趙尚超,王東坡,李向偉,方吉
(1.天津大學,天津,300350;2.中車齊齊哈爾車輛有限公司,齊齊哈爾,161002;3.大連交通大學,大連,116028)
焊接結構的主S-N 曲線法已經在焊接領域開展了廣泛應用,取得了很好的應用效果.該方法采用等效結構應力將不同接頭形式、厚度和加載模式的疲勞S-N 數(shù)據有效地統(tǒng)一起來,解決了S-N 曲線選取的困擾,同時由于采用與外載荷平衡的結構應力,所以也具有網格不敏感性等優(yōu)點[1-3].
ASME 標準中給出的主S-N 曲線法通常先采用典型工況計算單位外載荷下的等效結構應力,再乘以典型工況的載荷譜實現(xiàn)應力譜計算,最后結合主S-N 曲線法采用損傷疊加的方式完成壽命評估,該流程實際是一種準靜態(tài)計算流程[4].準靜態(tài)流程實施時,要將構件從系統(tǒng)中隔離出來,在構件的載荷傳遞接口部位施加單位載荷和約束,當結構承受動態(tài)載荷時,這種靜態(tài)平衡的處理方法與實際承載是存在一定差異的.另外,準靜態(tài)法要獲得典型工況載荷譜就需要對實測載荷進行工況分解,處理過程中容易導致載荷成分的丟失.以鐵路貨車車體疲勞評估為例,由于我國載荷譜的積累較少,通常采用美國AAR 標準中的載荷譜結合主S-N 曲線法開展車體設計階段的疲勞可靠性分析.由于載荷不一致性導致疲勞評估精度大打折扣,這與近年來發(fā)生的多起疲勞失效故障有很大關系,給制造企業(yè)和運營造成了較大的經濟損失[5-6].
2012 年鐵路貨車全尺寸車體疲勞試驗臺建成并投入使用后,為了獲得國內線路載荷,先后對中國通用干線、神華線、鷹夏線等線路開展了線路動態(tài)響應測試工作,取得了大量試驗數(shù)據,采用加速試驗方法和時域迭代的線路模擬方法形成了國內鐵路線路的臺架載荷數(shù)據[7].當開展臺架載荷數(shù)據應用研究時發(fā)現(xiàn),由于載荷數(shù)據是施加到試驗臺架作動器上的位移和力的時域曲線,是動態(tài)加載過程,傳統(tǒng)將車體隔離出來計算的準靜態(tài)分析流程無法使用該載荷數(shù)據.為了解決載荷數(shù)據加載問題,考慮將臺架模型作為車體邊界條件引入到車體仿真分析中,建立剛柔耦合分析系統(tǒng)實現(xiàn)復合工況的動應力計算,計算的時域應力能夠與試驗測試結果較好吻合[8-10].然而如何將剛柔耦合計算獲得的動應力計算過程轉化為動態(tài)結構應力計算過程呢,再采用主S-N 曲線法開展疲勞評估,這是值得思考的問題.
鑒于此,文中從模態(tài)疊加法的動力學理論入手思考該問題,基于振型向量的線性疊加計算位移思想,提出模態(tài)結構應力的疊加實現(xiàn)動態(tài)結構應力計算方法,并采用通用軟件進行程序模塊開發(fā),再通過實際工程應用驗證其合理性,模態(tài)結構應力法有效地拓寬主S-N 曲線疲勞預測方法的應用領域,為焊接結構的研究提供理論基礎.
大型結構的多自由的系統(tǒng),外載荷作用下的動力學方程為
式中:M為質量矩陣;C為阻尼矩陣;K為剛度矩陣;u(t)為隨時間變化的位移;f(t)為隨時間變化的外力.當采用模態(tài)疊加法計算時,首先采用模態(tài)集 Φ對動力學方程的位移第一次坐標變換,即
式中:{φ}為模態(tài)集 Φ各階振型;ξi(t)為隨時間變化的模態(tài)坐標.
將式(2) 帶入式(1) 中,得到解耦的動力學方程,即
對解耦后的振動方程式(3)進行求解,可獲得模態(tài)坐標ξ 的時域歷程,將模態(tài)坐標帶入式(2)可以獲得隨時間變化的位移值u(t).
主S-N 曲線法中的結構應力與外載荷平衡,與之對應的是有限元分析中的節(jié)點力.目前,多數(shù)剛柔耦合的動力學分析軟件是無法直接獲得動態(tài)節(jié)點力的,根據有限元的基本理論,可以將動力學計算后的u(t)與單元剛度矩陣Ke相乘獲得動態(tài)節(jié)點力,再通過動態(tài)節(jié)點力計算動態(tài)結構應力.操作時發(fā)現(xiàn),這個流程操作復雜,計算量大,程序也不易實現(xiàn).
模態(tài)振型向量的疊加既然能夠獲得節(jié)點位移,那么模態(tài)結構應力疊加是否能獲得動態(tài)結構應力.由于模態(tài)集 Φ中的各階振型是結構的固有屬性,是不隨時間變化的.在 Φ中的第i振型 {φi}由于節(jié)點位移相對變化會產生節(jié)點力{Fi}和{Mi},既然振型是結構的固有屬性,很顯然模態(tài)節(jié)點力也是常數(shù)矩陣,其不隨時間變化的,那么全局坐標系下的模態(tài)節(jié)點力與模態(tài)振型向量之間就存在線性關系,所以線性疊加原理能夠在結構應力計算時使用[11].
模態(tài)計算完成后即可獲得模態(tài)節(jié)點力,需要將結構總體直角坐標系下求解的焊趾處模態(tài)節(jié)點力向量變換到焊線局部坐標系下,坐標變換矩陣T可以通過有限元網格模型的節(jié)點坐標算出,得到變換后的焊線局部坐標系下的力向量局部焊線坐標系y′始終與焊線的切向方向垂直,x′方向與焊線相切.
基于節(jié)點力向量及相鄰節(jié)點距離,利用長度等效矩陣L,將每一階模態(tài)焊線局部坐標軸y′方向的節(jié)點力轉化為該方向單元邊上的線載荷fiy,將每一階模態(tài)焊線局部坐標軸x′方向的節(jié)點力轉化為該方向單元邊上的線載荷mix.
在已知焊趾處各節(jié)點線力和線彎矩情況下,采用結構應力計算公式,可以得第i階模態(tài)對應焊線上得模態(tài)結構應力向量為
將動力學計算的模態(tài)坐標時間歷程ξi(t)與式(5)中模態(tài)結構應力q0進行疊加,即可獲得動態(tài)結構應力,即
對復合工況加載下獲得的動態(tài)結構應力進行統(tǒng)計,單軸應力響應下可采用雨流技術,多軸載荷時可采用PDMR 方法,獲得不同等級的結構應力變化范圍及其循環(huán)次數(shù),分別將不同等級的結構應力變化范圍帶入,計算動態(tài)等效結構應力ΔSs變化范圍為
式中:I(r)是彎曲比r的無量綱函數(shù)r=ΔσbΔσs;m=3.6;d為板厚.
根據線性Miner 線性損傷累計法則可以得出最終壽命為
式中:k為應力幅劃分的等級.
通過上述原理及軟件的需求分析,設計了程序流程,如圖1 所示,具體為:①選擇截止頻率,計算柔性體的模態(tài)計算;②定義的焊線組件和焊線坐標,實現(xiàn)焊線路徑排序;③計算焊線的模態(tài)節(jié)點力,包含3 個力和3 個彎矩分量;④根據焊線的節(jié)點坐標計算長度等效矩陣L,再通過L矩陣獲得線載荷,根據線載荷計算模態(tài)結構應力;⑤根據模態(tài)結構應力獲得模態(tài)等效結構應力;⑥導入動力學計算的模態(tài)坐標,通過模態(tài)坐標與模態(tài)結構應力疊加獲得時域動態(tài)結構應力;⑦結合主S-N 曲線法完成壽命評估.
圖1 模態(tài)結構應力法實施流程Fig.1 Implementation process of modal structural stress method
在圖1 的模態(tài)結構應力實施流程中,焊線組件定義、焊線排序、模態(tài)節(jié)點力計算、等效長度變換L矩陣的求逆、模態(tài)線載荷計算和模態(tài)等效結構應力計算均與準靜態(tài)計算方法相同,只是由于模態(tài)階數(shù)的選擇導致計算量不同.2 種方法的不同點在于,模態(tài)結構應力法分析時輸入的是時域載荷,是動力學計算過程中,同時兼顧模態(tài)參與效應,考慮系統(tǒng)的頻率和阻尼影響.
根據流程和計算公式,可在通用軟件中對模態(tài)結構應力進行程序開發(fā),以某應用軟件平臺進行二次開發(fā)的程序如圖2 所示.
圖2 動態(tài)結構應力法壽命預測程序Fig.2 Procedure of dynamic structural stress method
為了說明模態(tài)結構應力法如何在載荷輸入和疲勞評估2 個方面解決焊接結構復合工況下的動態(tài)壽命預測,以鐵路貨車車體的疲勞評估為例,從試驗等效載荷、仿真系統(tǒng)建模、疲勞壽命預測驗證和結構改進等方面進行應用介紹.
準靜態(tài)結構應力法是將實測的載荷變成載荷譜,通過載荷譜換算出應力譜進行壽命評估.模態(tài)結構應力法將實測的時域載荷直接動態(tài)加載,獲得結構應力的時域曲線,再統(tǒng)計出應力譜實現(xiàn)壽命評估.在載荷邊界處理上是二者的主要不同.
模態(tài)結構應力法實施時仍需考慮如下2 個問題:①當時域載荷曲線長度較長時,如何提高計算效率;②當時域載荷較難直接獲得時,如何間接獲得等效載荷.
以鐵路貨車車體分析為例,一方面,由于不間斷的線路測試,數(shù)據量大,小載荷循環(huán)較多,為了提高效率,通過識別車體所有測試數(shù)據中疲勞損傷較小的區(qū)段,設定閾值同步刪除疲勞損傷影響較小的小載荷事件,進行試驗數(shù)據壓縮[7];另一方面,鐵路貨車車體與轉向架通過心盤、旁承和車鉤進行載荷傳遞,如圖3 所示.上、下心盤通過剛性圓面接觸,旁承通過彈性橡膠接觸,較難直接通過心盤、旁承載荷進行動態(tài)加載.為了能夠獲得車體準確模擬線路狀態(tài)的等效載荷,用于開展車體的疲勞評估,以壓縮試驗數(shù)據中的車體枕梁加速度為目標,依托車體疲勞試驗臺架,采用時域迭代的方法,先識別系統(tǒng)的頻響函數(shù),在通過反復激勵試驗臺架使車體響應與壓縮后數(shù)據的響應的一致,從而獲得與實際線路相當?shù)牡刃лd荷.
圖3 鐵路貨車車體和轉向架Fig.3 Railway freight car body and bogie.(a) bogie;(b)carbody
車體疲勞試驗臺架如圖4 所示,獲得的等效載荷包含垂、橫向作動器的位移數(shù)據和縱向車鉤力數(shù)據.
圖4 全尺寸車體疲勞試驗臺架Fig.4 Full-size body fatigue test rig
值得注意的是,壓縮后的測試數(shù)據保留的是大載荷的低頻響應,通過迭代方法獲得的等效載荷也是低頻輸入.轉向架和車體組成系統(tǒng)中由于轉向架中包含斜楔阻尼減震器,在線路載荷下的高頻載荷會發(fā)生衰減,而試驗臺架與車體組成的系統(tǒng),由于沒有阻尼減震,在低頻輸入時也會存在一定共振現(xiàn)象,故而在等效載荷獲取前通常先進行臺架邊界下的模態(tài)試驗,為線路模擬時的消除動力放大效應提供參數(shù)依據,敞車的臺架邊界下的車體頻率和阻尼見表1[12].
表1 臺架邊界下的車體頻率及阻尼比Table 1 Body frequency and damping ratio under the boundary of car body
臺架試驗獲得的等效載荷實際是液壓油缸的驅動,傳統(tǒng)的準靜態(tài)方法將車體隔離出來無法加載,需要臺架的機械結構來傳遞載荷,因此建立了剛性臺架機械結構模型,機械結構包含4 個垂向、2 個橫向、4 個縱向及1 個車鉤作動器,如圖5所示.
圖5 臺架仿真模型Fig.5 Simulation model of the rig
焊接結構研究對象選用的是礦石車車體,將裝載的散體煤按質量單元附著在地板上[9],采用固定交界面法獲得柔性體結構,再將臺架和車體模型連接起來,形成剛柔耦合多體模型,如圖6 所示,通過調整連接部位剛度,使仿真系統(tǒng)的頻率與實際臺架基本一致,其中低頻模態(tài)的阻尼比按表1 設置,高頻模態(tài)的阻尼比按1%設置.
將物理臺架試驗獲得的多通道等效載荷作為剛柔耦合多體模型的輸入,該載荷為澳大利亞的紐曼到黑德蘭港之間的主線,單程為430 km,往返860 km,壓縮后的載荷長度為280.4 s.結果如圖7 所示,車體中梁中部焊縫動應力經過3 s 后瞬態(tài)振動發(fā)生衰減,進入穩(wěn)態(tài)振動,計算結果表明實測應力和仿真應力的波形基本一致.
圖7 中梁中部焊縫動應力時域結果對比Fig.7 Results of dynamic stress of central beam
剛柔耦合動力學計算后,導出柔性車體模態(tài)坐標時域曲線,為計算動態(tài)結構應力提供權值.
通過開發(fā)的軟件計算了礦石車車體的模態(tài)等效結構應力,再將模態(tài)等效結構應力與動力學計算的模態(tài)坐標進行疊加,獲得等效結構應力時間歷程,采用鋼材的中值主S-N 曲線數(shù)據,對圖8 中10 條車體關鍵焊縫進行了壽命評估.結果發(fā)現(xiàn)10 號的壓車梁焊縫是所有焊縫中的相對薄弱部位.
圖8 車體焊縫Fig.8 Weld of the car body.(a) sleeper beam weld;(b)beam weld
10 號焊縫路徑從1 節(jié)點開始到另一側端部節(jié)點,節(jié)點數(shù)量為30,如圖9 所示.在第5 節(jié)點、10 節(jié)點及對稱的21 節(jié)點、26 節(jié)點為薄弱部位.
圖9 壓車梁U 形焊縫的壽命Fig.9 Life of U-shaped welds in the roller beam.(a)weld path;(b) weld life
選取A 部位節(jié)點的動態(tài)等效結構應力時域曲線的峰值點,將各階模態(tài)的模態(tài)坐標和模態(tài)等效結構應力繪制到圖10 中,可見該焊縫主要是41 階模態(tài)產生的作用,該模態(tài)對應于車體的縱向加載過程,車體結構應該根據縱向載荷進行優(yōu)化.
圖10 焊縫模態(tài)坐標和模態(tài)等效結構應力Fig.10 Modal coordinates and modal equivalent structural stresses of weld
驅動文件總長為280.4 s,按25 年全壽命考核,共5 814 次循環(huán),用時長約為453 h.
等效15~ 20 年試驗時,在車體壓車梁上的U 形焊縫的A,B,C 3 個部位均發(fā)現(xiàn)了疲勞裂紋,如圖11 所示,裂紋的出現(xiàn)位置與采用模態(tài)結構應力法計算結果吻合.
圖11 車體疲勞裂紋Fig.11 Fatigue crack of car body.(a) cracks at position A;(b) enlarged view of position A;(c) cracks at position B;(d) cracks at position C
可見,采用試驗臺架作為邊界條件,實現(xiàn)了以線路等效載荷開展動力學計算,再使用模態(tài)結構應力法與主S-N 曲線法評估結合,能夠實現(xiàn)復合工況下車體的關鍵焊縫進行疲勞可靠性預測,可視為物理臺架的數(shù)字孿生.通過該方法能夠在一定程度上部分替代實物臺架,開展結構的改進驗證,以礦石車為例,改進結果如圖12 所示,通過再次疲勞評估表明改進后U 形焊縫的損傷明顯變小.
圖12 車體結構改進前后比較Fig.12 Structural improvement of car body.(a) before improvement;(b) after improvement
(1)加載的準確性是保證焊接結構疲勞壽命預測的關鍵,準靜態(tài)的簡化處理容易使載荷成分丟失或無法考慮模態(tài)參與效應,可考慮建立引入邊界條件模型,使仿真模型與實際結構承載具有可比性.
(2)以模態(tài)坐標和模態(tài)結構應力疊加實現(xiàn)動態(tài)結構應力計算的疲勞評估方法,能夠兼顧復合工況的加載和模態(tài)參與效應,更能有效的識別出動態(tài)加載下車體的疲勞薄弱部位.
(3)模態(tài)結構應力法有效地拓寬了主S-N 曲線疲勞預測方法的應用領域,為研究焊接結構動態(tài)載荷下疲勞可靠性提供技術基礎.