柴彥君,張 睿,江建鋒,姚光偉,范志斌,李 艷,李子川,張 進(jìn),孟 俊
沼液化肥配施對蘆筍地土壤肥力及蘆筍品質(zhì)的影響
柴彥君1,張 睿1,江建鋒2※,姚光偉3,范志斌4,李 艷5,李子川1,張 進(jìn)1,孟 俊1
(1. 浙江科技學(xué)院環(huán)境與資源學(xué)院,浙江省廢棄生物質(zhì)循環(huán)利用與生態(tài)處理重點(diǎn)實(shí)驗(yàn)室,杭州 310023; 2. 衢州市衢江區(qū)農(nóng)業(yè)技術(shù)推廣中心,衢州 324000; 3.浙江省開化縣新農(nóng)村建設(shè)中心,開化 324300; 4. 浙江省農(nóng)業(yè)農(nóng)村廳耕地質(zhì)量與肥料管理總站,杭州 310012;5. 浙江省農(nóng)業(yè)科學(xué)院環(huán)境資源與土壤肥料研究所,杭州 310021)
針對蘆筍種植過程中大量化肥長期施用所造成的土壤肥力退化和蘆筍品質(zhì)下降的問題,以沼液有機(jī)替代化肥來研究相同氮磷鉀養(yǎng)分施用的前提下,沼液不同用量替代化肥施用對蘆筍地土壤肥力及蘆筍品質(zhì)的影響。試驗(yàn)設(shè)不施肥處理(CK)、常規(guī)施肥處理(NPK)、沼液全氮替代化肥施氮質(zhì)量25%、50%、75%和100%的處理,共6個(gè)處理,分析了沼液替代化肥施用條件下,沼液不同用量對土壤理化性質(zhì)、微生物量、酶活性、重金屬含量及蘆筍品質(zhì)的影響。結(jié)果表明:與常規(guī)施肥(NPK)處理相比,沼液替代化肥用量≥50%的處理顯著增加了土壤有機(jī)質(zhì)的質(zhì)量分?jǐn)?shù)32.7%~41.5% (<0.05),但其對土壤全氮、全磷和全鉀質(zhì)量分?jǐn)?shù)無顯著影響(>0.05);同時(shí),沼液替代量75%和100%的處理顯著提高土壤pH值0.72和1.0,并顯著提高土壤速效鉀質(zhì)量分?jǐn)?shù)48.6%和48.8%(<0.05),而其對土壤堿解氮和有效磷質(zhì)量分?jǐn)?shù)沒有顯著影響(>0.05)。與不施肥(CK)處理相比,常規(guī)施肥、沼液替代化肥施用各處理均能增加土壤蔗糖酶的活性,但沼液替代化肥用量≥50%的處理均顯著降低了土壤酸性磷酸酶的活性(<0.05),而對土壤脲酶和過氧化氫酶活性影響均不顯著。與NPK處理相比,沼液替代化肥施用顯著提高了土壤微生物生物量碳和氮的含量20.2%~61.2%和28.8%~162.0%(<0.05),但沼液替代量≥50%處理的土壤微生物碳/氮比值與NPK處理相比都顯著降低了31.4%~38.6% (<0.05)。常規(guī)施肥、沼液替代化肥施用對蘆筍地表層土壤重金屬Cu、Cr、Cd、Ni、Pb和Zn的含量均無顯著影響。與NPK處理相比,75%和100%沼液替代化肥處理蘆筍嫩莖中顯著增加了可溶性蛋白含量111.1%和155.6%,并顯著提高微量元素Zn的含量27.8%和30.0%(<0.05)。可見,沼液替代化肥施用能夠顯著提高蘆筍地土壤有機(jī)質(zhì)和速效養(yǎng)分的含量,促進(jìn)蘆筍地土壤肥力水平的提高,以及蘆筍可溶性蛋白和Zn含量的提高,優(yōu)化蘆筍品質(zhì),其中以沼液替代量≥75%效果較好??梢?,沼液化肥配施能夠提升土壤肥力水平,促進(jìn)蘆筍品質(zhì)的提高。
沼液;肥;蘆筍;土壤肥力;品質(zhì)
近年來,隨著中國畜禽養(yǎng)殖業(yè)規(guī)模的不斷提高,與之相配套的大中型沼氣工程的規(guī)模亦在逐漸擴(kuò)大,沼氣工程已成為畜禽糞污資源化利用的主要模式[1]。沼液是畜禽養(yǎng)殖廢棄物經(jīng)沼氣工程厭氧發(fā)酵后所產(chǎn)生的一種高濃度有機(jī)廢水,因其含有豐富的大量及微量的營養(yǎng)元素、豐富的生物活性物質(zhì)而受到人們的廣泛關(guān)注[1-4]。沼液因富含植物生長必需的氮、磷、鉀等營養(yǎng)成分而被作為一種優(yōu)質(zhì)的有機(jī)液體肥料用來部分替代化肥施用到農(nóng)田中,常被用以削減農(nóng)業(yè)化肥用量[5-6]。同時(shí),沼液中還含有豐富的鈣、鎂、鋅、鐵等中、微量元素和B族維生素、抗生素、赤霉素、吲哚乙酸等生物活性物質(zhì),對植物生長促進(jìn)和病蟲害防治具有重要調(diào)節(jié)作用[7]。實(shí)踐證明,施用沼液可以有效增加土壤中各類養(yǎng)分的含量,尤其是速效養(yǎng)分的含量[8]。然而,沼液中含有微量的重金屬元素和獸藥殘留等成分,其資源化利用的安全風(fēng)險(xiǎn)給沼液安全農(nóng)用帶來一定的困擾[4]。
蘆筍(L.)的嫩莖富含多種維生素、葉酸、膳食纖維以及硒、鐵、錳、鋅等微量元素而成為風(fēng)靡全球的明星蔬菜,具有較好的防癌抗癌功效[9]。當(dāng)前,農(nóng)戶在種植蘆筍的過程中存在盲目施肥的現(xiàn)象,大量化肥的投入導(dǎo)致肥料利用率低、土壤酸化、鹽漬化等一系列地力退化問題,并直接導(dǎo)致蘆筍品質(zhì)的下降[10]。比較而言,沼液富含各類型氨基酸和多種植物生長激素,其替代化肥施用可以調(diào)節(jié)蘆筍的生長代謝、補(bǔ)充營養(yǎng),增強(qiáng)其光合作用能力,促進(jìn)蘆筍發(fā)芽率的提高,進(jìn)而提高其產(chǎn)量[11]。利用沼液替代化肥施用蘆筍,既能解決蘆筍種植過程中肥料利用率低的問題,又能降低畜禽養(yǎng)殖引起的面源污染風(fēng)險(xiǎn),達(dá)到提高土壤肥力和提升蘆筍品質(zhì)的目的。然而,在沼液與化肥按何種方式配施能夠最大限度地提升蘆筍地土壤肥力和蘆筍品質(zhì),沼液施用是否會對蘆筍田造成重金屬污染的風(fēng)險(xiǎn)等方面的研究鮮有報(bào)道。本文根據(jù)沼液替代化肥試驗(yàn)連續(xù)實(shí)施3 a后的田間試驗(yàn)結(jié)果,揭示蘆筍地土壤理化性質(zhì)和蘆筍品質(zhì)及微量元素隨沼液替代氮肥的比例變化的響應(yīng)特征,為通過沼液替代部分化肥施用來改善蘆筍田土壤肥力和提升蘆筍品質(zhì)技術(shù)實(shí)踐提供科學(xué)依據(jù)。
試驗(yàn)在浙江省衢州市開化縣菁山農(nóng)業(yè)開發(fā)有限公司果蔬基地內(nèi)進(jìn)行(118°25′E、29°13′N)。該地區(qū)屬亞熱帶季風(fēng)性濕潤氣候,年均降雨量1 821 mm,年均氣溫16.2 ℃。該試驗(yàn)始于2017年8月,供試土壤質(zhì)地為河灘砂壤土,土壤有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)為17.54 g/kg、全氮質(zhì)量分?jǐn)?shù)為0.88 g/kg、全磷質(zhì)量分?jǐn)?shù)為0.22 g/kg、全鉀質(zhì)量分?jǐn)?shù)為0.36 g/kg、堿解氮質(zhì)量分?jǐn)?shù)為47.96 mg/kg、有效磷質(zhì)量分?jǐn)?shù)為36.49 mg/kg、速效鉀質(zhì)量分?jǐn)?shù)為32.47 g/kg、pH值4.82;試驗(yàn)用沼液來自開化縣有成家庭農(nóng)場,一家以養(yǎng)豬為主的中小型企業(yè),其殖場中豬糞尿經(jīng)過厭氧發(fā)酵20 d后,經(jīng)過干濕分離后通過高壓泵打入管網(wǎng)供附近農(nóng)戶使用。本試驗(yàn)所用沼液于每年沼液施用前2~3 d進(jìn)行采樣分析,后根據(jù)沼液養(yǎng)分含量進(jìn)行沼液施用,沼液全氮年平均濃度1.2 g/L、全磷濃度0.03 g/L、全鉀濃度0.58 g/L、pH值8.12。栽培蘆筍品種為金冠F1。
試驗(yàn)共設(shè)6個(gè)處理,包括不施肥處理(CK)、常規(guī)施肥處理(NPK)以及25%、50%、75%和100%沼液氮替代氮肥處理。其中,常規(guī)施肥處理的化肥N施用量為360 kg/hm2,N∶P2O5∶K2O養(yǎng)分質(zhì)量比為1∶0.67∶0.83。每個(gè)處理設(shè)3個(gè)重復(fù),共18個(gè)小區(qū),隨機(jī)區(qū)組排列。每個(gè)小區(qū)栽植兩壟蘆筍,壟長5 m,寬4 m,小區(qū)面積為20 m2。所有處理統(tǒng)一施用商品有機(jī)肥(N∶P2O5∶K2O養(yǎng)分質(zhì)量比為2∶1∶1)15 000 kg/hm2作為基肥。施肥處理小區(qū)分別在每年的清園期、養(yǎng)苗期和采收期按肥料用量比2∶3∶1分次開溝施用沼液和化肥,化肥以復(fù)合肥(N∶P2O5∶K2O養(yǎng)分質(zhì)量比為15∶15∶15)為主,以氮肥施用量為基準(zhǔn)計(jì)算復(fù)合肥施用量。沼液替代化肥處理磷鉀肥不足部分通過過磷酸鈣和氯化鉀補(bǔ)齊(如表1)。
表1 不同試驗(yàn)處理沼液和化肥施用情況
注:CK為對照不施肥處理,NPK為常規(guī)施用化肥處理,25%NP1K1Z1為沼液氮替代25%化肥氮處理,50%NP2K2Z2為沼液氮替代50%化肥氮處理,75%NP3K3Z3為沼液氮替代75%化肥氮處理,100%NP4K4Z4為沼液氮替代100%化肥氮處理,下同。
Note: CK is the control without fertilization treatment, NPK is the conventional fertilizer treatment, 25%NP1K1Z1is the treatment of biogas slurry nitrogen replace 25% chemical fertilizer nitrogen , 50%NP2K2Z2is the treatment of biogas slurry nitrogen replace 50% chemical fertilizer nitrogen, 75%NP3K3Z3is the treatment of biogas slurry nitrogen replace 75% chemical fertilizer nitrogen, 100%NP4K4Z4is the treatment of biogas slurry nitrogen replace 100% fertilizer nitrogen treatment, the same as below.
土壤和蘆筍植株樣品采集時(shí)間為2020年3月份。每小區(qū)的土壤樣品按梅花采樣法采集0~20 cm的表層土壤,5個(gè)采樣點(diǎn)土壤樣品混合均勻后,裝進(jìn)自封袋內(nèi)帶回實(shí)驗(yàn)室備用;蘆筍樣品采集通過在每個(gè)樣區(qū)挑選5個(gè)生長相近的蘆筍嫩莖,裝大紙袋中當(dāng)天帶回實(shí)驗(yàn)室備用。按梅花型采集新鮮土壤樣品過2 mm篩后,利用四分法分出一份新鮮土樣保存在4 ℃冰箱,用于測定土壤微生物量和酶活性;剩余土樣風(fēng)干后混勻,四分法分出一份土樣過0.15 mm篩用于測定土壤全量養(yǎng)分;余下土樣過0.9 mm篩,用于測定土壤有效養(yǎng)分。蘆筍樣品清洗后切段,混勻后隨機(jī)選取5段蘆筍植株樣品石英砂研磨,提取液用于測定可溶性糖和可溶性蛋白,剩余蘆筍植株樣品烘干粉碎后采用電感耦合等離子質(zhì)譜ICP-MS測定蘆筍微量元素。采用常規(guī)分析法測定土壤理化性質(zhì)[12];采用氯仿熏蒸提取法和熒光微型板酶標(biāo)法分別測定土壤微生物量和酶活性[13];采用蒽酮比色法和考馬斯亮藍(lán)G-250染色法分別測定蘆筍可溶糖和可溶性蛋白含量[14];利用電感耦合等離子質(zhì)譜(ICP-MS)測定土壤重金屬含量。
采用SPSS 22. 0和Excel 2016軟件對試驗(yàn)數(shù)據(jù)進(jìn)行處理與分析。采用方差齊性檢驗(yàn)對土壤和蘆筍植株樣品進(jìn)行方差分析,若方差為齊性,不同處理之間差異顯著采用LSD法檢驗(yàn)。若方差不為齊性,采用Game-Howell分析。
沼液替代化肥處理對蘆筍地表層土壤(0~20 cm)理化性質(zhì)和養(yǎng)分的影響見表2。與CK和NPK處理相比,沼液替代化肥能夠提升土壤的pH值,其中75%和100%沼液替代氮肥處理達(dá)到顯著水平,分別提高0.72和1.0(<0.05)。同時(shí),50%、75%和100%沼液替代化肥處理與NPK處理相比顯著增加了土壤的有機(jī)質(zhì)含量32.7%~41.5%(<0.05),表明沼液中的有機(jī)質(zhì)主要是以不易被土壤微生物分解的惰性有機(jī)碳為主。對土壤全量養(yǎng)分而言,沼液替代化肥處理與CK和NPK處理相比對土壤全氮和全磷都沒有顯著影響(>0.05),但75%和100%沼液替代化肥處理的土壤全鉀含量與CK相比顯著增加,與NPK處理則沒有差異。沼液替代化肥對土壤堿解氮和有效磷含量沒有顯著影響,50%、75%和100%沼液替代化肥處理的土壤堿解氮和有效磷含量僅與CK相比增加顯著,而75%和100%沼液替代化肥處理的土壤速效鉀相比NPK處理顯著增加了48.6%和48.8%。
表2 沼液施用對蘆筍地土壤化學(xué)性質(zhì)的影響
注:同列不同字母表示差異達(dá)0.05顯著水平,下同。
Note: Different letters in each column indicate significant differenceamong the treatments at 0.05 level. The same as fellow.
沼液替代化肥對不同土壤酶活性的影響存在比較大的差別(圖1)。100%沼液替代氮肥處理的土壤蔗糖酶活性與CK和NPK相比分別顯著增加了54%和43%(<0.05),75%沼液替代氮肥處理與CK相比增加了28%,而25%和50%沼液替代化肥處理對土壤蔗糖酶活性影響不顯著(>0.05)(圖1a)。比較而言,沼液替代化肥與NPK相比對土壤脲酶活性沒有顯著影響,僅100%沼液替代化肥處理與CK相比顯著增加了64%(圖1b)。與土壤蔗糖酶和脲酶不同,沼液替代化肥施用降低了土壤酸性磷酸酶活性。與NPK處理相比,50%、75%和100%沼液替代化肥處理土壤酸性磷酸酶活性分別降低了15%、16%和17%(圖1c),這是因?yàn)檎右菏┯脤ν寥纏H的提升會抑制土壤酸性磷酸酶活性的緣故。沼液替代化肥施用對土壤過氧化氫酶活性沒有影響(圖1d)。
圖1 沼液施用對蘆筍地表層土壤酶活性的影響
土壤微生物對外源有機(jī)物,尤其溶解性有機(jī)質(zhì)的輸入非常敏感。本研究的結(jié)果表明,沼液替代化肥與CK和NPK處理相比,顯著提升了土壤微生物生物量碳和生物量氮的含量(<0.05),它們的增加幅度隨著沼液替代化肥比例的升高而逐漸增大(圖2)。略有不同的是,與NPK處理相比,沼液替代化肥處理的微生物生物量碳含量顯著增加了20.2%~61.2%(<0.05),而微生物生物量氮顯著提升了28.8%~162.0%(<0.05),這導(dǎo)致了50%、75%和100%沼液替代化肥處理的微生物生物量碳/氮比值較NPK處理顯著下降了31.4%~38.6% (<0.05),這是因?yàn)檎右褐械牡^大部分屬于可給性氮,可被微生物大量利用而導(dǎo)致土壤微生物量碳氮比下降的緣故(圖2a)。此外,本研究的結(jié)果還表明化肥施用和沼液替代化肥施用相較CK處理都會顯著降低土壤微生物生物量碳/氮比值(<0.05)(圖2b)。
圖2 沼液施用對表層土壤微生物生物量的影響
與CK處理相比,常規(guī)施肥和沼液替代化肥施用后,土壤中6種重金屬元素含量均未出現(xiàn)顯著變化(>0.05)。土壤銅、鉻、鉛和鋅的國家二級標(biāo)準(zhǔn)限量值(GB 15618-1995)分別為50、150、250和200 mg/kg,本研究結(jié)果表明,與CK和NPK處理相比,沼液替代化肥施用蘆筍地試驗(yàn)進(jìn)行3 a后,土壤中這4種重金屬元素的含量均未因?yàn)檎右禾娲识a(chǎn)生顯著的富集作用(>0.05)(表3)。而沼液替代化肥施用試驗(yàn)地土壤鎘和鎳的本底值超出國家二級標(biāo)準(zhǔn)限量值(鎘0.30 mg/kg、鎳40 mg/kg)。由于此次研究的土壤是沼液替代化肥施用試驗(yàn)進(jìn)行3 a后的土壤樣品,可見沼液替代化肥施用短期內(nèi)不會增加土壤重金屬污染的風(fēng)險(xiǎn)。
表3 沼液施用對蘆筍地表層土壤重金屬富集的影響
沼液替代化肥施用對蘆筍產(chǎn)量及品質(zhì)影響見表4。本項(xiàng)研究結(jié)果表明,與CK處理相比,常規(guī)施肥顯著增加蘆筍產(chǎn)量高達(dá)89%(<0.05);與NPK處理相比,沼液替代化肥施用蘆筍產(chǎn)量(除25%NP1K1Z1處理外)均有所增加,增加幅度在4%~11%之間,以100%沼液替代量提高幅度最大,而沼液替代化肥施用的各處理與NPK處理間的差異不顯著(>0.05)。蘆筍可溶性糖和可溶性蛋白含量高低反映了蘆筍的食用品質(zhì),沼液替代化肥處理與CK和NPK處理相比,對蘆筍嫩莖中可溶性糖含量無顯著影響(>0.05),而≥50%沼液替代化肥處理均顯著增加了蘆筍嫩莖中的可溶性蛋白含量(<0.05),增加幅度最高達(dá)188%。與NPK處理相比,75%和100%沼液替代化肥處理顯著增加了蘆筍嫩莖中的可溶性蛋白含量111.1%和155.6%(<0.05)。沼液替代化肥對蘆筍嫩莖中鐵、錳、銅3種微量元素?zé)o顯著影響,而75%和100%沼液替代化肥處理的蘆筍嫩莖中的鋅含量較常規(guī)施肥NPK處理約增加27.8%和30.0%。
表4 沼液施用對蘆筍產(chǎn)量及品質(zhì)的影響
綜上可知,沼液替代化肥施用會顯著增加土壤有機(jī)質(zhì)、全鉀、堿解氮、有效磷和速效鉀的含量以及土壤的pH,但對土壤全氮和全磷的含量沒有顯著影響(表1)。沼液施用顯著增加蘆筍田土壤有機(jī)質(zhì)含量,表明沼液中的有機(jī)質(zhì)主要是以不易被土壤微生物分解的惰性有機(jī)碳為主[15]。由于沼液中含有大量的氮和鉀,但是磷含量相對非常低,沼液替代化肥對土壤氮素含量沒有顯著影響,表明沼液中的氮主要以易被植物吸收利用的速效氮為主[16],因而沼液施用在增加土壤速效氮的同時(shí)對土壤全氮影響較弱;雖然沼液中的鉀主要是以水溶性速效鉀為主,但這部分鉀在進(jìn)入土壤后和土壤礦物發(fā)生部分作用,形成礦物圈閉的鉀在土壤中長期保存[17-18];而沼液中磷含量較低,說明沼液施用對土壤有效磷含量的增加主要是沼液施用對土壤pH的提升活化了部分土壤磷的緣故[19]。
隨著沼液替代化肥施用的替代比例的增加,沼液施用顯著增加了脲酶活性,而對土壤過氧化氫酶活性沒有顯著影響;與常規(guī)施肥相比,沼液替代化肥隨著替代比例的增加會降低土壤酸性磷酸酶活性(圖1)。同時(shí),沼液替代化肥施用顯著增加土壤微生物量碳、氮含量,降低土壤微生物量碳氮比(圖2),這是因?yàn)檎右航?jīng)過干濕分離后,其氮含量較高,而有機(jī)碳含量相對較低,沼液中的氮絕大部分屬于可給性氮,隨著沼液施用量的增加,沼液中氮被微生物大量利用,導(dǎo)致土壤微生物量碳氮比隨著沼液施用量的增加而逐漸下降。土壤碳氮比可以反映出土壤中微生物的區(qū)系構(gòu)成,沼液替代化肥施用能夠顯著提升土壤生物學(xué)活性,改善土壤微生物群落結(jié)構(gòu)[20-21]。而土壤酸性磷酸酶活性相比常規(guī)施肥下降的現(xiàn)象表明,沼液施用對土壤pH的提升會抑制土壤酸性磷酸酶活性[22-23]。相比蔗糖酶和脲酶,土壤過氧化氫酶對沼液施用的響應(yīng)較弱可能是由于沼液施用營造的還原環(huán)境抵消了土壤生物學(xué)活性和肥力改善對土壤過氧化氫酶活性的促進(jìn)作用。
多項(xiàng)研究表明很多豬糞發(fā)酵沼液中的重金屬含量多存在不同程度的超標(biāo)現(xiàn)象[24-26],沼液施用會對土壤重金屬富集產(chǎn)生潛在風(fēng)險(xiǎn)[4,27]。然而,在本研究中的沼液替代化肥施用對土壤重金屬沒有顯著影響(表3),研究土壤是沼液替代化肥施用試驗(yàn)進(jìn)行3 a后的土壤樣品,由此可見,沼液施用短期內(nèi)不會增加土壤重金屬污染的風(fēng)險(xiǎn)。這一方面是由于沼液主要是厭氧環(huán)境發(fā)酵液經(jīng)干濕分離后產(chǎn)生的液態(tài)副產(chǎn)品,而土壤重金屬中的銅、鉻、鎘、鎳、鉛、鋅等正價(jià)態(tài)重金屬在還原環(huán)境下容易與土壤硫化物反應(yīng)發(fā)生沉淀因而較少進(jìn)入到沼液中[28],另一方面是由于國家近年來在畜禽養(yǎng)殖飼料和添加劑重金屬含量上的源頭嚴(yán)格管控。此外,沼液施用對土壤pH的提升,也會在很大程度上鈍化諸如鎘和鋅這類原本在酸性土壤中更易活化的重金屬[29-30],降低這類重金屬在植物體內(nèi)積累的風(fēng)險(xiǎn)。然而,沼液仍含有大量的顆粒性有機(jī)物,用其替代化肥施用對土壤重金屬污染影響的長期效應(yīng),需要后續(xù)根據(jù)沼液中重金屬的濃度、土壤環(huán)境容量等做進(jìn)一步的長期監(jiān)測與評價(jià)。
本研究中,沼液替代化肥施用并沒有顯著增加蘆筍嫩莖的可溶性糖含量以及微量元素錳和銅的含量,但隨著沼液替代化肥比例的增加,沼液施用能顯著增加蘆筍嫩莖可溶性蛋白含量以及微量元素鐵和鋅含量(表4)。
由于沼液中含有濃度可觀的水溶態(tài)氨基酸,這部分氨基酸可被植物直接吸收利用[31]。因此,沼液替代化肥施用能夠通過改變蘆筍的氨基酸吸收和蛋白質(zhì)合成過程,提高蘆筍中可溶性蛋白的含量,進(jìn)而提升蘆筍的營養(yǎng)品質(zhì)[32]。此外,蘆筍嫩莖中鐵和鋅含量隨沼液替代化肥比例的增加而升高,表明沼液替代化肥營造的還原環(huán)境可以提高土壤中鐵和鋅的有效性,進(jìn)而促進(jìn)蘆筍對鐵和鋅的吸收與轉(zhuǎn)化[33-34]。因此,沼液替代化肥栽培的蘆筍將有利于蘆筍嫩莖中可溶性氨基酸和微量元素鐵和鋅的積累,對提升人體蛋白攝入量,補(bǔ)充人體鐵和鋅等方面具有很大的營養(yǎng)價(jià)值。在蘆筍種植上采用沼液替代化肥,主要是因?yàn)楦彀l(fā)酵后的沼液富含多種作物所需的營養(yǎng)物質(zhì)(如氮、磷、鉀),將沼液單施在蘆筍根系周邊,可以調(diào)節(jié)蘆筍的生長代謝、補(bǔ)充營養(yǎng),增強(qiáng)光合作用能力,還能夠提高蘆筍發(fā)芽率,蘆筍更加粗壯脆嫩,產(chǎn)量和質(zhì)量都有很大提高,有更好經(jīng)濟(jì)效益和社會效益[35]。沼液中含有豐富的對植物生長所需的營養(yǎng)物質(zhì),這對蘆筍品質(zhì)的提高具有較大的影響作用,化肥或者沼液替代化肥施用均能夠提高可溶性糖含量,可促進(jìn)蘆筍干物質(zhì)的累積,而可溶性蛋白和Zn含量的增加,進(jìn)一步提升蘆筍的品質(zhì)。
1)沼液替代化肥施用能夠顯著提高蘆筍地土壤pH值以及有機(jī)質(zhì)和速效鉀的含量,以沼液替代量≥50%的處理最為顯著,而其對土壤全氮、全鉀、全磷以及堿解氮和有效磷均無顯著性影響。
2)沼液替代化肥施用蘆筍地顯著增加了土壤蔗糖酶和脲酶活性,以沼液替代量100%處理最為顯著,分別提高54%和64%。隨著沼液替代化肥量的增加,土壤酸性磷酸酶活性逐漸降低,降低幅度在12.4%~19.8%之間,而沼液替代化肥施用對土壤脲酶和氧化氫酶的活性均無顯著影響。
3)與常規(guī)施肥相比,沼液替代化肥施用蘆筍地能夠顯著提高土壤微生物量碳和氮的含量,分別增加20.2%~61.2%和28.8%~162.0%,其中以沼液替代量100%處理增加的最為顯著,隨著沼液替代量的增加,土壤微生物量碳氮比卻在顯著下降,同樣以沼液替代量100%處理下降最為顯著,下降38.6%。
4)與NPK處理相比,隨著沼液替代量的增加,沼液嫩莖中的可溶性蛋白和微量元素鋅的含量均顯著增加,以沼液替代量≥75%處理提高的最為顯著,但各處理間可溶性糖含量和鐵、錳、銅含量均不受影響。
[1] WENTZEL S, SCHMIDT R, PIEPHO H P, et al. Response of soil fertility indices to long-term application of biogas and raw slurry under organic farming[J]. Applied Soil Ecology, 2015, 96: 99-107.
[2] 賀清堯,石明菲,馮椋,等. 基于膜蒸餾的沼液資源化處理研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(8):259-268.
HE Qingyao, SHI Mingfei, FENG Liang, et al. Research progress of biogas slurry resourceful treatment by membrane distillation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(8): 259-268. (in Chinese with English abstract)
[3] 肖華,徐杏,周昕,等. 膜技術(shù)在沼氣工程沼液減量化處理中的應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2020,36 (14): 226-236.
XIAO Hua, XU Xing, ZHOU Xin, et al. Application of membrane technology for volume reduction of biogas slurry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(14): 226-236. (in Chinese with English abstract)
[4] TANG Y F, WANG L Y, CARSWELL A,et al. Fate and transfer of heavy metals following repeated biogas slurry application in a rice-wheat crop rotation[J]. Journal of Environmental Management, 2020, 270: 110938.
[5] SIGURNJAK I, VANEECKHAUTE C, MICHELS E, et al. Fertilizer performance of liquid fraction of digestate as synthetic nitrogen substitute in silage maize cultivation for three consecutive years[J]. Science of the Total Environment, 2017(599/600): 1885-1894.
[6] XU M, XIAN Y, WU J, et al. Effect of biogas slurry addition on soil properties, yields, and bacterial composition in the rice-rape rotation ecosystem over 3 years[J]. Journal of Soils and Sediments, 2019, 19: 2534-2542.
[7] 柴彥君,黃利民,董越勇,等. 沼液施用量對毛竹林地土壤理化性質(zhì)及碳儲量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(8):214-220.
CHAI Yanjun, HUNG Limin, DONG Yueyong, et al. Effects of biogas slurry application rate on soil physical and chemical properties and carbon storage of bamboo forest[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(8): 214-220. (in Chinese with English abstract)
[8] 馮翠萍,龐候英,常明昌,等. 酶法提取蘆筍皮中高活性膳食纖維的研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2004,20(3):188-191. FENG Cuiping, PANG Houying, CHANG Mingchang, et al. Extraction of high activity dietary fiberfrom asparagus peel by enzyme[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2004, 20(3): 188-191. (in Chinese with English abstract)
[9] LI Y Q, QIN J, GUO Z, et al. Spatial variability of soil quality and asparagus spear yield in an area of plastic-greenhouse cultivation on Chongming Island, China[J]. African Journal of Agricultural Research, 2012, 7(15): 2262-2272.
[10] MARCATO C M, MOHTAR R, REVEL J C, et al. Impact of anaerobic digestion on organic matter quality in pig slurry[J]. International Biodeterioration & Biodegradation, 2009, 63(3): 260-266.
[11] HENRY H A, JEFFERIERS R L. Plant amino acid uptake, soluble N turnover and microbial N capture in soils of a grazed Arctic salt marsh[J]. Journal of Ecology, 2003, 91(4): 627-636.
[12] 中國科學(xué)院南京土壤研究所. 土壤理化分析[M]. 上海:上??萍汲霭嫔?,1978.
[13] 關(guān)松蔭. 土壤酶及其研究方法[M]. 北京:農(nóng)業(yè)出版社,1986.
[14] 張?jiān)娖G,張毛毛,張濤,等. 海南蒲桃花芽形態(tài)分化過程觀測及其生理生化變化特征[J]. 西北植物學(xué)報(bào),2021,41(8):1347-1354.
ZHANG Shiyan, Zhang Maomao, ZHANG Tao, et al. Flower bud morphological differentiation and physiological biochemistry changes of(L.) Skeels[J]. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(8): 1347-1354. (in Chinese with English abstract)
[15] YAN L L, LIU Q P, LIU C, et al. Effect of swine biogas slurry application on soil dissolved organic matter(DOM) content and fluorescence characteristics[J]. Ecotoxicology and Environmental Safety, 2019, 184: 1096162.
[16] CHENG J B, CHEN Y C, HE R B, et al. Soil nitrogen leaching decreases as biogas slurry DOC/N ratio increases[J]. Applied Soil Ecology, 2017, 111: 105-113.
[17] PETERBURGSKY A V, YANISHEVSKY F V. Transformation of forms of potassium in soil during long-term potassium fertilization[J]. Plant and Soil, 1961, 15: 199-210.
[18] DU Z Y, ZHOU J M, WANG H Y, et al. Potassium movement and transformation in an acid soil as affected by phosphorus[J]. Soil Science Society of America Journal, 2006, 70(6): 2057-2064.
[19] 賈興永,李菊梅. 土壤磷有效性及其與土壤性質(zhì)關(guān)系的研究[J]. 中國土壤與肥料,2011(6):76-82.
JIA Xinyong, LI Jumei. Study on soil phosphorus availability and its relation to the soil properties in 14 soils from different sites in China[J]. Soils and Fertilizers Sciences in China, 2011(6):76-82. (in Chinese with English abstract)
[20] BACHMANN S, GROPP M, Eichler L B. Phosphorus availability and soil microbial activity in a 3 year field experiment amended with digested dairy slurry[J]. Biomass and Bioenergy, 2014, 70: 429-439.
[21] REN T T, YU X Y, LIAO J H, et al. Application of biogas slurry rather than biochar increases soil microbial functional gene signal intensity and diversity in a poplar plantation[J]. Soil Biology and Biochemistry, 2000, 146: 107825.
[22] HERBIEN S A, NEAL J L. Soil pH and phosphatase activity[J]. Communications in Soil Science and Plant Analysis, 1990, 21(5/6): 439-456.
[23] DICK W A, CHENG L, WANG P. Soil acid and alkaline phosphatase activity as pH adjustment indicators[J]. Soil Biology and Biochemistry 2000, 32(13): 1915-1919.
[24] 鐘攀,李澤碧,李清榮,等. 沼氣肥養(yǎng)分物質(zhì)和重金屬狀況研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2007(26):165-171.
ZHONG Pan, LI Zebi, LI Qingrong, et al. Contents of selected nutrients and heavy metals in biogas slurry[J]. Journal of Agro-Environment Science, 2007(26): 165-171. (in Chinese with English abstract)
[25] 王強(qiáng),劉銀秀,邊武英,等. 浙江省規(guī)模養(yǎng)豬場沼渣液養(yǎng)分特征和農(nóng)田利用適宜性分析[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2019,38(5):1158-1164.
WANG Qiang, LIU Yinxiu, BIAN Wuying, et al. Nutrient characteristics and cropland utilization suitability of biogas slurry from large-scale pig farms in Zhejiang Province, China[J]. Journal of Agro-Environment Science, 2019, 38(5): 1158-1164. (in Chinese with English abstract)
[26] 董仁杰,張紫嘉,劉晟,等. 水熱預(yù)處理對豬糞厭氧消化及沼液生態(tài)安全性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(6):193-203.
DONG Renjie, ZHANG Zijia, LIU Sheng, et al. Effects of hydrothermal pretreatments on the anaerobic digestion of pig manure and ecological safety of biogas slurry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(6): 193-203. (in Chinese with English abstract)
[27] 趙麒淋,伍鈞,陳璧瑕,等.施用沼液對土壤和玉米重金屬累積的影響[J]. 水土保持學(xué)報(bào),2012,26(2):251-255.
ZHAO Qilin, WU Jun, CHEN Bixia, et al. Effect of biogas slurry on heavy metal accumulationof soil and maize[J]. Journal of Soil and Water Conservation, 2012, 26(2): 251-255. (in Chinese with English abstract)
[28]宋英今,王冠超,李然,等. 沼液處理方式及資源化研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(12):237-250.
SONG Yingjin, WANG Guanchao, LI Ran, et al. Research progress of biogas slurry treatment and resource utilization[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(12): 237-250. (in Chinese with English abstract)
[29]HOU S N, ZHENG N, TANG L, et al. Effect of soil pH and organic matter content on heavy metals availability in maize (Zea mays L.) rhizospheric soil of non-ferrous metals smelting area[J]. Environmental Monitoring and Assessment 2019, 191: 634.
[30] 沈秀麗,燕海朋,曾劍飛,等. 畜禽糞便生物炭內(nèi)源重金屬在酸性土壤中的遷移轉(zhuǎn)化[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2022, 38(8): 209-217.
SHEN Xiuli, YAN Haipeng, ZENG Jianfei, et al. Migration and transformation of endogenous heavy metals from animal manure biochar in acid soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(8): 209-217. (in Chinese with English abstract)
[31] HENRY H A, JEFFERIERS R L. Plant amino acid uptake, soluble N turnover and microbial N capture in soils of a grazed Arctic salt marsh[J]. Journal of Ecology 2003, 91(4): 627-636.
[32] PERSSON J, N?SHOLM T. Amino acid uptake: A widespread ability among boreal forest plants[J]. Ecology Letters 2001, 4(5): 434-438.
[33] Broadley M, Brown P, Cakmak I, et al. Beneficial elements- sciencedirect[J]. Marschner's Mineral Nutrition of Higher Plants (Third Edition) 2012, 72(6): 249-269.
[34] AKTHER M S, DAS U, TAHURA S, et al. Regulation of Zn uptake and redox status confers Zn deficiency tolerance in tomato[J]. Scientia Horticulturae, 2020, 273: 109624.
[35] 翟繼鵬. 規(guī)?;i場糞污及施用農(nóng)產(chǎn)品中重金屬含量的研究[D]. 杭州:浙江大學(xué),2012.
ZHAI Jipeng. Study on Heavy Metal Content in Manure and Agricultural Products of Large Scale Pigfarm[D]. Hangzhou: Zhejiang University, 2012. (in Chinese with English abstract)
Effects of the combined biogas slurry with chemical fertilizer on soil fertility andquality in field
CHAI Yanjun1, ZHANG Rui1, JIANG Jianfeng2※, YAO Guangwei3, FAN Zhibin4, LI Yan5, LI Zichuan1, ZHANG Jin1, MENG Jun1
(1.,,310023,; 2.,311121,; 3.,324000,; 4.,,310012,; 5.,,310021,)
Soil fertility degradation can be attributed to a large amount of chemical fertilizer in the long term. Among them, the quality of asparagus shoots can depend mainly on the soil fertility in the process of asparagus planting. This study aims to investigate the effects of biogas slurry application with the chemical fertilizer on the soil fertility in the asparagus field. The quality of asparagus shoots was also evaluated in the same application of nitrogen, phosphorus, and potassium nutrients. Six treatments were set, including no fertilization (CK), conventional fertilization (NPK), the total nitrogen of biogas slurry replaced 25%, 50%, 75%, and 100% of the total nitrogen application amount of chemical fertilizer (25%NP1K1Z1, 50% NP2K2Z2, 75% NP3K3Z3, and 100% NP4K4Z4). Some influencing factors were selected, including the amount of biogas slurry application on the soil's chemical properties, enzyme activities, microbial biomass, and heavy metals in the asparagus field. The results showed that the soil organic matter contents increased by 32.7%-41.5% in the 50% NP2K2Z2treatment, compared with the NPK (<0.05). But there was no significant effect on the contents of soil total nitrogen, total phosphorus, and potassium (>0.05). At the same time, the 75% NP3K3Z3and 100% NP4K4Z4treatments were significantly improved the contents of soil available potassium by 48.6% and 48.8%, while also significantly improved pH value (<0.05), but there was no significant influence on the contents of soil alkali hydrolyzed nitrogen and available phosphorus (>0.05). Comparison In comparison with the CK, the 50% NP2K2Z2treatment was significantly reduced the activity of soil acid phosphatase (<0.05), but there was no significant effect on the soil urease and catalase activities. By contrast, the rest treatments were enhanced the activity of soil sucrose enzyme. Compared with the NPK, the ratio of carbon and nitrogen of soil microbial biomass was significantly reduced by 31.4%-38.6% in the 50% NP2K2Z2treatment (<0.05). But, there was the a significant increase in the carbon and nitrogen contents of soil microbial biomass by 20.2%-61.2%, and 28.8%-162.0%, respectively (<0.05) in the rest treatments. All treatments presented the little effect on the contents of Cu, Cr, Cd, Ni, Pb, and Zn in the topsoil of the asparagus field (>0.05). In addition, the 50% NP2K2Z2, and 75% NP3K3Z3treatments were improved the Zn contents and soluble protein contents in the tender stem of asparagus, compared with the NPK (<0.05). Thus, the soil organic matter and available nutrients were improved for the soil fertility in the asparagus field. As such, the soluble protein and zinc contents were enhanced the quality of the tender stem of asparagus. Among them, the optimal treatment was achieved in the 75% NP3K3Z3with the amount of total nitrogen of biogas slurry replaced by more than 75% of the total nitrogen application amount of chemical fertilizer.
biogas slurry; fertilizer;; soil fertility; quality
10.11975/j.issn.1002-6819.202210073
S1
A
1002-6819(2023)-05-0120-08
柴彥君,張睿,江建鋒,等. 沼液化肥配施對蘆筍地土壤肥力及蘆筍品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2023,39(5):120-127.doi:10.11975/j.issn.1002-6819.202210073 http://www.tcsae.org
CHAI Yanjun, ZHANG Rui, JIANG Jianfeng, et al. Effects of the combined biogas slurry with chemical fertilizer on soil fertility andquality in field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(5): 120-127. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.202210073 http://www.tcsae.org
2022-10-11
2023-02-25
浙江省自然科學(xué)基金項(xiàng)目(LQ21D030001);浙江省“三農(nóng)六方”科技協(xié)作項(xiàng)目(2020SNLF002,2020SNLF027)
柴彥君,博士,副研究員,研究方向?yàn)橥寥栏牧寂c培肥。Email:chaiyanjun@zust.edu.cn
江建鋒,高級農(nóng)藝師,研究方向?yàn)閺U棄生物質(zhì)綜合利用。Email:13505708635@163.com