIDA Y, YOSHIMIZU M, et al. Molecular characterization of LjSWEET3, a sugar transporter in nodules of Lotus japonicus[J].? Plant and Cell Physiology, 2017, 58(2): 298-306.
[36] SUI J L, XIAO X H, QI J Y , et al.? The SWEET gene family in Hevea brasiliensis—its evolution and expression compared with four other plant species[J].? FEBS Open Bio, 2017, 7(12): 1943-1959.
[37] WU Y, WANG Y, SHAN Y, et al. Characterization of SWEET family members from loquat and their responses to exogenous induction[J].? Tree Genetics & Genomes, 2017, 13(6): 1-9.
[38] GAO Y, ZHANG C, HAN X, et al. Inhibition of OsSWEET11 function in mesophyll cells improves resistance of rice to sheath blight disease[J].? Molecular Plant Pathology, 2018, 19(9): 2149-2161.
[39] GAUTAM T, SARIPALLI G, GAHLAUT V, et al. Further studies on sugar transporter(SWEET) genes in wheat (Triticumaestivum L.)[J]. Molecular Biology Reports, 2019, 46(2): 2327-2353.
[40] GUO C, LI H, XIA X, et al. Functional and evolution characterization of SWEET sugar transporters in Ananascomosus[J].? Biochemical and Biophysical Research Communications, 2018, 496(2): 407-414.
[41] HU W, HUA X, ZHANG Q, et al.? New insights into the evolution and functional divergence of the SWEET family in Saccharum based on comparative genomics[J]. BMC Plant Biology, 2018, 18(1): 1-20.
[42] LI H, LI X, XUAN Y, et al.? Genome wide identification and expression profiling of SWEET genes family reveals its role during Plasmodiophorabrassicae-induced formation of clubroot in Brassica rapa[J].? Frontiers in Plant Science, 2018, 9: 207.
[43] WANG L, YAO L, HAO X, et al.? Tea plant SWEET transporters: expression profiling, sugar transport, and the involvement of CsSWEET16 in modifying cold tolerance in Arabidopsis[J].? Plant Molecular Biology, 2018, 96(6): 577-592.
[44] DOIDY J, VIDAL U, LEMOINE R. Sugar transporters in Fabaceae, featuring SUT MST and SWEET families of the model plant Medicago truncatula and the agricultural crop Pisumsativum[J].? PLoS ONE, 2019, 14(9): e0223173.
[45] LIU H T, LYU W Y, TIAN S H, et al. The SWEET family genes in strawberry: identification and expression profiling during fruit development[J].? South African Journal of Botany, 2019, 125: 176-187.
[46] XIE H, WANG D, QIN Y, et al. Genome-wide identification and expression analysis of SWEET gene family in Litchi chinensis reveal the involvement of LcSWEET2a/3b in early seed development[J].? BMC Plant Biology, 2019, 19(1): 1-13.
[47] ZHANG W, WANG S, YU F, et al. Genome-wide characterization and expression profiling of SWEET genes in cabbage (Brassica oleracea var. capitata L.) reveal their roles in chilling and clubroot disease responses[J].? BMC Genomics, 2019, 20(1): 1-16.
[48] GENG Y, WU M, ZHANG C. Sugar transporter ZjSWEET2.2 mediates sugar loading in leaves of Ziziphusjujubamill[J]. Frontiers in Plant Science, 2020, 11: 1081.
[49] JIANG S, BALAN B, ASSIS R D A, et al. Genome-wide profiling and phylogenetic analysis of the SWEET sugar transporter gene family in walnut and their lack of responsiveness to Xanthomonas arboricolapv. juglandis infection[J].? International journal of molecular sciences, 2020, 21(4): 1251.
[50] ZHANG L, WANG L, ZHANG J, et al. Expression and localization of SWEETs in Populus and the effect of SWEET7 overexpression in secondary growth[J].? Tree Physiology, 2021, 41(5): 882-899.
[51] ZHANG R, NIU K, MA H. Identification and expression analysis of the SWEET gene family from Poapratensis under abiotic stresses[J].? DNA Cell Biology, 2020, 39(9): 1606-1620.
[52] LIN Q, ZHONG Q, ZHANG Z. Identification and functional analysis of SWEET gene family in Averrhoa carambola L. fruits during ripening[J].? PeerJ, 2021, 9:e11404.
[53] ZHANG X, WANG S, REN Y, et al. Identification, Analysis and Gene Cloning of the SWEET Gene Family Provide Insights into Sugar Transport in Pomegranate (Punicagranatum)[J].? International Journal of Molecular Sciences, 2022, 23(5): 2471.
[54] DU Y L, LI W J, GENG J, et al. Genome-wide identification of the SWEET gene family in Phaseolus vulgaris L. and their patterns of expression under abiotic stress[J].? Journal of Plant Interactions, 2022, 17(1): 390-403.
[55] CHEN HY, HUH JH, YU YC, et al. The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection[J].? The Plant Journal, 2015, 83(6): 1046-1058.
[56] LIU X, ZHANG Y, YANG C, et al. AtSWEET4, a hexose facilitator, mediates sugar transport to axial sinks and affects plant development[J].? Scientific Reports,? 2016, 6(1): 1-12.
[57] WANG J, YU Y C, LI Y, et al. Hexose transporter SWEET5 confers galactose sensitivity to Arabidopsis pollen germination via a galactokinase[J].? Plant Physiology, 2022, 189(1): 388-401.
[58] SUN MX, HUANG XY, YANG J, et al. Arabidopsis RPG1 is important for primexine deposition and functions redundantly with RPG2 for plant fertility at the late reproductive stage[J].? Plant Reproduction, 2013, 26(2): 83-91.
[59] LIN I W, SOSSO D, CHEN L Q, et al. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9[J].? Nature, 2014, 508(7497): 546-549.
[60] FATIMA U, BALASUBRAMANIAM D, KHAN W A, et al. SWEET11 and SWEET12 transporters function in tandem to modulate sugar flux in Arabidopsis: An account of the underlying unique structure-function relationship[J].? BioRxiv, 2022.
[61] KANNO Y, OIKAWA T, CHIBA Y, et al.? AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes[J].? Nature Communications, 2016, 7(1): 1-11.
[62] CHEN L Q, LIN I W, QU X Q, et al. A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo[J].? The Plant Cell, 2015, 27(3): 607-619.
[63] ZHANG Z, ZOU L M, REN C, et al. VvSWEET10 Mediates Sugar Accumulation in Grapes[J].? Genes, 2019, 10(4): 255.
[64] YAOL N, DINGC Q, HAOX Y, et al. CsSWEET1a and CsSWEET17 Mediate Growth and Freezing Tolerance by Promoting Sugar Transport across the Plasma Membrane[J].? Plant and Cell Physiology, 2020, 61(9): 1669-1682.
[65] WALEROWSKI P, G?譈NDEL A, YAHAYA N, et al. Clubroot disease stimulates early steps of phloem differentiation and recruits SWEET sucrose transporters within developing galls[J].? Plant Cell, 2018, 30(12): 3058-3073.
[66] VALIFARD M, LE HIR R, M?譈LLER J, et al. Vacuolar fructose transporter SWEET17 is critical for root development and drought tolerance[J].? Plant Physiology, 2021, 187(4): 2716-2730.
收稿日期:2022 - 07 - 11;修訂日期:2022 - 12 - 09
基金項(xiàng)目:甘肅省農(nóng)業(yè)科學(xué)院生物育種專(zhuān)項(xiàng)(2022GAAS05);國(guó)家自然科學(xué)基金(31960523)。
作者簡(jiǎn)介:任凱麗(1993 — ),女,河北邯鄲人,研究實(shí)習(xí)員,研究方向?yàn)槲魈鸸闲缕贩N選育與栽培。Email: 2296802504@qq.com。
通信作者:程? ?鴻(1972 — ),男,甘肅會(huì)寧人,研究員,研究方向?yàn)榉肿佑N。Email: chengjn@yeah.net。