林聃 江敏 苗波 郭萌 石春林
水稻高溫?zé)岷δP脱芯考捌湓诟=ㄊ〉膽?yīng)用
林聃1, #江敏1, #苗波1郭萌1石春林2,*
(1福建農(nóng)林大學(xué) 農(nóng)學(xué)院/作物遺傳育種與綜合利用教育部重點(diǎn)實(shí)驗(yàn)室,福州 350002;2江蘇省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)信息研究所,南京 210014;*通信聯(lián)系人, email:912050823@qq.com)
【目的】通過(guò)研究高溫對(duì)水稻產(chǎn)量形成的影響,構(gòu)建水稻高溫?zé)岷δP?,旨在提高水稻高溫?zé)岷Φ姆烙蜑?zāi)損評(píng)估水平?!痉椒ā窟x用福建省種植的4個(gè)代表性品種,分別于早稻開(kāi)花期和灌漿期、中稻減數(shù)分裂期和開(kāi)花期,設(shè)置不同溫度水平T1(35℃)、T2(41℃)和高溫脅迫持續(xù)天數(shù)D1(3 d)、D2(7 d),以適宜環(huán)境條件為對(duì)照(CK),分析不同處理下水稻產(chǎn)量及其構(gòu)成因素的變化,并據(jù)此構(gòu)建高溫?zé)岷?duì)水稻產(chǎn)量影響的綜合模型。根據(jù)近20年氣象資料,利用模型對(duì)福建省四個(gè)水稻種植樣點(diǎn)的產(chǎn)量進(jìn)行災(zāi)損評(píng)估?!窘Y(jié)果】早稻在開(kāi)花期T2D2高溫處理時(shí),單株產(chǎn)量降幅最大,為60.8%;兩個(gè)品種的結(jié)實(shí)率降幅在T2D2處理下可達(dá)60%。灌漿期高溫對(duì)早稻單株產(chǎn)量影響較小,T2D2處理下為17.8%,兩個(gè)品種結(jié)實(shí)率和千粒重降幅最大值分別為11.6%和9.0%。中稻兩個(gè)品種受減數(shù)分裂期高溫影響后,在T2D2處理下的單株產(chǎn)量降幅最大可達(dá)43.6%,每穗粒數(shù)下降為17.4%,結(jié)實(shí)率所受影響明顯大于千粒重,降幅分別為30.8%和9.8%。中稻開(kāi)花期T2D2高溫處理對(duì)產(chǎn)量影響最大,單株產(chǎn)量降幅可達(dá)42.1%,結(jié)實(shí)率和千粒重受高溫影響后降幅最大分別為37.0%和5.7%。根據(jù)項(xiàng)目組研發(fā)的水稻發(fā)育期模型和本研究結(jié)果確定了4個(gè)供試品種的遺傳參數(shù),構(gòu)建了水稻關(guān)鍵發(fā)育期的高溫累積度時(shí)和高溫處理后災(zāi)損率之間的定量關(guān)系,進(jìn)而分別構(gòu)建了早稻和中稻的高溫?zé)岷δP?。?duì)4個(gè)水稻種植樣點(diǎn)進(jìn)行災(zāi)損模擬,發(fā)現(xiàn)各地?fù)p失率和氣象產(chǎn)量的時(shí)間變化規(guī)律正好相反,且中稻較早稻遭受高溫危害更為嚴(yán)重?!窘Y(jié)論】早稻開(kāi)花期高溫?zé)岷?duì)水稻產(chǎn)量的影響大于灌漿期,中稻減數(shù)分裂期高溫?zé)岷Φ挠绊懕乳_(kāi)花期嚴(yán)重。通過(guò)本研究確定的4個(gè)供試品種的遺傳參數(shù)在代表性樣點(diǎn)對(duì)生育期的模擬效果較好。構(gòu)建的早稻和中稻高溫?zé)岷δP蛯?duì)四個(gè)代表性樣點(diǎn)的災(zāi)損模擬效果較理想。
水稻;關(guān)鍵發(fā)育期;高溫?zé)岷?;產(chǎn)量損失率;模型
福建省稻谷產(chǎn)量占糧食總產(chǎn)量的72%,水稻的豐歉,對(duì)于糧食安全有著重大的影響[1]。近年來(lái),隨著全球氣候變暖,極端高溫事件發(fā)生的頻率上升,對(duì)福建省水稻生產(chǎn)的危害愈加嚴(yán)重[2]。福建省一年中氣溫最高的時(shí)段為7―8月,此時(shí)正值早稻的開(kāi)花期和灌漿期,以及中稻的減數(shù)分裂期和開(kāi)花期,這四個(gè)關(guān)鍵生育期對(duì)高溫最為敏感,且持續(xù)高溫天氣對(duì)產(chǎn)量影響最為嚴(yán)重[3]。關(guān)于高溫?zé)岷σ延械难芯浚蠖鄠?cè)重于高溫影響敏感時(shí)段、高溫影響表現(xiàn)及成因和高溫防御對(duì)策等。一般認(rèn)為幼穗分化期(或減數(shù)分裂期)、開(kāi)花期和灌漿期高溫對(duì)水稻每穗粒數(shù)、結(jié)實(shí)率、千粒重等均有不同程度的影響[4-6],但現(xiàn)有研究側(cè)重于建立水稻高溫?cái)∮P?,分析高溫?duì)結(jié)實(shí)率的定量影響。一些模型根據(jù)開(kāi)花期高溫與結(jié)實(shí)率(或不育率)的關(guān)系直接進(jìn)行產(chǎn)量訂正,并未考慮開(kāi)花過(guò)程、溫度日變化等規(guī)律[7-8]。石春林等將水稻穎花逐日開(kāi)花規(guī)律、適溫下逐日開(kāi)花結(jié)實(shí)率變化(強(qiáng)勢(shì)化和弱勢(shì)化結(jié)實(shí)率差異)、溫度日變化及花時(shí)等過(guò)程相結(jié)合,構(gòu)建了基于過(guò)程的水稻開(kāi)花期高溫?cái)∮P?,模型更符合水稻穎花發(fā)育特征,但模型中沒(méi)有考慮減數(shù)分裂期的高溫影響以及穗呼吸降溫(即穗溫和氣溫差異)[9]。van Oort在綜合考慮溫度日變化、穗呼吸降溫(穗溫與氣溫差異)、日開(kāi)花規(guī)律、高溫?cái)∮蜃拥鹊幕A(chǔ)上,構(gòu)建了水稻群體結(jié)實(shí)率模型,但模型中同樣沒(méi)有考慮減數(shù)分裂期高溫的影響[10]。目前廣為應(yīng)用的水稻生長(zhǎng)模型,如CERES-Rice、SIMRIW、RCSODS、ORYZA、RiceGrow等[11-18]對(duì)高溫?zé)岷^(guò)程的定量影響考慮較少?,F(xiàn)有模型雖部分考慮了開(kāi)花期高溫對(duì)結(jié)實(shí)率的影響,但在減數(shù)分裂期高溫對(duì)每穗粒數(shù)的影響、開(kāi)花期和灌漿期高溫對(duì)千粒重的影響等方面缺乏定量研究。無(wú)論是減數(shù)分裂期還是開(kāi)花期的高溫都不僅影響結(jié)實(shí)率,還會(huì)降低千粒重,這說(shuō)明高溫結(jié)束后,水稻植株的光合能力并沒(méi)有恢復(fù)到正常水平。因此,構(gòu)建不同生長(zhǎng)時(shí)期高溫對(duì)水稻產(chǎn)量構(gòu)成因子的定量模型,能更好地描述高溫過(guò)程對(duì)生長(zhǎng)和發(fā)育的影響,對(duì)完善現(xiàn)有水稻生長(zhǎng)模型具有重要作用。
本研究在控制試驗(yàn)和田間試驗(yàn)的基礎(chǔ)上,明確早稻開(kāi)花期和灌漿期以及中稻減數(shù)分裂期和開(kāi)花期高溫對(duì)產(chǎn)量構(gòu)成因子影響之間的內(nèi)在聯(lián)系,分析關(guān)鍵生育期高溫脅迫對(duì)水稻產(chǎn)量及其構(gòu)成因子的影響,構(gòu)建可模擬高溫對(duì)水稻生長(zhǎng)各過(guò)程影響的高溫?zé)岷δP?,進(jìn)而建立基于模型的水稻高溫?zé)岷?zāi)損評(píng)估方法,旨在完善已有的水稻生長(zhǎng)模型,提高福建省水稻高溫?zé)岷Φ姆烙蜑?zāi)損評(píng)估水平。
供試水稻品種由福建農(nóng)林大學(xué)農(nóng)學(xué)院作物遺傳與改良研究所提供,均為福建省推廣面積較大的品種。早稻為秈型三系雜交稻榕盛優(yōu)1131和T78優(yōu)2155;中稻為秈型兩系雜交稻禾兩優(yōu)676和秈型感溫三系雜交稻Ⅱ優(yōu)3301。因?yàn)樗酒贩N遺傳特性不隨種植地點(diǎn)發(fā)生改變,綜合考慮了試驗(yàn)設(shè)備、材料和田間管理人員的配備條件,試驗(yàn)選擇在江蘇省農(nóng)業(yè)科學(xué)院水稻試驗(yàn)基地(32°2′N(xiāo),118°52′E)進(jìn)行。于2021年4月17日播種早稻至育秧盤(pán),5月14日播種中稻至育秧盤(pán)。一個(gè)月后分別選取4個(gè)品種中長(zhǎng)勢(shì)基本一致的秧苗各300株,移栽至塑料桶(深度為21 cm;口徑為22 cm)中,共600桶。每桶栽植兩穴,單本插。試驗(yàn)前每桶裝水稻土(壤質(zhì)土,手握成團(tuán),松手即散)6.5 kg,復(fù)合肥4 kg(其中N、P、K元素含量各15%),移栽一周后每桶施用尿素0.35 g(作為蘗肥)。水稻移栽后保持桶內(nèi)水位高出土壤1.5 cm,試驗(yàn)期間其他農(nóng)藝管理措施按照常規(guī)進(jìn)行。
水稻進(jìn)入減數(shù)分裂期(劍葉完全抽出)、開(kāi)花期(全田50%以上植株開(kāi)花)、灌漿期(全田50%以上稻穗中部籽粒乳漿狀內(nèi)容物充滿穎殼)時(shí),將水稻放入人工氣候箱(RXZ-1000B型氣候箱,1.5 m×0.65 m×1.95 m,寧波江南儀器廠),進(jìn)行高溫脅迫處理[19]。設(shè)置2個(gè)高溫處理梯度,分別為T(mén)1(35℃)、T2(41℃),處理天數(shù)為D1(3 d)、D2(7 d)。處理期間每日高溫處理5小時(shí)(10:00―15:00),光照設(shè)置為1.2×104Lux。其余時(shí)間均在自然環(huán)境下生長(zhǎng)。每品種共計(jì)4個(gè)處理,每處理2桶,每桶2穴,共計(jì)4個(gè)重復(fù)。氣候箱中濕度設(shè)置取試驗(yàn)時(shí)段自然狀態(tài)下的均值,為85%。高溫處理結(jié)束后,將水稻放回自然環(huán)境繼續(xù)生長(zhǎng),成熟時(shí)進(jìn)行各因子測(cè)定。
高溫處理時(shí)間及持續(xù)天數(shù)見(jiàn)表1,高溫處理前后自然環(huán)境日最高溫度和日均溫變化如圖1。試驗(yàn)中部分時(shí)段自然環(huán)境最高溫超過(guò)了35℃,為了避免自然高溫對(duì)對(duì)照組(CK)的影響,試驗(yàn)在高溫處理的同時(shí)段(10:00―15:00)將其放入人工氣候箱中,該時(shí)段設(shè)置適宜水稻生長(zhǎng)溫度(30℃)。
表1 生育期高溫處理日期
圖1 水稻高溫處理時(shí)期自然環(huán)境日最高溫度與日平均溫度變化
Fig. 1. Changes of daily maximum temperature and daily mean temperature in natural environment during high temperature treatment.
將播種至出苗,出苗至穗分化,穗分化至抽穗及抽穗至成熟階段的發(fā)育期參數(shù)分別設(shè)為1、2、3、4,其計(jì)算公式如下:
式中為第日的生長(zhǎng)度日;T為第日的平均氣溫,、、分別為水稻發(fā)育的起點(diǎn)溫度、最適溫度和最高溫度,分別設(shè)為10℃、30℃、42℃[14]。
1.3.1 水稻生長(zhǎng)模型中參數(shù)的確定和檢驗(yàn)
本研究利用的水稻生長(zhǎng)模型為項(xiàng)目組自主研發(fā)構(gòu)建,其中階段劃分和參數(shù)設(shè)置參考ORYZA 3.0系統(tǒng)[16],將水稻發(fā)育期分成播種-出苗,出苗-穗分化、穗分化-抽穗,抽穗-成熟共4個(gè)階段。利用水稻發(fā)育期指數(shù)(DI)表示水稻的不同發(fā)育進(jìn)程[14],播種為0、出苗為1、穗分化為1.5、抽穗為2、成熟為3。此外,減數(shù)分裂期一般從抽穗前15 d左右開(kāi)始,此時(shí)為倒0.5葉齡,而抽穗期則在葉片完全抽出后10 d左右,結(jié)合葉齡動(dòng)態(tài)模型可知,減數(shù)分裂期對(duì)應(yīng)DI約為1.8。水稻發(fā)育期參數(shù)的計(jì)算方法參考CERES-Rice模型[15],利用逐日生長(zhǎng)度日(GDDi)進(jìn)行水稻發(fā)育進(jìn)程的模擬預(yù)測(cè)。根據(jù)試驗(yàn)實(shí)測(cè)數(shù)據(jù)確定水稻的發(fā)育期參數(shù)后,利用福建省2017―2020年代表性樣點(diǎn)的逐日氣象資料,以及當(dāng)?shù)氐膶?shí)際播期,模擬出水稻的生育期,再利用2017—2020年水稻區(qū)域試驗(yàn)實(shí)測(cè)資料對(duì)其進(jìn)行檢驗(yàn),檢驗(yàn)指標(biāo)采用國(guó)際上常用的相對(duì)均方根差(rRMSE),具體公式如下:
式中為觀測(cè)值,為模擬值,為樣本容量。小于10%說(shuō)明模擬效果很好,大于30%為較差。
1.3.2 高溫?zé)岷δP偷臉?gòu)建和災(zāi)損評(píng)估
根據(jù)不同高溫處理對(duì)水稻產(chǎn)量及其構(gòu)成因子的影響,以及高溫累積度時(shí)與產(chǎn)量構(gòu)成因子的定量關(guān)系,可進(jìn)行水稻關(guān)鍵生育期高溫導(dǎo)致的水稻產(chǎn)量損失估算,最終得出早稻和中稻的高溫?zé)岷δP汀?/p>
在高溫累積度時(shí)(SUMHT)和不同發(fā)育階段的各產(chǎn)量構(gòu)成因子間的定量關(guān)系的建立中,采用OriginPro9.0進(jìn)行Logistic曲線擬合[22],試驗(yàn)結(jié)果方差分析采用SPSS 25統(tǒng)計(jì)軟件進(jìn)行單因素方差分析,并用Duncan法進(jìn)行多重比較分析。
利用水稻高溫?zé)岷δP蛯?duì)福建省代表性樣點(diǎn)進(jìn)行災(zāi)損評(píng)估時(shí),為了消除歷史產(chǎn)量中的農(nóng)業(yè)技術(shù)發(fā)展的影響,采用氣象產(chǎn)量進(jìn)行評(píng)估,計(jì)算方法為:
2.1.1 早稻開(kāi)花期高溫對(duì)產(chǎn)量及其構(gòu)成因子的影響
由表2可知,兩品種高溫處理時(shí)長(zhǎng)越長(zhǎng)、溫度越高,水稻單株產(chǎn)量下降越明顯。高溫處理時(shí)長(zhǎng)為D1時(shí),榕盛優(yōu)1131受T1和T2的高溫影響,單株產(chǎn)量分別下降6.9%和44.2%,T78優(yōu)2155分別下降8.3%和41.3%;D2處理下,榕盛優(yōu)1131在兩種高溫脅迫下單株產(chǎn)量依次下降了22.0%和56.7%,T78優(yōu)2155依次下降23.4%和60.8%。高溫對(duì)兩品種的有效穗數(shù)和穗粒數(shù)無(wú)顯著影響,對(duì)結(jié)實(shí)率的影響則較大,與CK相比,榕盛優(yōu)1131的降幅為6.9%~64.5%,T78優(yōu)2155的結(jié)實(shí)率降幅為4.4%~58.7%。兩品種的千粒重僅在T2D2處理下顯著下降(0.05水平),此時(shí)榕盛優(yōu)1131下降7.7%,T78優(yōu)2155下降9.7%。
開(kāi)花期高溫對(duì)榕盛優(yōu)1131的影響小于T78優(yōu)2155,高溫脅迫對(duì)兩品種的結(jié)實(shí)率有顯著影響,而對(duì)單株穗數(shù)和每穗粒數(shù)無(wú)明顯影響,千粒重僅在T2D2處理下變化明顯。
產(chǎn)量各構(gòu)成因子隨SUMHT的變化均可用Logistic曲線擬合,并表現(xiàn)為負(fù)相關(guān)關(guān)系。
RSSPRTGWRGNP
=1+(1―1)/[1+(SUMHT/0)];
式中,RSSR為相對(duì)結(jié)實(shí)率,RTGW為相對(duì)千粒重,RGNP為相對(duì)每穗粒數(shù)。SUMHT為高溫處理下的高溫累積指數(shù),1、0、為擬合系數(shù)。
由于早稻開(kāi)花期,穗數(shù)和穗粒數(shù)已基本穩(wěn)定,高溫處理后變化不顯著(表2),所以此階段高溫脅迫下產(chǎn)量構(gòu)成因子中,僅考慮結(jié)實(shí)率和千粒重的改變。圖2給出了早稻開(kāi)花期高溫處理后相對(duì)結(jié)實(shí)率和相對(duì)千粒重隨SUMHT的變化曲線,表3為擬合系數(shù)和2值。
圖2 早稻相對(duì)結(jié)實(shí)率和相對(duì)千粒重隨高溫累積度時(shí)的變化
Fig. 2. Changes of relative seed setting rate and relative 1000-grain weight of early rice with accumulated degree-hours of high temperature.
表2 開(kāi)花期高溫對(duì)早稻產(chǎn)量及其構(gòu)成因素的影響
表中數(shù)值為平均值±標(biāo)準(zhǔn)差(=15);不同小寫(xiě)字母表示同列5個(gè)處理之間在0.05 水平上存在顯著差異(Duncan)。下同。
Values in the table are Mean ± SD(=15). Different lowercase letters indicated significant differences among five treatments in the same column at P<0.05 (Duncan). The same as blow.
2.1.2 早稻灌漿期高溫對(duì)產(chǎn)量及構(gòu)成因子的影響
早稻灌漿期高溫處理后,兩品種表現(xiàn)有所差異,榕盛優(yōu)1131的單株產(chǎn)量在T2處理下顯著下降,而T78優(yōu)2155在T1處理后顯著下降(表4)。高溫處理后的榕盛優(yōu)1131結(jié)實(shí)率顯著下降,降幅在1.5%~11.6%,T78優(yōu)2155高溫處理后的結(jié)實(shí)率則無(wú)顯著降低。灌漿期高溫對(duì)兩品種千粒重有顯著影響,溫度越高,處理時(shí)間越長(zhǎng),千粒重越低,榕盛優(yōu)1131受高溫影響千粒重降幅為1.1%~8.7%,T78優(yōu)2155降幅為0.9%~9.0%,兩品種千粒重總體受高溫影響程度相近。
以上結(jié)果表明,灌漿期高溫對(duì)早稻產(chǎn)量構(gòu)成因素的影響主要體現(xiàn)在結(jié)實(shí)率和千粒重上,兩品種單株產(chǎn)量受高溫影響程度不同,且灌漿期高溫處理對(duì)兩品種的有效穗數(shù)和每穗粒數(shù)亦無(wú)明顯影響。
圖3為早稻相對(duì)結(jié)實(shí)率和相對(duì)千粒重隨灌漿期高溫累積度時(shí)的變化。擬合曲線的系數(shù)1、0、及其2值見(jiàn)表3。
圖3 早稻相對(duì)結(jié)實(shí)率和相對(duì)千粒重隨高溫累積度時(shí)的變化
Fig. 3. Changes of relative seed-setting rate and 1000-grain weight of early rice with accumulated degree-hours of high temperature.
表3 早稻相對(duì)結(jié)實(shí)率和相對(duì)千粒重隨高溫累積度時(shí)變化的擬合系數(shù)及R2值
2.1.3 中稻減數(shù)分裂期高溫對(duì)產(chǎn)量及其構(gòu)成因子的影響
表5給出了減數(shù)分裂期高溫對(duì)中稻Ⅱ優(yōu)3301和禾兩優(yōu)676的產(chǎn)量及其構(gòu)成因素的影響。減數(shù)分裂期作為水稻生長(zhǎng)對(duì)溫度最敏感的重要生育期之一,高溫會(huì)嚴(yán)重影響穗的生長(zhǎng)發(fā)育。由表可知,溫度越高、處理時(shí)間越長(zhǎng),中稻單株產(chǎn)量下降越明顯。與CK相比,Ⅱ優(yōu)3301的單株產(chǎn)量降幅為5.7%~41.2%,禾兩優(yōu)676的單株產(chǎn)量降幅為8.1%~43.6%。減數(shù)分裂期高溫處理后,兩品種的穗粒數(shù)受高溫影響呈顯著下降趨勢(shì),同一溫度處理下,處理時(shí)長(zhǎng)越長(zhǎng),兩品種的每穗粒數(shù)越小,Ⅱ優(yōu)3301和禾兩優(yōu)676的每穗粒數(shù)降幅在T2D2處理下最大,分別可達(dá)15.2%和17.4%。此階段高溫脅迫對(duì)有效穗數(shù)無(wú)顯著影響,對(duì)結(jié)實(shí)率和千粒重影響顯著,與CK相比,Ⅱ優(yōu)3301和禾兩優(yōu)676的結(jié)實(shí)率降幅在T1D1處理下最小,分別為2.4%和0.6%,在T2D2處理下最大,分別為26.8%和30.8%;Ⅱ優(yōu)3301的千粒重受高溫影響后降幅在1.1%~8.8%,禾兩優(yōu)676的千粒重受高溫影響后降幅在0.6%~9.8%。
表4 灌漿期高溫對(duì)早稻產(chǎn)量及其構(gòu)成因素的影響
表5 減數(shù)分裂期高溫對(duì)中稻產(chǎn)量及其構(gòu)成因素的影響
以上表明,減數(shù)分裂期高溫脅迫對(duì)兩品種的有效穗數(shù)無(wú)顯著影響,對(duì)結(jié)實(shí)率的影響明顯大于穗粒數(shù)和千粒重,其中,Ⅱ優(yōu)3301的結(jié)實(shí)率受高溫影響程度較禾兩優(yōu)676小,兩品種穗粒數(shù)和千粒重受高溫影響程度相近。
圖4為中稻相對(duì)穗粒數(shù)、相對(duì)結(jié)實(shí)率和相對(duì)千粒重在灌漿期不同高溫處理下隨SUMHT的變化,擬合系數(shù)1、0、及其2值見(jiàn)表6。
2.1.4中稻開(kāi)花期高溫對(duì)產(chǎn)量及產(chǎn)量構(gòu)成因子的影響
表7給出了開(kāi)花期高溫對(duì)中稻Ⅱ優(yōu)3301和禾兩優(yōu)676的產(chǎn)量及其構(gòu)成因素的影響。由表可知,中稻單株產(chǎn)量與溫度總體呈負(fù)相關(guān)趨勢(shì),溫度越高,處理時(shí)長(zhǎng)越長(zhǎng),兩品種單株產(chǎn)量下降越明顯(表7)。與CK相比,Ⅱ優(yōu)3301開(kāi)花期高溫后單株產(chǎn)量降幅在15.2%~33.5%,禾兩優(yōu)676開(kāi)花期高溫后單株產(chǎn)量降幅在15.1%-42.1%,禾兩優(yōu)676單株產(chǎn)量T2處理后降幅較Ⅱ優(yōu)3301顯著。高溫處理對(duì)兩品種的穗數(shù)和穗粒數(shù)無(wú)顯著影響。兩品種結(jié)實(shí)率和千粒重受高溫影響后的下降程度接近。與CK相比,Ⅱ優(yōu)3301和禾兩優(yōu)676在T1D1處理下結(jié)實(shí)率降幅最小,依次為12.2%和9.2%,T2D2處理下則可達(dá)34.5%和37.0%;兩品種千粒重受開(kāi)花期高溫影響較小,T2D2處理下降幅最大依次為5.7%和5.2%。
以上結(jié)果說(shuō)明,開(kāi)花期高溫處理下,Ⅱ優(yōu)3301的單株產(chǎn)量受高溫影響程度小于禾兩優(yōu)676,在產(chǎn)量構(gòu)成因子中,對(duì)兩品種的穗數(shù)和穗粒數(shù)無(wú)顯著影響,兩品種結(jié)實(shí)率和千粒重受高溫影響后的下降程度總體相接近。圖5給出了中稻開(kāi)花期在高溫處理下相對(duì)結(jié)實(shí)率和相對(duì)千粒重隨高溫累積度時(shí)(SUMHT)的變化。擬合系數(shù)見(jiàn)表6。
圖4 中稻相對(duì)穗粒數(shù)、相對(duì)結(jié)實(shí)率和相對(duì)千粒重隨高溫累積度時(shí)的變化
Fig. 4. Changes of grain number per panicle, seed setting rate and 1000-grain weight of medium rice with accumulated degree-hours of high temperature.
表6 中稻相對(duì)穗粒數(shù)、相對(duì)結(jié)實(shí)率和相對(duì)千粒重隨高溫累積度時(shí)變化的擬合系數(shù)及R2值
2.2.1 福建省水稻高溫?zé)岷p失評(píng)估模型的構(gòu)建
根據(jù)早稻開(kāi)花期、灌漿期高溫對(duì)水稻結(jié)實(shí)率和千粒重影響的試驗(yàn)結(jié)果,以及中稻的減數(shù)分裂期和開(kāi)花期高溫對(duì)水稻穗粒數(shù)、結(jié)實(shí)率、千粒重影響的試驗(yàn)結(jié)果,確定了其定量關(guān)系,進(jìn)而得到了早稻和中稻不同發(fā)育期的高溫?zé)岷p失率(表8),由此可以得出早稻高溫?zé)岷?zāi)損評(píng)估模型為:
{1?{0.240 745+0.759 255/ [1+(/177.8929)2.639 475]}
×{0.913 085+0.086 915/[1+(/158.926)21.9629]}
×{0.923 68+0.076 32/[1+(/142.5078)56.669 24]}
×{0.8241+0.1759/[1+(/325.6452)2.28275]}}×100%;
圖5 中稻相對(duì)結(jié)實(shí)率和相對(duì)千粒重隨高溫累積度時(shí)的變化
Fig. 5. Changes of relative seed setting rate and relative 1000-grain weight of middle rice with accumulated degree-hours of high temperature.
表7 開(kāi)花期高溫對(duì)中稻產(chǎn)量及其構(gòu)成因素的影響
表8 早稻和中稻不同發(fā)育期的高溫?zé)岷p失率
Note:is the high temperature accumulation degree hour of each key growth period.
**表示在0.01統(tǒng)計(jì)水平上顯著。
Fig. 6. Comparison between simulated and observed values of rice growth period.
中稻高溫?zé)岷?zāi)損評(píng)估模型為:
{1?{0.807 36+0.192 64/[1+(x/145.8123)2.4753]}
×{0.667 71+0.332 29/[1+(/133.6789)2.356 205]}
×{0.896 48+0.103 52/[1+(/153.7705)2.861 98]}
×{0.563 335+0.436 665/[1+(/130.2914)1.735 66]}
×{0.945455+0.054545/[1+(/147.4864)34.53429]}}×100%;
其中,本模型中為不同生育期的高溫累積度時(shí)(SUMHT)。
2.2.2 水稻發(fā)育期參數(shù)的確定和檢驗(yàn)
根據(jù)方法1.2,利用試驗(yàn)實(shí)測(cè)資料,計(jì)算出了四個(gè)供試水稻品種的發(fā)育期參數(shù)(表9)。并利用水稻發(fā)育期模型和2017―2020年的福建省區(qū)域試驗(yàn)資料對(duì)參數(shù)進(jìn)行了驗(yàn)證(圖6),檢驗(yàn)所得相關(guān)系數(shù)和相對(duì)均方根差分別為0.89、3.81%,表明本研究確定的水稻發(fā)育期參數(shù)可靠合理。
2.2.3 福建省水稻高溫?zé)岷p失評(píng)估
根據(jù)水稻的發(fā)育期參數(shù)和高溫?zé)岷δP?,結(jié)合福建省近20年來(lái)的氣候資料,即可對(duì)歷史水稻產(chǎn)量進(jìn)行高溫?zé)岷?zāi)損評(píng)估。
本研究在福建省選取了2個(gè)早稻種植樣點(diǎn)(安溪和南安)和2個(gè)中稻種植樣點(diǎn)(大田和尤溪),對(duì)4個(gè)樣點(diǎn)近20年(2001―2020年)的氣象產(chǎn)量進(jìn)行災(zāi)損評(píng)估。為了去除種植技術(shù)等因素對(duì)產(chǎn)量的影響(圖7),對(duì)實(shí)際產(chǎn)量進(jìn)行了訂正。
根據(jù)水稻高溫?zé)岷?zāi)損模型模擬了福建省4個(gè)種植樣點(diǎn)近20年高溫?zé)岷?dǎo)致的水稻產(chǎn)量損失率,其時(shí)間變化趨勢(shì)見(jiàn)圖8。福建省安溪縣和南安市稻個(gè)早稻品種的平均高溫?fù)p失率基本在0%~15%之間,兩地在2015年早稻高溫?fù)p失率最高,分別為71.5%為69.2%。福建省中稻較早稻遭受高溫危害更為嚴(yán)重,大田縣兩個(gè)中稻品種的平均高溫?fù)p失率在40%~70%之間,2017年大田縣的高溫災(zāi)損率最高達(dá)69.2%,2012年最低為27.8%。尤溪縣兩個(gè)中稻品種的平均高溫?fù)p失率為50.0%~70.0%,2003年尤溪縣的高溫?fù)p失率最高,為72.8%,2015年最低,為47.1%。
從歷年氣象產(chǎn)量變化趨勢(shì)可以看出,其變化趨勢(shì)基本和高溫?zé)岷?zāi)損模型模擬結(jié)果相對(duì)應(yīng),模擬所得高溫災(zāi)損率較高的年份,對(duì)應(yīng)當(dāng)年的水稻氣象產(chǎn)量亦較低,且福建省中稻較早稻遭受高溫?zé)岷Ω鼮閲?yán)重。
圖7 4個(gè)代表性樣點(diǎn)近20年水稻單產(chǎn)變化趨勢(shì)
Fig. 7. Trends of rice yield at four representative sites in the recent 20 years.
圖8 4個(gè)代表性樣點(diǎn)近20年水稻高溫?zé)岷p失率和氣象產(chǎn)量的變化
Fig. 8. Heat-induced yield loss rate and meteorological yield in four representative sites in recent 20 years.
表9 福建省4個(gè)水稻品種的發(fā)育期品種參數(shù)
研究發(fā)現(xiàn),高溫對(duì)早稻開(kāi)花期和灌漿期及中稻開(kāi)花期產(chǎn)量構(gòu)成的影響主要體現(xiàn)在結(jié)實(shí)率和千粒重的下降,中稻減數(shù)分裂期產(chǎn)量構(gòu)成的影響則主要體現(xiàn)在穗粒數(shù)、結(jié)實(shí)率和千粒重的下降。高溫對(duì)水稻產(chǎn)量及其構(gòu)成因子的影響,主要是因?yàn)楦邷孛{迫加速葉片衰老、降低光合能力、減少光合產(chǎn)物總量且對(duì)籽粒的運(yùn)輸和積累產(chǎn)生不利影響,造成籽粒中干物質(zhì)積累速度和積累量降低,最終導(dǎo)致產(chǎn)量降低[5, 23-24]。具體而言,水稻減數(shù)分裂期高溫對(duì)穗粒數(shù)、結(jié)實(shí)率和千粒重均有明顯影響,對(duì)結(jié)實(shí)率的影響尤為嚴(yán)重。這是因?yàn)楦邷赜绊懛f花生長(zhǎng),導(dǎo)致花粉育性降低,從而致使穎花大量退化[25-27];開(kāi)花期高溫對(duì)產(chǎn)量的影響,主要表現(xiàn)為結(jié)實(shí)率的降低,其原因主要是水稻開(kāi)花期高溫易誘發(fā)小花不育,造成受精障礙,以致不能結(jié)實(shí)而嚴(yán)重減產(chǎn)[28-30];灌漿期高溫處理會(huì)導(dǎo)致水稻高溫逼熟現(xiàn)象,影響水稻同一穗上不同部位進(jìn)入灌漿的時(shí)間及灌漿速度,最終影響千粒重[31-33]。
高溫對(duì)產(chǎn)量構(gòu)成因子的定量影響,是構(gòu)建高溫?zé)岷δP偷年P(guān)鍵,也關(guān)系到模型模擬結(jié)果的準(zhǔn)確性?,F(xiàn)有的水稻生長(zhǎng)模型中,大多關(guān)注高溫對(duì)水稻產(chǎn)量的影響,而對(duì)產(chǎn)量構(gòu)成因子的定量影響,尤其是穗粒數(shù)的研究較少[4-8]。本研究對(duì)水稻減數(shù)分裂期、開(kāi)花期和灌漿期在高溫影響下,穗粒數(shù)、千粒重和結(jié)實(shí)率的變化,進(jìn)行了詳細(xì)的定量分析,并據(jù)此構(gòu)建了早稻和中稻四個(gè)關(guān)鍵發(fā)育期高溫對(duì)水稻產(chǎn)量影響的綜合損失因子模擬模型。據(jù)此即可根據(jù)福建省不同水稻種植點(diǎn)的歷史氣象資料,對(duì)水稻的高溫?zé)岷p失進(jìn)行定量評(píng)估。
通過(guò)控制試驗(yàn)構(gòu)建的模型對(duì)高溫?zé)岷Φ哪M應(yīng)具有通用性,可以通過(guò)參數(shù)調(diào)試,模擬不同地區(qū)不同品種的高溫?zé)岷?。將試?yàn)選擇在江蘇省農(nóng)科院水稻試驗(yàn)基地進(jìn)行,主要是考慮了項(xiàng)目組的設(shè)備條件和田間管理經(jīng)驗(yàn),而且水稻高溫?zé)岷δP蜆?gòu)建中所需獲取的作物品種參數(shù),由品種固有的遺傳特性決定,不會(huì)隨種植地點(diǎn)而改變;模型構(gòu)建是基于高溫和水稻災(zāi)損之間定量關(guān)系的建立,不同高溫脅迫處理均于人工氣候箱內(nèi)完成。利用本研究構(gòu)建的高溫?zé)岷δP蛯?duì)2017―2020年福建省區(qū)域試驗(yàn)資料進(jìn)行異地參數(shù)驗(yàn)證時(shí),也表明本研究確定的水稻發(fā)育期參數(shù)是可靠合理的(圖6);同時(shí),結(jié)合福建省近20年歷史氣候資料,利用模型對(duì)四個(gè)代表性樣點(diǎn)進(jìn)行高溫?zé)岷δM評(píng)估后,也與歷年氣象產(chǎn)量變化趨勢(shì)吻合(圖8),進(jìn)一步證明了模型的通用性和模擬結(jié)果的可靠性。
高溫對(duì)水稻同一生育期內(nèi)不同發(fā)育階段的影響程度存在一定差異,本試驗(yàn)在進(jìn)行高溫?zé)岷δP偷臉?gòu)建過(guò)程中,尚未精準(zhǔn)考慮每個(gè)生育期始期、盛期、末期受高溫的影響權(quán)重,故可能導(dǎo)致災(zāi)損率的模擬誤差。另外,根據(jù)本課題組已有的研究發(fā)現(xiàn),因植株自身的呼吸作用,水稻開(kāi)花期時(shí)穎花溫度略低于氣溫,最大可達(dá)3℃~4℃,且不同品種間此溫度差異表現(xiàn)亦不同[22],兩者的定量關(guān)系至今尚未見(jiàn)諸報(bào)道,故本研究中依舊用氣溫替代穎花溫度,可能導(dǎo)致最終模擬的高溫災(zāi)損率比實(shí)際情況偏高。另外,水稻遭受高溫?zé)岷Σ⒎莾H受溫度單因子影響,因此在高溫?zé)岷ρ芯恐羞€有待進(jìn)一步補(bǔ)充多因子脅迫的影響研究。
早稻在減數(shù)分裂期、開(kāi)花期和中稻在開(kāi)花期、灌漿期分別遭遇高溫后,早稻開(kāi)花期受影響程度大于灌漿期,中稻減速分裂期受影響程度大于開(kāi)花期。綜合而言,水稻減數(shù)分裂期和開(kāi)花期對(duì)高溫最敏感,灌漿期高溫對(duì)產(chǎn)量影響較小。高溫對(duì)早稻開(kāi)花期、灌漿期和中稻開(kāi)花期產(chǎn)量構(gòu)成的影響,主要體現(xiàn)在結(jié)實(shí)率和千粒重的下降;對(duì)中稻減數(shù)分裂期產(chǎn)量構(gòu)成的影響主要體現(xiàn)在每穗粒數(shù)、結(jié)實(shí)率和千粒重的下降。
利用本研究構(gòu)建的模型對(duì)福建省四個(gè)水稻種植樣點(diǎn)近20年的高溫?zé)岷M(jìn)行災(zāi)損模擬結(jié)果顯示,各樣點(diǎn)的災(zāi)損率歷史變化趨勢(shì)和該地氣象產(chǎn)量的變化趨勢(shì)基本對(duì)應(yīng),且各地災(zāi)損率最高和最低的年份,分別對(duì)應(yīng)了氣象產(chǎn)量最低和最高的年份,其中福建省中稻較早稻遭受高溫危害更為嚴(yán)重。
[1] 福建省統(tǒng)計(jì)局. 福建統(tǒng)計(jì)年鑒2021[M]. 福建: 福建省統(tǒng)計(jì)局, 2022.
Fujian Bureau of Statistics. Fujian Statistical Yearbook 2021[M]. Fujian: Fujian Bureau of Statistics, 2022. (in Chinese)
[2] 張婷, 程昌秀. 顧及空間集聚程度的中國(guó)高溫災(zāi)害危險(xiǎn)性評(píng)價(jià)[J]. 地球信息科學(xué)學(xué)報(bào), 2019, 21(6): 865-874.
Zhang T, Cheng C X. Assessment of China's high-temperature hazards: Accounting for spatial agglomeration[J]., 2019, 21(6): 865-874. (in Chinese with English abstract)
[3] 盧淑云. 高溫對(duì)水稻后期生長(zhǎng)發(fā)育的影響及防御技術(shù)措施[J]. 現(xiàn)代經(jīng)濟(jì)信息, 2009(2): 145.
Lu S Y. Effects of high temperature on late growth and development of rice and preventive measures[J]., 2009(2): 145. (in Chinese)
[4] 段驊, 佟卉, 劉燕清, 許慶芬, 馬駿, 王春敏. 高溫和干旱對(duì)水稻的影響及其機(jī)制的研究進(jìn)展[J].中國(guó)水稻科學(xué), 2019, 33(3): 206-218.
Duan H, Tong H, Liu Y Q, Xu Q F, Ma J, Wang C M. Research advances in the effect of heat and drought on rice and its mechanism[J]., 2019, 33(3): 206-218. (in Chinese with English abstract)
[5] 楊軍, 章毅之, 賀浩華, 李迎春, 陳小榮, 邊建民, 金國(guó)花, 李翔翔, 黃淑娥. 水稻高溫?zé)岷Φ难芯楷F(xiàn)狀與進(jìn)展[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2020, 31(8): 2817-2830.
Yang J, Zhang Y Z, He H H, Li Y C, Chen X R, Bian J M, Jin G H, Li X X, Huang S E. Current status and research advances of high-temperature hazards in rice[J]., 2020, 31(8): 2817-2830. (in Chinese with English abstract)
[6] 駱宗強(qiáng), 石春林, 江敏, 劉楊, 宣守麗, 金之慶. 孕穗期高溫對(duì)水稻物質(zhì)分配及產(chǎn)量結(jié)構(gòu)的影響[J]. 中國(guó)農(nóng)業(yè)氣象, 2016, 37(3): 326-334.
Luo Z Q, Shi C L, Jiang M, Liu Y, Xuan S L, Jin Z Q. Effect of high temperature on rice dry matter partition and yield component during booting stage[J]., 2016, 37(3): 326-334. (in Chinese with English abstract)
[7] Bouman B A M, Kropff M J, Tuong T P, Wopereis M C S, Berge H F M T, Laar H H V. ORYZA2000: Modeling Lowland Rice[M]. Los Banos, Philippines: International Rice Research Institute, 2001: 235.
[8] Sun Q, Zhao Y X, Zhang Y, Chen S N, Ying Q, Lü Z F, Chen X H, Wang D L. Heat stress may cause a significant reduction of rice yield in China under future climate scenarios[J]., 2021, 818: 151746.
[9] 石春林, 金之慶, 湯日圣, 鄭建初. 水稻高溫?cái)∮M模型[J]. 中國(guó)水稻科學(xué), 2007(2): 220-222.
Shi C L, Jin Z Q, Tang R S, Zheng J C. Model to Simulate high temperature-induced sterility of rice[J]., 2007(2): 220-222. (in Chinese with English abstract)
[10] van Dort O P A J, Saito K, Zwart S J, Shrestha, S. A simple model for simulating heat induced sterility in rice as a function of flowering time and transportational cooling[J]., 2014,156: 303-312.
[11] Irfan R N, Fahd R, Ashfaq A, Hafiz N A, Gerrit H. Climate change impacts and adaptations for fine, coarse, and hybrid rice using CERES-Rice[J]., 2020, 27(9): 9454-9464.
[12] Muhammad K A, Tayyaba H, Shahzad H, Muhammad H N. Modeling adaptation strategies against climate change impacts in integrated rice-wheat agricultural production system of Pakistan[J]., 2020, 17(7): 2522.
[13] Sudharsan D, Adinarayana J, Reddy D R, Sreenivas G, Ninomiya S, Hirafuji M, Kiura T, Tanaka K, Desai U B, Merchant S N. Evaluation of weather-based rice yield models in India[J]., 2013, 57(1): 107-123.
[14] 高亮之, 金之慶, 黃耀, 陳華, 李秉柏. 水稻栽培計(jì)算機(jī)模擬優(yōu)化決策系統(tǒng)[M]. 北京: 中國(guó)農(nóng)業(yè)科技出版社, 1992.
Gao L Z, Jin Z Q, Huang Y, Chen H, Li B B. Computer Simulation and Optimization Decision System for Rice Cultivation[M]. Beijing: China Agricultural Science and Technology Press, 1992. (in Chinese)
[15] Zhang T, Li T, Yang X G, Elisabeth S. Model biases in rice phenology under warmer climates[J]., 2016, 6: 27355.
[16] 郭建茂, 王星宇, 劉慎彬, 錢(qián)婭, 李羚. 基于稻田實(shí)測(cè)溫度的水稻模型ORYZA2000應(yīng)用[J]. 中國(guó)農(nóng)業(yè)氣象, 2020, 41(4): 211-221.
Guo J M, Wang X Y, Liu S B, Qian Y, Li L. Application of rice model ORYZA2000 based on measured temperature in rice fields[J]., 2020, 41(4): 211-221. (in Chinese with English abstract)
[17] Tang L, Zhu Y, Hannaway D, Meng Y, Liu L, Chen L, Cao W. RiceGrow: A rice growth and productivity model[J]., 2009, 57(1): 83-92.
[18] Horie T. Global warming and rice production in Asia: Modeling, impact prediction and adaptation[J]., 2019, 95(6): 211-245.
[19] 呂厚荃, 張艷紅, 馮明, 李秉柏, 劉安國(guó), 毛飛, 莊立偉, 李祎君, 吳門(mén)新. 水稻熱害氣象等級(jí): GB/T 37744―2019 [S]. 北京:國(guó)家市場(chǎng)監(jiān)督管理總局/國(guó)家標(biāo)準(zhǔn)化管理委員會(huì). 2019.
Lu H Q, Zhang Y H, Feng M, Li B B, Liu A G, Mao F, Zhuang L W, Li Y J, Wu M X. Meteorological Grades of Hot Damage to Rice: GB/T37744―2019[S]. Beijing: State Administration for Market Regulation/State Standardization Administration, 2019. (in Chinese)
[20] Shi P H, Tang L, Lin C B, Liu L L, Wang H H, Cao W X, Zhu Y. Modeling the effects of post-anthesis heat stress on rice phenology[J]., 2015, 177: 26-36.
[21] 石春林, 金之慶, 鄭建初, 湯日圣. 減數(shù)分裂期高溫對(duì)水稻穎花結(jié)實(shí)率影響的定量分析[J]. 作物學(xué)報(bào), 2008, 34(4): 627-631.
Shi C L, Jin Z Q, Zheng J C, Tang R S. Quantitative analysis on the effects of high temperature at meiosis stage on seed-setting rate of rice florets[J]., 2008, 34(4): 627-631. (in Chinese with English abstract)
[22] Tao F L, Zhang S, Zhang Z. Changes in rice disasters across China in recent decades and the meteorological and agronomic causes[J].2013, 13(4): 743-759.
[23] 陳升孛, 吳坤悌, 陳明, 趙蕾, 張亞杰. 海南早稻灌漿成熟期高溫?zé)岷?duì)千粒重的影響[J]. 中國(guó)農(nóng)學(xué)通報(bào), 2018, 34(27): 8-11.
Chen S B, Wu K T, Chen M, Chen M, Zhang Y J. High temperature damage at grain filling stage of early rice in Hainan: Effects on 1000-grain weight[J]., 2018, 34(27): 8-11. (in Chinese with English abstract)
[24] Muhammad S A, Muhammad F, Folkard A, Jagadish S V K, Prasad P V, Kadambot H M S. Thermal stress impacts reproductive development and grain yield in rice[J]., 2017, 115: 57-72.
[25] 曹云英, 段驊, 楊立年, 王志琴, 周少川, 楊建昌. 減數(shù)分裂期高溫脅迫對(duì)耐熱性不同水稻品種產(chǎn)量的影響及其生理原因[J]. 作物學(xué)報(bào), 2008, 34(12): 2134-2142.
Cao Y Y, Duan Y, Yang L N, Wang Z Q, Zhou S C, Yang J C. Effect of heat-stress during meiosis on grain yield of rice cultivars differing in heat-tolerance and its physiological mechanism[J]., 2008, 34(12): 2134-2142. (in Chinese with English abstract)
[26] 石春林, 金之慶, 湯日圣, 鄭建初. 水稻穎花結(jié)實(shí)率對(duì)減數(shù)分裂期和開(kāi)花期高溫的響應(yīng)差異[J]. 江蘇農(nóng)業(yè)學(xué)報(bào), 2010, 26(6): 1139-1142.
Shi C L, Jin Z Q, Tang R S, Zheng J C. Response difference of seed setting rate of rice florets at the meiosis and anthesis stages to high temperature[J]., 2010, 26(6): 1139-1142. (in Chinese with English abstract)
[27] Hu Q, Wang W, Lu Q, Huang J L, Peng S B, Cui K H. Abnormal anther development leads to lower spikelet fertility in rice (L.) under high temperature during the panicle initiation stage[J]., 2021, 21(1): 428.
[28] 宋有金, 吳超. 高溫影響水稻穎花育性的生理機(jī)制綜述[J]. 江蘇農(nóng)業(yè)科學(xué), 2020, 48(16): 41-48.
Song Y J, Wu C. Physiological mechanism of high temperature affecting fertility of rice spikelets: A review[J]., 2020, 48(16): 41-48. (in Chinese with English abstract)
[29] 陳建珍, 閆浩亮, 劉科, 穆麒麟, 朱開(kāi)典, 張運(yùn)波, 田小海. 大穗型水稻品種抽穗開(kāi)花期遭遇高溫后的結(jié)實(shí)表現(xiàn)[J]. 中國(guó)農(nóng)業(yè)氣象, 2018, 39(2): 84-91.
Chen J Z, Yan H L, Liu K, Mu Q L, Zhu K D, Zhang Y B, Tian X H. Seed-set of large-panicle rice cultivars suffered from high temperature at anthesis[J]., 2018, 39(2): 84-91. (in Chinese with English abstract)
[30] Mahmood A, Wang W, Ali I, Zhen F X, Raheel O, Liu B, Liu L L, Zhu Y, Cao W X, Tang L. Individual and combined effects of booting and flowering high- temperature stress on rice biomass accumulation[J]., 2021, 10(5): 1021.
[31] 褚麗敏, 趙洪利, 韓萬(wàn)海. 灌漿結(jié)實(shí)期高溫脅迫對(duì)水稻產(chǎn)量及品質(zhì)的影響[J]. 現(xiàn)代化農(nóng)業(yè), 2015(5): 1-2.
Chu L M, Zhao H L, Han W H. Effects of high temperature stress on yield and quality of rice during filling stage[J]., 2015(5): 1-2. (in Chinese)
[32] Shi P H, Zhu Y, Tang L, Chen J L, Sun T, Cao W X, Tian Y C. Differential effects of temperature and duration of heat stress during anthesis and grain filling stages in rice[J]., 2016, 132: 28-41.
[33] Park J R, Kim E G, Jang Y H, Kim K M. Screening and identification of genes affecting grain quality and spikelet fertility during high-temperature treatment in grain filling stage of rice[J]., 2021, 21(1): 263.
Research on Simulation Model of High Temperature Stress on Rice and Its Application in Fujian Province
LIN Dan1, #, JIANG Min1, #, MIAO Bo1, GUO Meng1, SHI Chunlin2, *
(1Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou 350002, China;2Institute of Agricultural Information, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;*Corresponding author, email: 912050823@qq. com)
【Objective】By studying the effects of high temperatureon rice yield formation, a simulation model of rice high temperature stress was developed, aiming to improve the prevention and disaster damage assessment level in rice under high temperaturestress.【Method】In this experiment, four representative varieties planted in Fujian Province were selected, the temperature treatments T1(35℃), T2(41 ℃) and the duration of high temperature stress D1(3 days) and D2(7 days) were set respectively at flowering stage and grain-filling stage of early rice, and during meiosis stage and flowering stage of middle rice, while the suitable environmental conditions were used as the control (CK) to analyze the changes of rice yield and its constituent factors under different stress treatments. A comprehensive simulation model for the effects of high temperature stress on rice yield was established. Based on the historical climatic data of the past 20 years, the model was used to assess yield loss caused by disasterat four rice planting sites in Fujian Province.【Results】The yield per plant of early rice suffer a severest loss of 60.8% as affected by T2D2treatment at the flowering stage. The seed setting rate of the two cultivars decreased by about 60% under T2D2treatment. High temperature at the grain-filling stage had the lowest impact on the yield per plant of early rice, which was 17.8% under T2D2treatment. The seed setting rate and 1000-grain weight of the two varieties had a maximum decrease of 11.6% and 9.0%, respectively. After being affected by high temperature at the meiosis stage, the yield per plant of middle rice decreased up to 43.6%, and the number of grains per panicle decreased by 17.4% under T2D2treatment. The effect on seed setting rate was significantly greater than that of 1000-grain weight, with decreases of 30.8% and 9.8%, respectively. High temperature T2D2treatment had the greatest effect on rice yield at flowering stage, and the yield per plant decreased by 42.1%, while the seed setting rate and 1000-grain weight decreased by 37.0% and 5.7%, respectively. According to the rice development period model developed by ourselves and the results of this experiment, the genetic parameters of the four varieties were determined, and the quantitative relationship between accumulated degree-hours of high temperature and the yield loss rate after various high temperature treatments was determined in the key development period of rice, and then the high temperature stress simulation model of early rice and middle rice were figured out respectively. The damage simulation of four rice planting sites showed that the temporal changes of the loss rate and meteorological yield was opposite, and the damage to middle rice was more serious than that of early rice.【Conclusion】The effect of high temperature stress on rice yield in early rice at the flowering stage was greater than that at the grain-filling stage. The effect of high temperature stress at the meiotic stage of middle rice was more serious than that at the flowering stage. The four sets of rice genetic parameters obtained in this experiment have good simulation effects on the growth period in the representative sample sites. The simulation results of high temperature stress for four representative sample sites observed by the high temperature stress simulation model of early rice and middle rice showed that the yield loss rate and the meteorological yield change corresponded well, which proves that the simulation effect of high temperature heat damage model is desirable.
rice; critical growth period; high temperature stress; yield loss rate; simulation model
10.16819/j.1001-7216.2023.220604
2022-06-04;
2022-08-05。
福建省社會(huì)發(fā)展引導(dǎo)性項(xiàng)目(2020Y0018);國(guó)家自然科學(xué)基金資助項(xiàng)目(31671574);江蘇省農(nóng)業(yè)科技自主創(chuàng)新資金資助項(xiàng)目[CX(21)1006]。