亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        生物炭和雙氰胺對設施蔬菜土壤溫室氣體排放的影響

        2023-05-17 06:57:32宋博影郭艷杰王文贊呂澤楠趙宇晴柳鷺張麗娟
        中國農(nóng)業(yè)科學 2023年10期
        關鍵詞:施氮硝化通量

        宋博影,郭艷杰, 4,王文贊,呂澤楠,趙宇晴,柳鷺,張麗娟,3

        生物炭和雙氰胺對設施蔬菜土壤溫室氣體排放的影響

        1河北農(nóng)業(yè)大學資源與環(huán)境科學學院,河北保定 071001;2河北省農(nóng)田生態(tài)環(huán)境重點實驗室,河北保定 071001;3河北省蔬菜產(chǎn)業(yè)協(xié)同創(chuàng)新中心,河北保定 071001;4華北作物改良與調控國家重點實驗室,河北保定 071001

        【目的】通過探究生物炭、雙氰胺(DCD)及二者聯(lián)合施用對設施土壤溫室氣體(N2O、CO2和CH4)排放的綜合效應,為設施蔬菜生產(chǎn)體系的溫室氣體減排和綠色發(fā)展提供科學依據(jù)?!痉椒ā恳栽O施小油菜(L.)田為研究對象,設置不施氮(CK)、傳統(tǒng)施氮(CN)、推薦施氮(RN)、推薦施氮+生物炭(RNB)、推薦施氮+DCD(RND)和推薦施氮+生物炭+DCD(RNBD)6個處理。分析不同處理下土壤溫室氣體的排放特征,以及排放強度(GHGI)和全球增溫潛勢(GWP)的差異?!窘Y果】與CN相比,推薦施氮條件下各處理(RN、RNB、RND和RNBD)的小油菜產(chǎn)量降低2.9%—29.3%,但在推薦施氮條件下,生物炭+DCD聯(lián)合施用處理(RNBD)則使小油菜產(chǎn)量增加了34.4%,生物炭和DCD在小油菜增產(chǎn)方面表現(xiàn)出協(xié)同效果(<0.05)。推薦施氮的各處理較傳統(tǒng)施氮(CN)降低了29.4%—76.5%的土壤N2O排放量,以RND效果最優(yōu),但對土壤CO2、CH4排放影響不大;與CN相比,推薦施氮的各處理總GWP有所降低,降低幅度為4.3%—51.2%,以RND減排效果最優(yōu);就GHGI而言,各推薦施氮處理間差異則不顯著(>0.05)?!窘Y論】相同尿素施用量條件下,推薦施氮配施生物炭或雙氰胺對小油菜產(chǎn)量影響不大,但二者聯(lián)合配施可顯著促進小油菜增產(chǎn),并可在一定程度上降低溫室氣體累積排放與全球增溫潛勢,但二者配合施用的效果并不優(yōu)于推薦施氮與雙氰胺配施的處理。

        生物炭;雙氰胺;設施菜田;小油菜(L.);溫室氣體排放強度;綜合增溫效應

        0 引言

        【研究意義】當前大氣中溫室氣體(N2O、CO2和CH4)濃度升高導致的全球氣候變暖的環(huán)境問題[1],一直受到國內外學術界的廣泛關注[2-3]。農(nóng)田生態(tài)系統(tǒng)是溫室氣體產(chǎn)生的主要來源,在全球大氣溫室氣體收支平衡中也扮演著重要角色[4]。據(jù)估計,全球每年大氣中有80%—90%的N2O、5%—20%的CO2和15%—30%的CH4來自土壤[5],農(nóng)田生態(tài)系統(tǒng)貢獻了全球25%的溫室氣體排放[6-7]。蔬菜在我國是僅次于糧食的重要農(nóng)產(chǎn)品,尤其是設施蔬菜栽培因可實現(xiàn)蔬菜全年供應,有助于提高蔬菜質量、生產(chǎn)規(guī)模和經(jīng)濟效益,促進農(nóng)業(yè)現(xiàn)代化[8-10],是目前最具活力的現(xiàn)代農(nóng)業(yè)生產(chǎn)形式,發(fā)展尤為迅猛?!笆濉逼陂g,我國設施蔬菜面積基本穩(wěn)定在410萬 hm2,年均增長率為1%左右[11],2019年,全國設施蔬菜產(chǎn)值超過9800億元,約占蔬菜產(chǎn)業(yè)總產(chǎn)值的1/2,占種植業(yè)總產(chǎn)值的19.1%[12]。因此設施蔬菜土壤溫室氣體排放問題也日益引起關注和重視。與糧食作物相比,蔬菜作物需肥量高[13],同時菜農(nóng)片面追求高產(chǎn)高收益大量施用肥料,尤其是氮肥的超量投入,從而加劇了土壤溫室氣體排放[14]。施用化學氮肥可以為土壤硝化和反硝化微生物提供充足的作用底物,顯著促進土壤N2O排放[15]。有研究表明,土壤N2O排放隨氮肥施用量的增加而增加[16-17],且二者呈指數(shù)關系[18]。據(jù)估計,設施蔬菜體系土壤N2O排放占全國農(nóng)田N2O排放的20%[19]?!厩叭搜芯窟M展】生物炭(biochar)是有機材料(作物秸稈、林果木枝條、糞便等)在缺氧或限氧環(huán)境中,經(jīng)高溫熱裂解后產(chǎn)生的固態(tài)產(chǎn)物,因其孔隙結構發(fā)達、比表面積大、吸附性能好的優(yōu)點,可作為土壤調理劑[20-21]。生物炭施入土壤可提升土壤有機碳庫儲量[22-24],從而緩解大氣CO2濃度升高[25-26]、改善土壤理化和微生物性質[27-30]、抑制N2O、CH4的產(chǎn)生和排放[31-33],同時也可為作物生長提供營養(yǎng)元素,提高產(chǎn)量和品質[34-36]。硝化抑制劑(nitrification inhibitor, NI)能夠有效抑制硝化作用,減緩銨態(tài)氮(NH4+-N)向硝態(tài)氮(NO3--N)轉化的速率,從而減少NO3--N的產(chǎn)生和累積,進而減少淋溶和反硝化損失[37-38]。GAO等[39]通過文獻薈萃分析得出,雙氰胺(dicyandiamide,DCD)可減少30.4%的N2O排放,3,4-二甲基吡唑磷酸鹽(3,4-dimethylpyrazole phosphate,DMPP)能減少60.1%的N2O排放。MENG等[40]通過分析硝化抑制劑與尿素施用對亞熱帶牧場的影響發(fā)現(xiàn),施用DCD和DMPP均可顯著降低N2O排放量,分別超過76%和67%。硝化抑制劑施用后,土壤中硝化細菌減少甚至消失,其使用效果在很大程度上取決于與NH4+-N接觸的有效量。DCD水溶性很高(13 ℃下水溶解度為22.6 g·L-1),在土體中移動性較強,在遇到強水流的情況下,很容易從NH4+-N中分離出來,這嚴重限制了其施用效果[41]。生物炭因具有多微孔、比表面積大、吸附力強、富含碳等理化特性[42],因此可以增強硝化抑制劑和NH4+-N的吸引和滯留[43],使其與NH4+-N之間的空間分離得到了緩解,接觸得到改善,從而提高硝化抑制劑的效果。由此,推測生物炭和硝化抑制劑在溫室氣體減排方面可能會表現(xiàn)出協(xié)同效果。同時有研究發(fā)現(xiàn)生物炭與硝化抑制劑聯(lián)合施用,可降低抑制劑在土壤中的釋放速率,降低氮素淋洗損失,從而對硝化抑制劑起到一定的保護作用[44]。如CHEN等[45]通過模擬試驗發(fā)現(xiàn),將新鮮的小麥秸稈生物炭施入土壤能吸附一定的硝化抑制劑,從而延長穩(wěn)定劑的作用時長,減少N2O的釋放。但也有研究發(fā)現(xiàn),生物炭與硝化抑制劑配施后增加了生物炭-土壤復合體對DMPP的吸附,進而降低了DMPP的作用效果[46]?!颈狙芯壳腥朦c】目前有關生物炭的研究多集中在其改善土壤理化性質[47-48]、固碳減排等方面[49-50],硝化抑制劑則多集中在減少氮素淋溶損失和N2O減排,提高氮肥利用率等方面。關于二者配施的研究結果尚且存在爭議?!緮M解決的關鍵問題】本文以設施蔬菜——小油菜(L.)為研究對象,采用盆栽試驗法研究生物炭與硝化抑制劑DCD配合施用對土壤溫室氣體(N2O、CO2和CH4)排放的影響,并結合小油菜產(chǎn)量評價其綜合效應,旨在為設施蔬菜生產(chǎn)溫室氣體減排提供科學的理論指導。

        1 材料與方法

        1.1 供試材料

        供試土壤取自河北廊坊永清縣小青垡村設施大棚(E 116°28'41",N 39°13'30",棚齡13年,前茬作物為番茄),0—20 cm耕層土壤基本理化性質為pH 7.75,NO3--N 13.10 mg·kg-1,NH4+-N 3.25 mg·kg-1,速效磷242.5 mg·kg-1,速效鉀563.06 mg·kg-1,有機質31.27 g·kg-1,容重1.32 g·cm-3。采集后的土壤樣品自然風干后過2 mm篩備用。

        供試氮肥為尿素(N,46%),磷肥為磷酸二氫鉀(P2O5,52%;K2O,34%),鉀肥為硫酸鉀(K2O,50%),供試硝化抑制劑為雙氰胺(DCD,N 67%),均為分析純試劑;生物炭類型為果木枝條類炭,pH 9.65,限氧條件下高溫熱解形成,純養(yǎng)分含量N:0.68 g·kg-1、P2O5:0.9 g·kg-1、K2O:6.3 g·kg-1。供試作物為小油菜,品種為四月慢,購自河北省保定市農(nóng)資科技市場。

        1.2 試驗設計

        共設6個處理,分別為CK(不施任何氮肥或硝化抑制劑)、傳統(tǒng)施氮(CN)、推薦施氮(RN)、推薦施氮+生物炭(RNB)、推薦施氮+DCD(RND)、推薦施氮+生物炭+DCD(RNBD),4次重復。傳統(tǒng)施氮為450 kg·hm-2,推薦施氮是結合當?shù)赝寥鲤B(yǎng)分含量,采用目標產(chǎn)量法確定在傳統(tǒng)施氮量基礎上減少17%,DCD用量為純氮量的15%(課題組前期田間試驗篩選得出),生物炭按照土壤重量的1%添加,各處理中氮素、生物炭和硝化抑制劑DCD投入量詳見表1。各處理磷肥和鉀肥施用量相同,純養(yǎng)分P2O5和K2O投入量均為150 kg·hm-2。生物炭攜帶的P2O5和K2O量,其余處理由磷酸二氫鉀與硫酸鉀補充。所有肥料作為底肥一次性施入。

        表1 各處理氮素、生物炭和DCD添加量

        試驗布置在河北農(nóng)業(yè)大學西校區(qū)日光溫室內,采用盆栽試驗,試驗開始時,稱取過篩后的風干土樣2.50 kg,同時加入上述處理中相應的肥料、生物炭和DCD,充分混勻后裝入直徑20 cm、高15 cm底部帶孔的塑料盆中,調節(jié)土壤含水量為田間持水量的60%,播撒小油菜種子,待全部出苗后定苗,每盆定苗5株。生長期間用去離子水澆灌,各處理除氮肥、生物炭和DCD施用量不同外,其他田間管理措施一致,小油菜成熟后收獲取樣。

        1.3 樣品采集與測定

        1.3.1 氣體樣品 采用靜態(tài)箱-氣相色譜法監(jiān)測土壤溫室氣體CO2、CH4和N2O排放。靜態(tài)箱分為底座和采氣罩兩部分。底座為不銹鋼材質,有2 cm凹槽放置采氣罩。采氣罩為泡沫材質箱體(50 cm×50 cm×50 cm),頂部安裝有金屬探頭,用于監(jiān)測箱內溫度,箱內側面安裝有1臺小型電風扇,用于正式采氣前混勻箱內空氣,箱體外包有隔熱材料。正式采樣時將整個盆栽置于靜態(tài)箱內,采氣罩扣置于底座,凹槽內用水密封,保證氣密性。肥料或生物炭(DCD)等施入后第2天起開始取樣,連續(xù)取樣7 d,之后根據(jù)澆水管理間隔3天取一次氣體樣,直至小油菜收獲。采樣時間為上午9:00 —11:00,扣置采氣罩后先將風扇打開,待箱體內空氣充分混勻后,分別于0、10、20 min時分3次用60 mL注射器取氣,每次30 mL,同時記錄箱體內溫度。氣體樣品采用氣相色譜(Agilent 7890A)分析測定溫室氣體CH4、CO2和N2O濃度。溫室氣體排放通量(F)的計算公式[51]如下:

        F= ρ×H×?C/?t×273/(273+T)×60 (1)

        式中,F(xiàn)表示CO2和CH4排放通量(mg·m-2·h-1)和N2O排放通量(μg·m-2·h-1);ρ表示標準狀態(tài)下CO2-C、CH4-C和N2O-N的密度(kg·m-3);H表示采樣箱高度(m);?C/?t表示氣體濃度變化率(μL·L-1·min-1);T表示采樣箱內溫度(℃)。未觀測日期土壤溫室氣體排放通量通過內插法來計算,之后將測定值和計算值逐日累加從而得出氣體排放累積量。

        1.3.2 植物樣品 小油菜收獲時,用不銹鋼剪刀沿地面剪取植株地上部,測定植株鮮重,并折算為每公頃產(chǎn)量。

        1.4 全球增溫潛勢(GWP)和溫室氣體排放強度(GHGI)

        1.4.1 GWP 農(nóng)田溫室效應采用全球增溫潛勢來衡量,采用聯(lián)合國政府間氣候變化專門委員會(IPCC)推薦的綜合增溫潛勢(global warming potential,GWP)計算3種溫室氣體在100年尺度的綜合增溫效應。由于單位質量CH4和N2O在百年尺度的全球增溫潛勢分別是CO2的34倍和298倍。因此溫室效應[52](GWP)可表示為:

        CO2GWP(kg·hm-2)=M(CO2)×44/12 (2)

        N2O GWP(kg·hm-2)=M(N2O)×44/28×298 (3)

        CH4GWP(kg·hm-2)=M(CH4)×16/12×34 (4)

        總GWP(kg·hm-2)=CO2GWP +N2O GWP+CH4GWP (5)

        式中,GWP為全球增溫潛勢(kg·hm-2);M(CO2)為小油菜生長期CO2累積排放量(kg·hm-2);M(N2O)為N2O生長期累積排放量(kg·hm-2);M(CH4)為小油菜生長期CH4累積排放量(kg·hm-2)。

        1.4.2 GHGI(greenhouse gas emission intensity) 單位產(chǎn)量的全球增溫潛勢公式[53]為:

        GHGI=GWP/Y (6)

        式中,GHGI為溫室氣體排放強度(kg·kg-1);Y為作物產(chǎn)量(kg·hm-2)。

        1.5 數(shù)據(jù)統(tǒng)計

        采用 Microsoft Excel 2020軟件進行數(shù)據(jù)和圖表整理及繪圖,SPSS 26進行統(tǒng)計分析。采用重復測量方差分析法分析處理、時間及二者交互作用對土壤溫室氣體排放通量的影響。采用單因素方差分析比較處理間的顯著性差異(LSD檢驗,<0.05)。

        2 結果

        2.1 小油菜產(chǎn)量

        圖1可以看出,施加氮肥可顯著提高小油菜產(chǎn)量。不施氮(CK)產(chǎn)量最低,僅為661.5 kg·hm-2,傳統(tǒng)施氮(CN)產(chǎn)量最高,為1 388.9 kg·hm-2。與CN相比,RN(1 003.5 kg·hm-2)、RNB(982.0 kg·hm-2)和RND(1 078.1 kg·hm-2)處理小油菜產(chǎn)量明顯降低22.4%—29.3%(<0.05),這可能與試驗小油菜生長期較短有關。生物炭與硝化抑制劑DCD聯(lián)合施用的RNBD處理(1 349.1 kg·hm-2)小油菜產(chǎn)量較CN雖有所降低,但差異不顯著(>0.05)。相同尿素施用量條件下,與RN處理相比,RNB和RND處理對小油菜產(chǎn)量的影響不大,但RNBD處理使小油菜產(chǎn)量增加了34.4%,差異達顯著性水平(<0.05),可見生物炭和DCD配合施用在小油菜增產(chǎn)方面表現(xiàn)出了協(xié)同效果。

        圖1 各處理小油菜產(chǎn)量

        2.2 土壤溫室氣體排放通量動態(tài)變化

        2.2.1 土壤N2O排放通量 由圖2可知,小油菜整個生長期內,CK處理土壤N2O排放通量一直保持在較低水平,且變幅不大,僅為3.0—8.5 μg·m-2·h-1,均值為5.77 μg·m-2·h-1。CN處理土壤N2O排放通量則呈現(xiàn)先升高后降低的趨勢,且在施肥后的第5天達到峰值,隨后23 d內迅速降低,在整個試驗期間內排放通量變幅較大,為4.2—121.3 μg·m-2·h-1,平均值為24.8 μg·m-2·h-1。RN與RNB處理土壤N2O排放通量呈現(xiàn)與CN相似的變化趨勢,分別為3.9—83.5和6.0—97.1 μg·m-2·h-1,平均值分別為14.4 和17.8 μg·m-2·h-1,較CN分別降低41.8%和28.2%(<0.01)。與CK處理相類似,RND、RNBD處理土壤N2O排放通量試驗期間變化不大,但較CN則明顯降低,整個試驗期間變化范圍分別為2.2—12.6和3.1—10.1 μg·m-2·h-1,平均值分別為6.2和7.0 μg·m-2·h-1,分別降低74.9%和71.7%,且差異達顯著水平(<0.05)。相同尿素施用量條件下,與RN相比,RNB處理對土壤N2O排放通量影響不大,但RND和RNBD處理使土壤N2O排放通量顯著降低,分別降低56.9%和51.3%(<0.05)。此外,由表2可知,不同處理、監(jiān)測時間以及二者交互作用對設施蔬菜土壤N2O排放通量有極顯著影響(<0.01)。

        圖2 各處理土壤N2O排放通量動態(tài)變化

        表2 各處理土壤溫室氣體排放通量重復測量方差分析

        2.2.2 土壤CO2排放通量 在整個試驗期間,各處理土壤CO2排放通量總體呈現(xiàn)先降低再升高,試驗的第3—4天達到排放高峰,隨后逐漸下降并趨于平緩的變化趨勢(圖3)。傳統(tǒng)施氮(CN)處理土壤CO2排放通量在第4天達到峰值,在整個試驗期間內排放通量變幅較大,為4.8—72.8 mg·m-2·h-1,平均值為17.9 mg·m-2·h-1。RN和RNB處理土壤CO2排放通量變化趨勢與CN相類似,分別為4.7—94.9和3.3—60.0 mg·m-2·h-1,平均值分別為18.6和14.8 mg·m-2·h-1。RND和RNBD處理土壤CO2排放通量變化范圍分別為2.4—42.0和3.0—24.6 mg·m-2·h-1,平均值分別為12.0和13.5 mg·m-2·h-1,較CN分別降低33.0%和24.6%,差異達顯著水平(<0.05)。相同尿素施用量條件下,與RN相比,RNB處理對土壤CO2排放通量影響不大,但RND、RNBD處理均可使土壤CO2排放通量顯著降低35.3%和27.1%(<0.05)。由表2可知,不同處理、監(jiān)測時間以及二者交互作用對設施蔬菜土壤CO2排放通量有極顯著影響(<0.01)。

        2.2.3 土壤CH4排放通量 由圖4可知,整個試驗期間,各處理土壤與大氣CH4的交換均表現(xiàn)為吸收,土壤是CH4的吸收“匯”。各處理土壤CH4排放通量變化趨勢相類似,呈現(xiàn)無規(guī)律波動,且波動性不大,變化范圍在-0.01—-0.06 mg·m-2·h-1,平均值在-0.02—0.06 mg·m-2·h-1。除RN處理土壤CH4排放通量與CK相比明顯增加外(<0.05),其余處理與CK之間無顯著性差異(>0.05)。由表2可知,不同處理、監(jiān)測時間以及二者交互作用對設施蔬菜土壤CH4排放通量有極顯著影響(<0.01)。

        圖3 各處理CO2排放通量動態(tài)變化

        圖4 各處理CH4排放通量動態(tài)變化

        2.3 土壤N2O、CO2和CH4累積排放量

        進一步分析整個試驗期間各處理土壤N2O、CO2和CH4累積排放量(圖5)。與CN相比,推薦或推薦基礎上配施硝化抑制劑、生物炭或二者配合施用均能顯著降低土壤N2O排放,降幅為29.4%—76.5%(0.05)。相同尿素施用量條件下,RNB處理對土壤N2O累積排放量影響不大(>0.05),RND和RNBD處理分別顯著降低土壤N2O累積排放量的60%和50%(<0.05)。

        整個小油菜生長期內,與CN相比,各施氮處理間土壤CO2累積排放量差異不顯著(>0.05)。相同尿素施用量條件下,與RN相比,RNB和RNBD處理對土壤CO2累積排放量影響不大(>0.05),但RND處理卻能顯著降低CO2累積排放量35.3%(<0.05)。

        整個試驗期間,各施氮處理對土壤CH4交換表現(xiàn)吸收狀態(tài),土壤CH4累積吸收量各處理間差異不顯著。

        圖5 各處理土壤溫室氣體累積排放量

        2.4 GWP和GHGI

        本研究中(表3),各處理土壤N2O GWP和CO2GWP均為正值,CH4GWP為負值,說明設施蔬菜生產(chǎn)體系是N2O和CO2的排放源,CH4的吸收匯。就N2O GWP而言,各推薦施氮處理與傳統(tǒng)施氮處理相比顯著降低32.5%—78.7%(<0.05)。相同尿素施用量條件下,與RN相比,RNB減排效果不明顯,但RND與RNBD處理N2O GWP均較RN分別顯著降低了59.9%、59.4%(<0.05),且以RND處理對N2O減排效果最優(yōu)。對于CO2GWP,各處理間差異不顯著(>0.05),范圍在229.2—440.4 kg·hm-2,以RND對CO2減排效果最優(yōu)。各處理CH4GWP范圍在-7.2—-12.8 kg·hm-2,且各處理間差異不顯著(>0.05)。可以看出,與CN相比,RN和RNB處理對總GWP的降低效果不大,但RND和RNBD處理則可明顯降低總GWP,降幅為39.5%—51.3%(<0.05)。相同尿素施用量條件下,RND和RNBD相較于RN可降低總GWP,范圍為36.8%—49.1%,以RND減排效果最優(yōu)。

        與CN相比,GHGI各推薦施氮處理間差異不顯著(>0.05),相同尿素施用量條件下,與RN相比,RND和RNBD處理則可顯著降低溫室氣體排放強度(<0.05),且降低率均達到51.1%。

        表3 各處理增溫潛勢和溫室氣體排放強度

        表中每列數(shù)字后的不同字母表示處理間差異顯著(<0.05)。下同

        Different lowercase letters indicate significant differences between treatments (<0.05). The same below

        3 討論

        3.1 生物炭與硝化抑制劑對小油菜產(chǎn)量的影響

        本試驗中,相同尿素施用量條件下,配施生物炭和配施DCD小油菜產(chǎn)量較推薦施氮處理(RN)變化不大,但RNBD處理小油菜產(chǎn)量較RN則顯著提高,但均顯著低于CN處理(圖1)。RN處理因減氮導致小油菜產(chǎn)量明顯降低;其次,本研究中選用小油菜品種正常生長周期為45—60 d,試驗后期因高溫導致小油菜長勢欠佳,只進行了28 d,對產(chǎn)量有一定影響。本研究中氮肥與生物炭配施并沒有顯著增加小油菜產(chǎn)量,而王湛等[34]的田間試驗結果顯示,添加8.5 t·hm-2生物炭(玉米芯550 ℃條件下制備)相對不添加生物炭菜心的周年產(chǎn)量增加59.1%,生物量增加36.7%,由于生物炭實際可供作物吸收利用的養(yǎng)分含量并不多,促進生長的原因可能是其加入土壤后,提高了土壤的吸附能力,增加了土壤保水保肥性能[54]。本研究試驗周期較短,且僅種植了一茬作物,短期的盆栽試驗和田間試驗條件存在很大的差異性,試驗結果還需要進一步的田間驗證。

        硝化抑制劑可以抑制土壤硝化微生物的活動,減緩銨態(tài)氮向硝態(tài)氮的轉化[55],但其降解速率一般受溫度的影響很大,較高溫度下抑制劑的降解速率明顯加快[56]。而本試驗于5月中旬布置,溫室大棚最高氣溫可達35 ℃,且持續(xù)時間較長,因此可能導致硝化抑制劑雙氰胺降解速率較快[56],小油菜產(chǎn)量表現(xiàn)上與單施尿素處理無明顯差異。然而,推薦施氮+生物炭+DCD處理對小油菜增產(chǎn)效果則優(yōu)于推薦施氮+生物炭和推薦施氮+DCD(圖1),這可能是由于DCD施用后抑制了銨態(tài)氮的轉化,而生物炭則可吸附并固持土壤中的銨態(tài)氮并在較長時間內為小油菜提供養(yǎng)分[57]。陳少毅等[58]使用生物質炭與硝化抑制劑配合施用,與氮肥配施DMPP處理相比,水稻籽粒產(chǎn)量顯著增加49.3%(>0.05)。但陳晨等[59]在菜地研究中也發(fā)現(xiàn)尿素配施生物炭和DCD比單施氮肥產(chǎn)量提高了134%,但與尿素只配施硝化抑制劑或生物炭相比,蔬菜產(chǎn)量無顯著差異。因此,生物炭與DCD配施對于提高作物產(chǎn)量作用有待進一步開展田間驗證試驗,同時其作用機理還有待深入探索。

        3.2 生物炭與硝化抑制劑對土壤溫室氣體排放的影響

        本研究結果表明設施菜田土壤是CH4的吸收“匯”,是N2O和CO2的排放源(圖5)。由于旱地農(nóng)田為好氧條件,缺乏淹水所導致的厭氧呼吸,而好氣性土壤可以對CH4有部分吸收[60],因此菜田土壤溫室氣體排放以N2O和CO2為主[61]。

        當CN處理施氮量為450 kg·hm-2時,土壤N2O累積排放最高達0.17 kg·hm-2,而推薦施氮(施氮量較CN減少17%)的各處理可減少29.4%—41.2%的N2O排放。農(nóng)田施氮是引起N2O排放增加的重要因素[62],有Meta分析表明,當施氮量超過作物需求時,N2O排放量呈指數(shù)增長[63]。因此,農(nóng)田N2O減排的關鍵是合理施氮[64]。此外,在合理施氮基礎上配施生物炭或硝化抑制劑也是減少土壤N2O排放的有效調控措施[65]。本研究結果表明,RND、RNBD處理較RN處理均可減少N2O累積排放量,降幅分別為60%、50%,但RND、RNBD處理間差異不顯著(>0.05)(圖5),可見推薦施氮基礎上聯(lián)合施用生物炭和硝化抑制劑(RNBD處理)效果并不優(yōu)于推薦施氮基礎上僅配施DCD(RND處理)。馬智勇等[61]通過室內靜態(tài)試驗發(fā)現(xiàn)雙氰胺和秸稈生物炭有效降低因氮肥施用導致的土壤N2O的排放通量和累積排放量,這可能是氮肥配施DCD有效抑制土壤NH4+-N向NO3--N轉化過程,不僅降低土壤中硝酸鹽淋失的風險[63],還降低N2O排放。朱云飛等[65]通過對熱帶土壤研究發(fā)現(xiàn),與單施氮肥相比,配施生物炭(花生殼在500 ℃下經(jīng)過厭氧熱解而成,C/N為 69.1,pH 9.74)可降低15.1%的N2O累積排放,配施硝化抑制劑可以減排68.3%,生物炭硝化抑制劑聯(lián)合施用可以減排69.6%,生物炭與硝化抑制劑表現(xiàn)出了協(xié)同效應??紤]到生物炭的種類[61]以及施用量、土壤質地[64]、硝化抑制劑種類[65]、植物種類[66]、土壤含水量[67]、土壤溫度[68]等這些因素都會影響土壤N2O的排放,因此生物炭與硝化抑制劑聯(lián)合施用在不同土壤環(huán)境條件下表現(xiàn)出的綜合減排效果也明顯不同。

        就CO2累積排放量而言,RND處理的累積排放量最低,推測一方面可能是硝化抑制劑選擇性抑制了土壤硝化微生物的活動,導致CO2排放相對降低[61],另一方面,硝化抑制劑DCD本身是一種緩效氮肥,含氮量達到66.7%,外源氮的添加抑制了土壤有機碳的礦化,有助于土壤碳的固定[69]。本試驗中,與CN和RN相比,RNB、RNBD處理在減排CO2方面均無顯著性差異,這可能是因為生物炭原材料為果木枝條類炭,相較于其他作物秸稈類生物炭,易分解有機碳含量低[70],對土壤微生物影響較小,進而導致對土壤CO2累積排放量影響不大,具體影響機制還有待進一步深入研究。

        3.3 生物炭與硝化抑制劑的綜合增溫效應

        進一步結合產(chǎn)量綜合分析各處理GWP和GHGI(表2)??梢钥闯?,設施蔬菜生產(chǎn)體系GWP主要由CO2的GWP決定,N2O和CH4的貢獻率較低。與CN相比,RN、RNB、RND能夠有效減少GWP和GHGI。相同尿素施用量條件下,與RN相比,RND、RNBD顯著降低了設施蔬菜GWP和GHGI(<0.05),這與李佳等[71]研究結果相似,但在本試驗中RND處理減排效果優(yōu)于RNBD,這可能是由于施加硝化抑制劑DCD后,有效減少了土壤CO2和N2O排放,進而使總GWP和GHGI有所降低。本研究中綜合來看,推薦施氮與DCD配施處理GWP較低,可以顯著減少因氮肥施用造成的溫室效應,且生物炭也表現(xiàn)出了一定的減排效果。但由于本試驗只是盆栽試驗且周期短,還需進一步開展田間條件下的驗證。

        4 結論

        本研究中,生物炭和DCD二者聯(lián)合施用則使小油菜產(chǎn)量顯著增加。設施菜田土壤表現(xiàn)為N2O和CO2的排放“源”,CH4的吸收“匯”。總GWP主要由CO2的GWP決定,N2O和CH4的GWP貢獻率較低。推薦施氮+DCD和推薦施氮+生物炭+DCD兩處理均顯著降低土壤N2O累積排放量及總GWP,后者的減排效果并不優(yōu)于前者,還有待在田間條件下進一步研究。

        [1] 韓彥軍. 全球氣候變暖對農(nóng)業(yè)的影響及成因分析與對策探討. 安徽農(nóng)業(yè)科學, 2011, 39(16): 9884-9885, 10006.

        HAN Y J. Influence of global warming on agriculture and its cause analysis, countermeasures. Journal of Anhui Agricultural Sciences, 2011, 39(16): 9884-9885, 10006. (in Chinese)

        [2] 熱伊萊·卡得爾, 伊卜拉伊木·阿卜杜吾普, 陳剛. 全球氣候變化及其影響因素研究進展. 農(nóng)業(yè)開發(fā)與裝備, 2020(9): 81-82.

        REYILAI KADEER, YIBULAYIMU ABUDUWUPU, CHEN G. Research progress on global climate change and its influencing factors. Agricultural Development & Equipments, 2020(9): 81-82. (in Chinese)

        [3] ?EN Z. Global warming threat on water resources and environment: a review. Environmental Geology, 2009, 57(2): 321-329.

        [4] 段鵬. 灌溉對農(nóng)田溫室氣體排放影響研究進展概述. 西藏農(nóng)業(yè)科技, 2021, 43(2): 72-76.

        DUAN P. Research progress on the effects of irrigation on greenhouse gas emissions from farmland. Tibet Journal of Agricultural Sciences, 2021, 43(2): 72-76. (in Chinese)

        [5] MELILLO J M, STEUDLER P A, ABER J D, NEWKIRK K, LUX H, BOWLES F P, CATRICALA C, MAGILL A, AHRENS T, MORRISSEAU S. Soil warming and carbon-cycle feedbacks to the climate system. Science, 2002, 298(5601): 2173-2176.

        [6] BURNEY J A, DAVIS S J, LOBELL D B. Greenhouse gas mitigation by agricultural intensification. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(26): 12052-12057.

        [7] TILMAN D, BALZER C, HILL J, BEFORT B L. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): 20260-20264.

        [8] 張懷志, 唐繼偉, 袁碩, 黃紹文. 津冀設施蔬菜施肥調查分析. 中國土壤與肥料, 2018(2): 54-60.

        ZHANG H Z, TANG J W, YUAN S, HUANG S W. Investigation and analysis of greenhouse vegetable fertilization in Tianjin and Hebei Province. Soil and Fertilizer Sciences in China, 2018(2): 54-60. (in Chinese)

        [9] 徐強, 胡克林, 李季, 韓卉, 楊合法. 華北平原不同生產(chǎn)模式設施蔬菜生命周期環(huán)境影響評價. 環(huán)境科學, 2018, 39(5): 2480-2488.

        XU Q, HU K L, LI J, HAN H, YANG H F. Life cycle environmental impact assessment on different modes of greenhouse vegetable production in the North China plain. Environmental Science, 2018, 39(5): 2480-2488. (in Chinese)

        [10] 王亞坤, 王慧軍. 我國設施蔬菜生產(chǎn)效率研究. 中國農(nóng)業(yè)科技導報, 2015, 17(2): 159-166.

        WANG Y K, WANG H J. Studies on protected vegetable production efficiency in China. Journal of Agricultural Science and Technology, 2015, 17(2): 159-166. (in Chinese)

        [11] 張真和, 馬兆紅. 我國設施蔬菜產(chǎn)業(yè)概況與“十三五”發(fā)展重點: 中國蔬菜協(xié)會副會長張真和訪談錄. 中國蔬菜, 2017(5): 1-5.

        ZHANG Z H, MA Z H. General situation of protected vegetable industry in China and development focus in the 13th Five-Year Plan—interview with Zhang Zhenhe, Vice President of China Vegetable Association. China Vegetables, 2017(5): 1-5. (in Chinese)

        [12] 梁寶忠. 我國設施農(nóng)業(yè)年產(chǎn)值達9800億元. 中國食品, 2019(18): 156.

        LIANG B Z. The annual output value of facility agriculture in China reaches 980 billion yuan. China Food, 2019(18): 156. (in Chinese)

        [13] 劉志杰, 郭云峰, 鄭育鎖, 張波. 設施蔬菜測土配方施肥有關問題初探. 農(nóng)業(yè)環(huán)境與發(fā)展, 2010, 27(4): 28-31.

        LIU Z J, GUO Y F, ZHENG Y S, ZHANG B. Preliminary study on related problems of soil testing and formula fertilization for protected vegetables. Agro-Environment & Development, 2010, 27(4): 28-31. (in Chinese)

        [14] TI C P, LUO Y X, YAN X Y. Characteristics of nitrogen balance in open-air and greenhouse vegetable cropping systems of China. Environmental Science and Pollution Research, 2015, 22(23): 18508-18518.

        [15] 曹文超, 宋賀, 王婭靜, 覃偉, 郭景恒, 陳清, 王敬國. 農(nóng)田土壤N2O排放的關鍵過程及影響因素. 植物營養(yǎng)與肥料學報, 2019, 25(10): 1781-1798.

        CAO W C, SONG H, WANG Y J, QIN W, GUO J H, CHEN Q, WANG J G. Key production processes and influencing factors of nitrous oxide emissions from agricultural soils. Journal of Plant Nutrition and Fertilizers, 2019, 25(10): 1781-1798. (in Chinese)

        [16] ZHANG H H, HE P J, SHAO L M. N2O emissions from municipal solid waste landfills with selected infertile cover soils and leachate subsurface irrigation. Environmental Pollution, 2008, 156(3): 959-965.

        [17] 杜世宇, 薛飛, 吳漢卿, 鄒洪濤, 張玉玲, 張玉龍, 虞娜. 水氮耦合對設施土壤溫室氣體排放的影響. 農(nóng)業(yè)環(huán)境科學學報, 2019, 38(2): 476-484.

        DU S Y, XUE F, WU H Q, ZOU H T, ZHANG Y L, ZHANG Y L, YU N. Interactive effect of irrigation and nitrogen fertilization on greenhouse gas emissions from greenhouse soil. Journal of Agro- Environment Science, 2019, 38(2): 476-484. (in Chinese)

        [18] 夏龍龍, 顏曉元. 中國糧食作物生命周期生產(chǎn)過程溫室氣體排放的研究進展及展望. 農(nóng)業(yè)環(huán)境科學學報, 2020, 39(4): 665-672.

        XIA L L, YAN X Y. Research progress and prospect of greenhouse gas emissions from the life-cycle production of food crops in China. Journal of Agro-Environment Science, 2020, 39(4): 665-672. (in Chinese)

        [19] CUI Z L, YUE S C, WANG G L, ZHANG F S, CHEN X P. In-season root-zone N management for mitigating greenhouse gas emission and reactive N losses in intensive wheat production. Environmental Science & Technology, 2013, 47(11): 6015-6022.

        [20] 羅啟平, 邱婷. 生物炭基復合材料的制備以及污染水體控制應用研究進展. 江西化工, 2020, 36(6): 149-153.

        LUO Q P, QIU T. Research progress in the preparation of biochar based composites and the application of water pollution control. Jiangxi Chemical Industry, 2020, 36(6): 149-153. (in Chinese)

        [21] NELISSEN V, RüTTING T, HUYGENS D, STAELENS J, RUYSSCHAERT G, BOECKX P. Maize biochars accelerate short- term soil nitrogen dynamics in a loamy sand soil. Soil Biology & Biochemistry, 2012, 55: 20-27.

        [22] 黎嘉成, 高明, 田冬, 黃容, 徐國鑫. 秸稈及生物炭還田對土壤有機碳及其活性組分的影響. 草業(yè)學報, 2018, 27(5): 39-50.

        LI J C, GAO M, TIAN D, HUANG R, XU G X. Effects of straw and biochar on soil organic carbon and its active components. Acta Prataculturae Sinica, 2018, 27(5): 39-50. (in Chinese)

        [23] 高夢雨, 江彤, 韓曉日, 楊勁峰. 施用炭基肥及生物炭對棕壤有機碳組分的影響. 中國農(nóng)業(yè)科學, 2018, 51(11): 2126-2135. doi: 10.3864/j.issn.0578-1752.2018.11.010.

        GAO M Y, JIANG T, HAN X R, YANG J F. Effects of applying biochar-based fertilizer and biochar on organic carbon fractions and contents of brown soil. Scientia Agricultura Sinica, 2018, 51(11): 2126-2135. doi: 10.3864/j.issn.0578-1752.2018.11.010. (in Chinese)

        [24] 陳窈君, 張迪, 胡學玉, 張陽陽, 陳威, 鄒娟. 生物炭對農(nóng)田土壤-植物系統(tǒng)有機碳儲量的影響. 環(huán)境科學與技術, 2017, 40(11): 8-16.

        CHEN Y J, ZHANG D, HU X Y, ZHANG Y Y, CHEN W, ZOU J. Effects of biochar on organic carbon storage in farmland soil-plant system. Environmental Science & Technology, 2017, 40(11): 8-16. (in Chinese)

        [25] 袁海靜, 鄧桂森, 周順桂, 秦樹平. 生物炭的老化及其對溫室氣體排放影響的研究進展. 生態(tài)環(huán)境學報, 2019, 28(9): 1907-1914.

        YUAN H J, DENG G S, ZHOU S G, QIN S P. Biochar ageing and its effects on greenhouse gases emissions: a review. Ecology and Environmental Sciences, 2019, 28(9): 1907-1914. (in Chinese)

        [26] CHENG G, LIU T X, LI D F, DUAN L M, WANG G L. Effects of biochar and straw on greenhouse gas fluxes of corn fields in arid regions. Chinese Journal of Eco-Agriculture, 2019, 27(7): 1004-1014.

        [27] 孫再慶, 符菁, 徐曉云, 趙遠. 生物炭稻田施用下的土壤固碳減排效應及其微生物群落結構分析. 農(nóng)業(yè)與技術, 2021, 41(12): 36-43.

        SUN Z Q, FU J, XU X Y, ZHAO Y. Effect of soil carbon fixation and emission reduction under biochar application in paddy field and analysis of microbial community structure. Agriculture and Technology, 2021, 41(12): 36-43. (in Chinese)

        [28] 李怡安, 胡華英, 周垂帆. 生物炭對土壤微生物影響研究進展. 內蒙古林業(yè)調查設計, 2019, 42(4): 101-104.

        LI Y A, HU H Y, ZHOU C F. Research progress on the effect of biochar on soil microorganisms. Inner Mongolia Forestry Investigation and Design, 2019, 42(4): 101-104. (in Chinese)

        [29] 王彩云, 武春成, 曹霞, 賀字典, 曾曉玉, 姜濤. 生物炭對溫室黃瓜不同連作年限土壤養(yǎng)分和微生物群落多樣性的影響. 應用生態(tài)學報, 2019, 30(4): 1359-1366.

        WANG C Y, WU C C, CAO X, HE Z D, ZENG X Y, JIANG T. Effects of biochar on soil nutrition and microbial community diversity under continuous cultivated cucumber soils in greenhouse. Chinese Journal of Applied Ecology, 2019, 30(4): 1359-1366. (in Chinese)

        [30] 趙承森. 秸稈和生物炭對退化黑土有機碳庫和細菌群落的影響機制[D]. 哈爾濱: 東北農(nóng)業(yè)大學, 2020.

        ZHAO C S. The effects of straw and biochar on soil organic carbon pools and soil bacterial community in degraded black soil[D]. Harbin: Northeast Agricultural University, 2020. (in Chinese)

        [31] 向偉, 王雷, 劉天奇, 李詩豪, 翟中兵, 李成芳. 生物炭與無機氮配施對稻田溫室氣體排放及氮肥利用率的影響. 中國農(nóng)業(yè)科學, 2020, 53(22): 4634-4645. doi: 10.3864/j.issn.0578-1752.2020.22.010.

        XIANG W, WANG L, LIU T Q, LI S H, ZHAI Z B, LI C F. Effects of biochar plus inorganic nitrogen on the greenhouse gas and nitrogen use efficiency from rice fields. Scientia Agricultura Sinica, 2020, 53(22): 4634-4645. doi: 10.3864/j.issn.0578-1752.2020.22.010. (in Chinese)

        [32] HE C H, DONG W X, HU C S, LI J Z. Biochar’s effect on soil N2O consumption and the microbial mechanism. Chinese Journal of Eco-Agriculture, 2019, 27(9): 1301-1308.

        [33] 劉宏元, 張愛平, 王永生, 楊世琦, 邢磊, 楊正禮. 施用棉花秸稈生物質炭對華北平原農(nóng)田溫室氣體排放的影響. 中國農(nóng)業(yè)科技導報, 2019, 21(11): 121-129.

        LIU H Y, ZHANG A P, WANG Y S, YANG S Q, XING L, YANG Z L. Effects of cotton stalk biochar application on greenhouse gas emissions in the farmlands of North China plain. Journal of Agricultural Science and Technology, 2019, 21(11): 121-129. (in Chinese)

        [34] 王湛, 李銀坤, 王利春, 郭文忠, 徐志剛. 生物炭對有機菜心產(chǎn)量、品質及水分利用的影響. 農(nóng)業(yè)機械學報, 2018, 49(12): 273-280.

        WANG Z, LI Y K, WANG L C, GUO W Z, XU Z G. Effects of biochar on yield, quality and water utilization of organic flowering Chinese cabbage. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(12): 273-280. (in Chinese)

        [35] 鄭孟菲, 程利峰, 胡新喜, 秦玉芝, 何長征. 生物炭與不同用量氮肥配施對小白菜生長和品質的影響. 中國瓜菜, 2019, 32(4): 30-34.

        ZHENG M F, CHENG L F, HU X X, QIN Y Z, HE C Z. Effects of combined application of biochar and different amounts of nitrogen fertilizer on the growth and quality of pakchoi. China Cucurbits and Vegetables, 2019, 32(4): 30-34. (in Chinese)

        [36] 袁晶晶, 同延安, 盧紹輝, 袁國軍. 生物炭與氮肥配施對土壤肥力及紅棗產(chǎn)量、品質的影響. 植物營養(yǎng)與肥料學報, 2017, 23(2): 468-475.

        YUAN J J, TONG Y A, LU S H, YUAN G J. Effects of biochar and nitrogen fertilizer application on soil fertility and jujube yield and quality. Journal of Plant Nutrition and Fertilizers, 2017, 23(2): 468-475. (in Chinese)

        [37] 王靜, 王允青, 張鳳芝, 吳萍萍, 葉寅, 萬水霞, 呂國安, 郭熙盛. 脲酶/硝化抑制劑對沿淮平原水稻產(chǎn)量、氮肥利用率及稻田氮素的影響. 水土保持學報, 2019, 33(5): 211-216.

        WANG J, WANG Y Q, ZHANG F Z, WU P P, YE Y, WAN S X, Lü G A, GUO X S. Effects of urease/nitrification inhibitors on yield and nitrogen utilization efficiency of rice and soil nitrogen of paddy field in plain along the Huaihe River. Journal of Soil and Water Conservation, 2019, 33(5): 211-216. (in Chinese)

        [38] 周旋, 吳良歡, 董春華, 賈磊. 氮肥配施生化抑制劑組合對黃泥田土壤氮素淋溶特征的影響. 生態(tài)學報, 2019, 39(5): 1804-1814.

        ZHOU X, WU L H, DONG C H, JIA L. Effects of nitrogen fertilization combined with biochemical inhibitors on leaching characteristics of soil nitrogen in yellow clayey soil. Acta Ecologica Sinica, 2019, 39(5): 1804-1814. (in Chinese)

        [39] GAO J C, LUO J F, LINDSEY S, SHI Y L, SUN Z L, WEI Z B, WANG L L. Benefits and risks for the environment and crop production with application of nitrification inhibitors in China. Journal of Soil Science and Plant Nutrition, 2021, 21(1): 497-512.

        [40] MENG Y L, WANG J J, WEI Z, DODLA S K, FULTZ L M, GASTON L A, XIAO R, PARK J H, SCAGLIA G. Nitrification inhibitors reduce nitrogen losses and improve soil health in a subtropical pastureland. Geoderma, 2021, 388: 114947.

        [41] ZERULLA W, BARTH T, DRESSEL J, ERHARDT K, VON LOCQUENGHIEN K H, PASDA G, R?DLE M, WISSEMEIER A. 3, 4-Dimethylpyrazole phosphate (DMPP)–a new nitrification inhibitor for agriculture and horticulture. Biology and Fertility of Soils, 2001, 34(2): 79-84.

        [42] 張偉明, 修立群, 吳迪, 孫媛媛, 顧聞琦, 張鈜貴, 孟軍, 陳溫福. 生物炭的結構及其理化特性研究回顧與展望. 作物學報, 2021, 47(1): 1-18.

        ZHANG W M, XIU L Q, WU D, SUN Y Y, GU W Q, ZHANG H G, MENG J, CHEN W F. Review of biochar structure and physicochemical properties. Acta Agronomica Sinica, 2021, 47(1): 1-18. (in Chinese)

        [43] 殷全玉, 許希希, 孟曉楠, 劉國順, 張玉蘭, 王宏. 不同炭化溫度生物質炭對不同質地植煙土壤銨態(tài)氮含量的影響. 南京農(nóng)業(yè)大學學報, 2018, 41(5): 881-887.

        YIN Q Y, XU X X, MENG X N, LIU G S, ZHANG Y L, WANG H. Effects of biomass carbonized with different temperature on ammonium nitrogen content in different tobacco-planting soil texures. Journal of Nanjing Agricultural University, 2018, 41(5): 881-887. (in Chinese)

        [44] 張美芝, 耿煜函, 張薇, 林昕, 溫佳旭, 陳雪麗, 肖洋. 秸稈生物炭在農(nóng)田中的應用研究綜述. 中國農(nóng)學通報, 2021, 37(21): 59-65.

        ZHANG M Z, GENG Y H, ZHANG W, LIN X, WEN J X, CHEN X L, XIAO Y. The role of straw biochar in farmland: a review. Chinese Agricultural Science Bulletin, 2021, 37(21): 59-65. (in Chinese)

        [45] CHEN H, YIN C, FAN X P, YE M J, PENG H Y, LI T Q, ZHAO Y H, WAKELIN S A, CHU G X, LIANG Y C. Reduction of N2O emission by biochar and/or 3, 4-dimethylpyrazole phosphate (DMPP) is closely linked to soil ammonia oxidizing bacteria andI-N2O reducer populations. Science of the Total Environment, 2019, 694: 133658.

        [46] KEIBLINGER K M, ZEHETNER F, MENTLER A, ZECHMEISTER- BOLTENSTERN S. Biochar application increases sorption of nitrification inhibitor 3, 4-dimethylpyrazole phosphate in soil. Environmental Science and Pollution Research, 2018, 25(11): 11173-11177.

        [47] 陳溫福, 張偉明, 孟軍. 農(nóng)用生物炭研究進展與前景. 中國農(nóng)業(yè)科學, 2013, 46(16): 3324-3333. doi: 10.3864/j.issn.0578-1752. 2013. 16.003.

        CHEN W F, ZHANG W M, MENG J. Advances and prospects in research of biochar utilization in agriculture. Scientia Agricultura Sinica, 2013, 46(16): 3324-3333. doi: 10.3864/j.issn.0578-1752. 2013. 16.003. (in Chinese)

        [48] 吳昱. 施加生物炭對黑土區(qū)坡耕地土地生產(chǎn)力的影響[D]. 哈爾濱: 東北林業(yè)大學, 2019.

        WU Y. Influences of biochar on soil productivity of sloping farm land in black soil region[D]. Harbin: Northeast Forestry University, 2019. (in Chinese)

        [49] 何選明, 馮東征, 敖福祿, 王春霞. 生物炭的特性及其應用研究進展. 燃料與化工, 2015, 46(4): 1-3, 7.

        HE X M, FENG D Z, AO F L, WANG C X. Research on the characteristic and application of bio-carbon. Fuel & Chemical Processes, 2015, 46(4): 1-3, 7. (in Chinese)

        [50] 勾芒芒, 屈忠義, 王凡, 高曉瑜, 胡敏. 生物炭施用對農(nóng)業(yè)生產(chǎn)與環(huán)境效應影響研究進展分析. 農(nóng)業(yè)機械學報, 2018, 49(7): 1-12.

        GOU M M, QU Z Y, WANG F, GAO X Y, HU M. Progress in research on biochar affecting soil-water environment and carbon sequestration-mitigating emissions in agricultural fields. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(7): 1-12. (in Chinese)

        [51] 劉巧, 吉艷芝, 郭艷杰, 張麗娟, 張杰, 韓建. 水氮調控對葡萄園土壤溫室氣體排放及其增溫潛勢的影響. 中國農(nóng)業(yè)科學, 2019, 52(8): 1413-1424. doi: 10.3864/j.issn.0578-1752.2019.08.011.

        LIU Q, JI Y Z, GUO Y J, ZHANG L J, ZHANG J, HAN J. Effects of water and nitrogen regulation on greenhouse gas emissions and warming potential in vineyard soil. Scientia Agricultura Sinica, 2019, 52(8): 1413-1424. doi: 10.3864/j.issn.0578-1752.2019.08.011.(in Chinese)

        [52] 吳敏, 趙延偉, 馬陽, 彭正萍, 李迎春, 王艷群, 張培. 氮素調控對玉米氮素利用和溫室氣體排放的影響. 河北農(nóng)業(yè)大學學報, 2019, 42(5): 33-38.

        WU M, ZHAO Y W, MA Y, PENG Z P, LI Y C, WANG Y Q, ZHANG P. Effects of nitrogen regulations on maize yields and greenhouse gas emissions from soil. Journal of Hebei Agricultural University, 2019, 42(5): 33-38. (in Chinese)

        [53] 李金秋, 邵曉輝, 緱廣林, 鄧藝欣, 譚詩敏, 徐文嫻, 楊秋, 劉文杰, 伍延正, 孟磊, 湯水榮. 水肥管理對熱帶地區(qū)雙季稻田CH4和N2O排放的影響. 環(huán)境科學, 2021, 42(7): 3458-3471.

        LI J Q, SHAO X H, GOU G L, DENG Y X, TAN S M, XU W X, YANG Q, LIU W J, WU Y Z, MENG L, TANG S R. Effects of water and fertilization management on CH4and N2O emissions in double-rice paddy fields in tropical regions. Environmental Science, 2021, 42(7): 3458-3471. (in Chinese)

        [54] 許健. 生物炭對土壤水鹽運移的影響[D]. 楊凌: 西北農(nóng)林科技大學, 2016.

        XU J. Study on the influence of biochar experimental on the migration of soil water and salt[D]. Yangling: Northwest A & F University, 2016. (in Chinese)

        [55] 臧祎娜, 周曉麗, 解東友, 梁曉娜, 賈劍波, 王金垚, 張麗娟. 硝化抑制劑DCD和NP對溫室菜田土壤氮素轉化及N2O、CO2排放的影響. 江蘇農(nóng)業(yè)科學, 2018, 46(20): 333-337.

        ZANG Y N, ZHOU X L, XIE D Y, LIANG X N, JIA J B, WANG J Y, ZHANG L J. Effects of nitrification inhibitors DCD and NP on vegetable soil nitrogen transformation and N2O and CO2emissions in greenhouse. Jiangsu Agricultural Sciences, 2018, 46(20): 333-337. (in Chinese)

        [56] 孫志梅, 武志杰, 陳利軍, 馬星竹. 硝化抑制劑的施用效果、影響因素及其評價. 應用生態(tài)學報, 2008, 19(7): 1611-1618.

        SUN Z M, WU Z J, CHEN L J, MA X Z. Application effect, affecting factors, and evaluation of nitrification inhibitor: a review. Chinese Journal of Applied Ecology, 2008, 19(7): 1611-1618. (in Chinese)

        [57] 武麗君, 王朝旭, 張峰, 崔建國. 玉米秸稈和玉米芯生物炭對水溶液中無機氮的吸附性能. 中國環(huán)境科學, 2016, 36(1): 74-81.

        WU L J, WANG C X, ZHANG F, CUI J G. The adsorption characters of inorganic nitrogen in aqueous solution by maize straw-and corn cob-derived biochars. China Environmental Science, 2016, 36(1): 74-81. (in Chinese)

        [58] 陳少毅, 許超, 張文靜, 吳啟堂. 生物質炭與氮肥配施降低水稻重金屬含量的盆栽試驗. 農(nóng)業(yè)工程學報, 2014, 30(14): 189-197.

        CHEN S Y, XU C, ZHANG W J, WU Q T. Combined application of biochar and nitrogen fertilizers reducing heavy metals contents in potted rice planted in contaminated soil. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(14): 189-197. (in Chinese)

        [59] 陳晨, 王春隆, 周璐瑤, 吳玲玲, 張鈺婷, 熊正琴. 施用生物炭和硝化抑制劑對菜地N2O排放和蔬菜產(chǎn)量的影響. 南京農(nóng)業(yè)大學學報, 2017, 40(2): 287-294.

        CHEN C, WANG C L, ZHOU L Y, WU L L, ZHANG Y T, XIONG Z Q. Effects of biochar and nitrification inhibitor amendment on N2O emissions and vegetable yield under intensive vegetable production. Journal of Nanjing Agricultural University, 2017, 40(2): 287-294. (in Chinese)

        [60] 尚杰, 楊果, 于法穩(wěn). 中國農(nóng)業(yè)溫室氣體排放量測算及影響因素研究. 中國生態(tài)農(nóng)業(yè)學報, 2015, 23(3): 354-364.

        SHANG J, YANG G, YU F W. Agricultural greenhouse gases emissions and influencing factors in China. Chinese Journal of Eco-Agriculture, 2015, 23(3): 354-364. (in Chinese)

        [61] 馬智勇, 賈俊香, 謝英荷, 李廷亮, 白春雨. 硝化抑制劑和生物炭對菜地土壤N2O與CO2排放的影響. 山西農(nóng)業(yè)科學, 2019, 47(6): 1019-1022, 1055.

        MA Z Y, JIA J X, XIE Y H, LI T L, BAI C Y. Effects of nitrification inhibitor and biochar on N2O and CO2emissions from vegetable soil. Journal of Shanxi Agricultural Sciences, 2019, 47(6): 1019-1022, 1055. (in Chinese)

        [62] 趙苗苗, 張文忠, 裴瑤, 蘇悅, 宋楊. 農(nóng)田溫室氣體N2O排放研究進展. 作物雜志, 2013(4): 25-31.

        ZHAO M M, ZHANG W Z, PEI Y, SU Y, SONG Y. Research advances on N2O emission in agricultural soil. Crops, 2013(4): 25-31. (in Chinese)

        [63] 李玥, 巨曉棠. 農(nóng)田氧化亞氮減排的關鍵是合理施氮. 農(nóng)業(yè)環(huán)境科學學報, 2020, 39(4): 842-851.

        LI Y, JU X T. Rational nitrogen application is the key to mitigate agricultural nitrous oxide emission. Journal of Agro-Environment Science, 2020, 39(4): 842-851. (in Chinese)

        [64] 倪玉雪, 趙夢強, 周曉麗, 韓建, 張麗娟, 尹興. 硝化抑制劑對設施菜田土壤N2O和CO2排放及蔬菜產(chǎn)量品質的影響. 福建農(nóng)業(yè)學報, 2022, 37(3): 381-389.

        NI Y X, ZHAO M Q, ZHOU X L, HAN J, ZHANG L J, YIN X. Effects of nitrification inhibitors on N2O and CO2emissions of soil and yield and quality of greenhouse vegetables. Fujian Journal of Agricultural Sciences, 2022, 37(3): 381-389. (in Chinese)

        [65] 朱云飛, 張琪, 黃一倫, 冷有鋒, 陳淼, 范長華, 李勤奮. 生物炭與硝化抑制劑聯(lián)合施用對熱帶菜地土壤硝化過程及N2O排放的影響. 熱帶作物學報, 2021, 42(10): 3042-3048.

        ZHU Y F, ZHANG Q, HUANG Y L, LENG Y F, CHEN M, FAN C H, LI Q F. Effects of Co-application of biochar and nitrification inhibitor on soil nitrification and N2O emissions in tropical vegetable soil. Chinese Journal of Tropical Crops, 2021, 42(10): 3042-3048. (in Chinese)

        [66] 張秀君, 江丕文, 朱海, 董丹, 夏宗偉, 陳冠雄. 植物排放N2O和CH4的研究. 植物學報, 2012, 47(2): 120-124.

        ZHANG X J, JIANG P W, ZHU H, DONG D, XIA Z W, CHEN G X. Investigation of N2O and CH4emissions from plants. Chinese Bulletin of Botany, 2012, 47(2): 120-124. (in Chinese)

        [67] 張玉銘, 胡春勝, 張佳寶, 董文旭, 王玉英, 宋利娜. 農(nóng)田土壤主要溫室氣體(CO2、CH4、N2O)的源/匯強度及其溫室效應研究進展. 中國生態(tài)農(nóng)業(yè)學報, 2011, 19(4): 966-975.

        ZHANG Y M, HU C S, ZHANG J B, DONG W X, WANG Y Y, SONG L N. Research advances on source/sink intensities and greenhouse effects of CO2, CH4and N2O in agricultural soils. Chinese Journal of Eco-Agriculture, 2011, 19(4): 966-975. (in Chinese)

        [68] 鄭循華, 王明星, 王躍思, 沈壬興, 張文, 龔晏邦. 溫度對農(nóng)田N2O產(chǎn)生與排放的影響. 環(huán)境科學, 1997, 18(5): 1-5.

        ZHENG X H, WANG M X, WANG Y S, SHEN R X, ZHANG W, GONG Y B. Impacts of temperature on N2O production and Emission. Chinese Journal of Environmental Science, 1997, 18(5): 1-5. (in Chinese)

        [69] 謝立勇, 葉丹丹, 張賀, 郭李萍. 旱地土壤溫室氣體排放影響因子及減排增匯措施分析. 中國農(nóng)業(yè)氣象, 2011, 32(4): 481-487.

        XIE L Y, YE D D, ZHANG H, GUO L P. Review of influence factors on greenhouse gases emission from upland soils and relevant adjustment practices. Chinese Journal of Agrometeorology, 2011, 32(4): 481-487. (in Chinese)

        [70] SINGH B P, COWIE A L. Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil. Scientific Reports, 2014, 4(1): 1-9.

        [71] 李佳, 鄧鈞尹, 周偉, 孫麗英. 生物炭與硝化抑制劑對菜地綜合溫室效應的影響. 江蘇農(nóng)業(yè)學報, 2020, 36(5): 1205-1211.

        LI J, DENG J Y, ZHOU W, SUN L Y. Effects of biochar and nitrification inhibitor on the global warming potentials in vegetable field. Jiangsu Journal of Agricultural Sciences, 2020, 36(5): 1205-1211. (in Chinese)

        Effects of Biochar Combined with Dicyandiamide on Greenhouse Gases Emissions from Facility Vegetable Soil

        SONG BoYing1, 2, GUO YanJie1, 2, 4, WANG WenZan1, 2, Lü ZeNan1, 2, ZHAO YuQing1, 2, LIU Lu1, 2, ZHANG LiJuan1, 2, 3

        1College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071001, Hebei;2Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071001, Hebei;3Collaborative Innovation Center for Vegetable Industry of Hebei, Baoding 071001, Hebei;4State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, Hebei

        【Objective】This paper aimed to explore the comprehensive effects of biochar, dicyandiamide (DCD) and their combined application on the greenhouse gas (N2O, CO2and CH4) emissions from facility soil, so as to provide a scientific basis for reducing the greenhouse gas emissions and green development of facility vegetable production system. 【Method】 In this study, the facility vegetable production system was used as the research object, and a total of six treatments were set up, including no nitrogen application (CK), traditional nitrogen application (CN), recommended nitrogen application (RN), recommended nitrogen application+biochar(RNB), recommended nitrogen application + DCD (RND), and recommended nitrogen application+biochar+ DCD(RNBD). A pot experiment method was applied to analyze the effects of soil greenhouse gas emissions, and the difference in greenhouse gas intensity (GHGI) and global warming potential (GWP) under different treatments. 【Result】Compared with the CN treatment, the rape yield decreased by 2.9%-29.3% under the recommend nitrogen treatments (RN, RN, RND and RNBD). However, under the same nitrogen application rate, the rape yield increased by 34.4% in the treatment of recommend nitrogen combined with biochar and DCD (RNBD), indicating that biochar and DCD showed a synergistic effect on rape yield increase (<0.05). The recommend nitrogen treatments reduced the soil N2O emissions by 29.4%-76.5% in comparation with the CN treatment, especially the RND treatment showed the best effect. However, the recommend nitrogen treatments showed little effect on soil CO2and CH4emissions. Compared with the CN treatment, the total GWP under the recommended nitrogen treatments decreased by 4.3%-51.2%, and the RND treatment showed the best emission-reduction effect. In terms of GHGI, the difference among the recommended nitrogen treatments was not significant (>0.05), and the RND treatment also showed the best emission-reduction effect. 【Conclusion】Under the same nitrogen application rate, the application of biochar alone or DCD alone had little effect on rape yield, but the combination of biochar and DCD could significantly increase the rape yield. Additionally, the combination of biochar and DCD could reduce the cumulative greenhouse gas emissions and GWP, but it was not superior to single application of DCD in the facility vegetable field.

        biochar; DCD; facility vegetable field; rape (L.); greenhouse gas emissions intensity; global warming potential

        10.3864/j.issn.0578-1752.2023.10.010

        2022-04-13;

        2022-07-12

        河北省重點研發(fā)計劃(21326905D)、河北省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術體系蔬菜產(chǎn)業(yè)創(chuàng)新團隊項目(HBCT2018030206)

        宋博影,E-mail:bysong2022@163.com。通信作者郭艷杰,E-mail:guoyanjie928@126.com。通信作者張麗娟,E-mail:lj_zh2001@163.com

        (責任編輯 李云霞)

        猜你喜歡
        施氮硝化通量
        不同施氮水平對春玉米光合參數(shù)及產(chǎn)量的影響
        冬小麥田N2O通量研究
        MBBR中進水有機負荷對短程硝化反硝化的影響
        施氮水平對冬小麥冠層氨揮發(fā)的影響
        厭氧氨氧化與反硝化耦合脫氮除碳研究Ⅰ:
        緩釋型固體二氧化氯的制備及其釋放通量的影響因素
        化工進展(2015年6期)2015-11-13 00:26:29
        海水反硝化和厭氧氨氧化速率同步測定的15N示蹤法及其應用
        均勻施氮利于玉米根系生長及產(chǎn)量形成
        春、夏季長江口及鄰近海域溶解甲烷的分布與釋放通量
        施氮對不同土壤肥力玉米氮素吸收和利用的影響
        亚洲一二三四区免费视频| 一区二区人妻乳中文字幕| 亚洲一区二区三区亚洲| 蜜桃av噜噜一区二区三区免费| 久久精品一区二区三区蜜桃| 国产美女主播视频一二三区 | 手机在线观看亚洲av| 国产乱码一区二区三区精品| 国产一区二区三区四区五区加勒比| 亚洲人午夜射精精品日韩| 亚洲专区欧美| 国产精品白浆无码流出 | 日本高清视频在线一区二区三区| 精品国产一区二区三区毛片| 日韩精品人妻一区二区三区蜜桃臀 | 国产亚洲综合另类色专区| 亚洲国产丝袜久久久精品一区二区| 亚洲精品白浆高清久久久久久| 国产成人精品午夜视频| 亚洲av日韩精品久久久久久| 日本亚洲欧美高清专区| 国产成社区在线视频观看| 日本国产一区在线观看| 人人做人人爽人人爱| 国产精品爽黄69天堂a| 久久精品视频在线看99| 亚洲一区爱区精品无码| 在线观看国产精品自拍| 国产一级二级三级在线观看av | 欧洲人妻丰满av无码久久不卡| 日本高清www午色夜高清视频 | 久久这黄色精品免费久| аⅴ天堂中文在线网| 任我爽精品视频在线播放| 国产三级在线视频播放| 久久蜜臀av一区三区| 黄片大全视频在线播放| 寂寞少妇做spa按摩无码| 色伦专区97中文字幕| 精品视频入口| 蜜桃视频免费在线视频|