王 惠,凌 剛,查 晴,鐘華莉,王文娥,胡笑濤
肥料種類與濃度對(duì)灌水器堵塞特征的影響及防堵策略
王 惠,凌 剛,查 晴,鐘華莉,王文娥※,胡笑濤
(西北農(nóng)林科技大學(xué)旱區(qū)農(nóng)業(yè)工程教育部重點(diǎn)試驗(yàn)室,楊凌 712100)
為降低堵塞風(fēng)險(xiǎn),延長(zhǎng)灌溉系統(tǒng)使用壽命,提高灌溉施肥均勻度,研究通過3種滴灌帶(管)水肥一體化長(zhǎng)周期堵塞試驗(yàn),測(cè)試尿素、硫酸鉀、氯化鉀、磷酸一銨、磷酸二銨在不同濃度(0、0.4、0.8、1.0、1.2 g/L)滴灌時(shí)各灌水器堵塞性能,結(jié)合場(chǎng)發(fā)射掃描電鏡、EDS表面能譜分析和X射線衍射儀等物質(zhì)分析方法,探究肥料種類及濃度對(duì)灌水器堵塞及堵塞物質(zhì)累積的影響,并揭示水肥一體化滴灌灌水器化學(xué)堵塞形成過程。結(jié)果顯示:不同肥料種類、濃度對(duì)迷宮灌水器造成的影響不同。隨著濃度增加,尿素灌溉下側(cè)翼迷宮滴灌帶相對(duì)流量下降速率加快,存在堵塞風(fēng)險(xiǎn);磷酸二銨灌溉下,發(fā)生明顯堵塞;片狀滴灌帶相對(duì)平均流量和灌溉均勻系數(shù)隨灌水次數(shù)增加而降低,且降幅隨肥液濃度增大而增大。堵塞物干質(zhì)量都隨著灌水次數(shù)的增加而增加,與灌水器的相對(duì)流量和灌溉均勻系數(shù)隨著灌水次數(shù)的增加而降低的趨勢(shì)吻合。隨著肥液濃度的升高,水流剪切力對(duì)堵塞物質(zhì)影響越小。因此,磷酸二銨的施肥濃度以不超過1.2 g/L為宜。研究可為控制滴灌系統(tǒng)化學(xué)堵塞、延長(zhǎng)灌水器使用壽命提供依據(jù)。
灌溉;肥料;水肥一體化;滴灌;灌水器;抗堵塞性能
隨著節(jié)水灌溉面積的穩(wěn)步增加,滴灌已成為中國西北和東北地區(qū)農(nóng)業(yè)節(jié)水增效的重要灌溉方式[1]。除節(jié)水優(yōu)勢(shì)外,滴灌技術(shù)還可將肥料溶解于水中,定時(shí)、定量、均勻地輸送到作物根區(qū)[2-3],為作物生長(zhǎng)發(fā)育提供良好的水肥環(huán)境;水肥的同步、定量供給也使得肥料損失降到最低[4-5],大大提高肥料利用率,為過量施肥引起的污染問題提供有力的解決途徑。
但在實(shí)踐過程中,不合理的隨水施肥方法易引起滴灌灌水器堵塞[6-7],降低灌溉施肥均勻度[8-9],造成作物減產(chǎn)[10]。由于滴灌灌水器流道尺寸狹?。▋H0.3~1.2 mm),極易被水源中的雜質(zhì)堵塞[11-12]。液態(tài)肥料價(jià)格較高,而常見固態(tài)肥,未溶解的肥料顆粒、溶解的肥料離子與水中的離子生成難溶物質(zhì)也會(huì)加劇灌水器堵塞的形成和發(fā)展[13],堵塞問題仍是制約滴灌系統(tǒng)在田間應(yīng)用的主要因素[14-16]。
目前針對(duì)水肥一體化滴灌灌水器堵塞程度的研究較多。王心陽[17]研究了溫室條件下固體肥單獨(dú)施用對(duì)不同直徑的滴灌管灌溉均勻度及灌水器流量的影響,發(fā)現(xiàn)隨水施肥的堵塞位置多數(shù)在灌水器流道入口。官雅輝[6]研究表明渾水施肥可以增強(qiáng)灌水器的輸沙能力。夏彬蕓等[13]研究了肥液濃度、灌水器流量、灌水器工作壓力、過濾器類型、灌水器類型5個(gè)因素對(duì)灌水器堵塞的影響,獲得了不易引起堵塞的最佳試驗(yàn)參數(shù)組合及灌溉模式。大部分研究均集中于描述灌水器堵塞狀況并以分析抗堵塞性能為主。
實(shí)際上,不同肥液種類及濃度對(duì)于灌水器堵塞特征影響不盡相同,分析施用不同肥料情況下灌水器堵塞情況及特征,有利于從根源上減少堵塞風(fēng)險(xiǎn),提高田間肥料施用的合理性。
此外,也有不少學(xué)者從水肥一體化灌溉條件下灌水器流道內(nèi)部化學(xué)反應(yīng)的機(jī)理著手研究,以期提出更為完善的抗堵塞策略。陳紅等[18]等以灌水器的平均相對(duì)流量和首次發(fā)生堵塞的時(shí)間為試驗(yàn)指標(biāo)進(jìn)行試驗(yàn)研究,建立了沼液滴灌系統(tǒng)灌水器堵塞預(yù)測(cè)模型。SUAREZ-REY等[19]針對(duì)灌水器堵塞物質(zhì)中的碳酸鹽等進(jìn)行研究,發(fā)現(xiàn)添加微生物制劑可以降低此類化學(xué)沉淀的含量。SONG等[20]研究了再生水滴灌系統(tǒng)中的污垢形成和化學(xué)控制并揭示灌水器內(nèi)部生物膜的生長(zhǎng)和生存機(jī)制。ZHANG[21]則在綜合考慮灌水器類型和水礦化度的基礎(chǔ)上,建立了灌水器內(nèi)部化學(xué)污垢生長(zhǎng)的動(dòng)力學(xué)模型。
而關(guān)于肥料灌溉的抗堵塞策略,目前使用較多的為加氯加酸方法[22-23],但對(duì)于具體處理參數(shù)及數(shù)值還未有統(tǒng)一標(biāo)準(zhǔn);同時(shí),也出現(xiàn)了許多其他方法和措施,例如:電化學(xué)控制[24]、沖洗[25]、微納米氣泡法[26-27]、電磁法[28]等。然而這些方法大部分對(duì)于田間實(shí)際應(yīng)用要求較高,不便實(shí)施。因此,本文通過滴灌施肥堵塞試驗(yàn),分析肥料種類及濃度對(duì)灌水器堵塞的影響,并結(jié)合場(chǎng)發(fā)射掃描電鏡(field emission scanning electron microscopy,F(xiàn)ESEM)、EDS表面能譜分析(energy dispersive spectroscopy,EDS)和X射線衍射儀(X-ray diffractometer,XRD)等技術(shù)手段,對(duì)灌水器內(nèi)部堵塞物質(zhì)形貌及組成進(jìn)行分析,尋找較優(yōu)灌溉濃度,以期從根源上減少堵塞發(fā)生風(fēng)險(xiǎn),為抑制滴灌系統(tǒng)化學(xué)堵塞提供理論依據(jù)。
供試滴灌帶分別為內(nèi)鑲圓柱滴灌管(E1)、內(nèi)鑲片狀滴灌帶(E2)及側(cè)翼迷宮滴灌帶(E3),基本參數(shù)如表1。每種灌水器設(shè)置3個(gè)重復(fù),取重復(fù)試驗(yàn)平均值作為最終結(jié)果。每條滴灌帶布設(shè)8 m,灌水器間距為0.3 m,單條滴灌帶共計(jì)25個(gè)灌水器。
表1 灌水器種類及基本結(jié)構(gòu)尺寸
注:表中額定壓力和額定流量為廠家給定;壓力流量關(guān)系由水力性能試驗(yàn)測(cè)定(GB/T 17187-2009),式中為灌水器流量,L·h-1;為壓力,MPa。制造偏差根據(jù)微灌灌水器標(biāo)準(zhǔn)測(cè)定(SL/T 67.2-1994)。
Note: The rated pressure and rated flow discharge in the table are given by the manufacturers; The relationship between pressure and discharge was determined by hydraulic performance test (GB/T 17187-2009), whereis the discharge of the emitter, L·h-1;is the pressure, MPa. Manufacturing deviations were measured according to micro-irrigation emitters-micro tubings, micro tape (SL/T 67.2-1994).
試驗(yàn)用水為當(dāng)?shù)刈詠硭?,主要離子及參數(shù)如表2所示。試驗(yàn)肥料為常用水溶性固態(tài)肥料,分別為尿素(urea,UREA)、硫酸鉀(potassium sulphate,SOP)、氯化鉀(muriate of potash,MOP)、磷酸一銨(monoammonium phosphate,MAP)、磷酸二銨(diammonium phosphate,DAP),主要參數(shù)見表3。
表2 楊凌自來水水質(zhì)參數(shù)
注:EC為電導(dǎo)率。
Note: EC refers to electrical conductivity.
表3 肥料參數(shù)
試驗(yàn)在陜西省楊凌區(qū)西北農(nóng)林科技大學(xué)水工水力學(xué)與泥沙試驗(yàn)大廳進(jìn)行。系統(tǒng)布置如圖1所示,試驗(yàn)裝置由具有攪拌功能的蓄水箱、水泵、過濾器、壓力傳感器、管道首部系統(tǒng)、18條毛管、灌水器等組成。其中,水箱為高1.55 m,底部直徑0.745 m的圓柱形箱體,通過攪拌機(jī)將肥料溶解充分;自吸泵額定壓力為200 kPa,工作壓力為100 kPa。過濾器采用120目疊片過濾器(過濾精度為0.125 mm)。傳感器精度為0.01 kPa,量程0~0.6 MPa。
1.供水水箱 2.攪拌器 3.水泵 4.過濾器 5.水源進(jìn)水閥 6.水源排水閥 7.壓力傳感器 8.水源出口閥 9.待測(cè)滴灌帶 10.量杯
灌溉試驗(yàn)為全組合方式,采用短周期間歇施肥滴灌方法,以作物生育期最多施肥次數(shù)為根據(jù),設(shè)置每組處理灌水周期為20 d,每天灌水1次。灌水完成后測(cè)量灌水器流量。灌水前使用工業(yè)級(jí)水溫溫度計(jì)(范圍?30~100 ℃,精度1 ℃)測(cè)量水溫。
根據(jù)施肥技術(shù)規(guī)范(NY/2623-2014),為避免肥害燒苗,溶液電導(dǎo)率不大于3 mS/cm,且灌溉時(shí)長(zhǎng)一般為10~30 min。因此設(shè)置每次灌水時(shí)長(zhǎng)為30 min,間隔30 min;由于尿素肥液電導(dǎo)率不可得,參考胡仁等[29]研究,試驗(yàn)設(shè)置濃度(0~1.6 g/L)無燒苗風(fēng)險(xiǎn),故將尿素肥液濃度與其余肥料濃度設(shè)置保持一致。
試驗(yàn)整體分為兩個(gè)階段:第一階段在較高肥液濃度(1.2 g/L)灌溉條件下,觀察各灌水器堵塞程度。若此濃度灌溉下,灌水器發(fā)生堵塞,則可進(jìn)一步對(duì)不同濃度灌溉下堵塞情況進(jìn)行研究。
第二階段針對(duì)在第一階段發(fā)生堵塞的灌水器,設(shè)置不同濃度(0、0.4、0.8、1.0 g/L)肥液進(jìn)行灌溉以便觀察濃度對(duì)灌水器堵塞特征的影響。
1)評(píng)價(jià)灌水器特性指標(biāo):相對(duì)平均流量(Q)和灌溉均勻系數(shù)(C)。采用稱重法測(cè)定灌水器流量,用量杯接取灌水結(jié)束前10 min內(nèi)灌水器流出水量,用電子天平(常州幸運(yùn),XY-1B/2C,精度0.01 g)稱取質(zhì)量,換算為灌水器流量(L/h)。根據(jù)規(guī)范(GB/T 17188—1997),認(rèn)為Q或C降低25%以上即為堵塞。由于試驗(yàn)周期較長(zhǎng),為減少溫度影響,試驗(yàn)結(jié)果均經(jīng)過應(yīng)用溫差計(jì)算式[30]修正。
由于灌溉過程中滴灌帶較長(zhǎng)引起沿程壓力逐漸下降,不同位置處灌水器的作用壓力不同,其對(duì)應(yīng)流量不同。測(cè)定灌水器壓力流量關(guān)系,根據(jù)其得到不同位置處灌水器額定流量q。以堵塞過程中測(cè)定的灌水器流量q與額定流量q作比,可反映灌水器流量變化情況及堵塞程度,計(jì)算式如下:
式中Q為灌水器相對(duì)平均流量,%;q為根據(jù)灌水器壓力流量關(guān)系曲線計(jì)算出的額定流量值,L/h;q為各灌水器流量,L/h,為灌水器數(shù)量。
灌溉均勻系數(shù)(C)可根據(jù)克里斯琴森(Christiansen)公式計(jì)算,如下:
2)灌水器內(nèi)堵塞取樣及質(zhì)量測(cè)定:灌溉結(jié)束后,將所有灌水器從滴灌帶上取下、收集,自進(jìn)水口編號(hào)1~25。界定1~8號(hào)、9~17號(hào)、18~25號(hào)灌水器分別為首部、中部、尾部灌水器。將所有灌水器機(jī)械剝開后,放置于內(nèi)含20 mL去離子水的自封袋中,置于超聲波清洗儀(深圳春霖,CR-040S,240 W,40 kHz)中處理1 h,再用毛刷等工具剝落灌水器內(nèi)部剩余堵塞物質(zhì),采用電子天平(長(zhǎng)沙威衡,8068-Series,精度0.001 g)稱量初始狀態(tài)與烘干后的灌水器樣品質(zhì)量,2次差值即為堵塞物質(zhì)質(zhì)量。
3)使用場(chǎng)發(fā)射掃描電鏡(FESEM)技術(shù)觀測(cè)灌水器內(nèi)部堵塞物質(zhì)表面形貌;EDS表面能譜分析(EDS)技術(shù)用以檢測(cè)堵塞物質(zhì)組成元素;X射線衍射儀(XRD)則用以分析堵塞物質(zhì)主要礦物成分。
分別采用Microsoft Excel和SPSS 22.0計(jì)算和分析基本數(shù)據(jù)。采用回歸分析方法研究濃度增加對(duì)灌水器堵塞的影響。用方差分析(ANOVA)分析堵塞物質(zhì)量處理之間的顯著差異。
2.1.1 常用肥料灌溉下平均流量及灌溉均勻系數(shù)的變化
E1灌溉過程中,肥料種類與對(duì)照組表現(xiàn)相差不大,相對(duì)流量整體處于波動(dòng)狀態(tài),基本保持在90%以上(圖2)。
E2灌溉時(shí),各肥料表現(xiàn)略有不同:MOP和SOP處理下,相對(duì)流量波動(dòng)幅度較大;MOP處理下,由于個(gè)別灌水器的偶發(fā)性堵塞,E2灌溉均勻系數(shù)略低;MAP處理下,E2的相對(duì)流量在第1~10次灌水期間整體低于對(duì)照組,第12和19次灌水后明顯回升;DAP處理下,Q在前4次灌水高于對(duì)照組,第5次灌水后波動(dòng)下降,灌水結(jié)束后相對(duì)流量降低至75%以下,均勻系數(shù)降低到45.75%。
MOP、SOP、UREA肥料處理下,E3的Q和C略低于對(duì)照組,但均處于85%以上;隨著灌水次數(shù)的增加,波動(dòng)性升高。MAP處理下,E3相對(duì)流量在前10次灌水中波動(dòng)上升,結(jié)束后Q為98.87%,未見堵塞。DAP處理下,E3相對(duì)流量變化曲線整體低于對(duì)照組,14~18次灌水期間雖緩慢上升,但仍低于初始流量,系統(tǒng)運(yùn)行結(jié)束時(shí)相對(duì)流量比初始流量降低1.18個(gè)百分點(diǎn),均勻系數(shù)在整體較為穩(wěn)定。
2.1.2 不同肥料處理下灌水器的堵塞特征
E1在各肥料處理下,相對(duì)流量及灌溉均勻系數(shù)均可維持在較高水平(圖2)。E2在灌水期間,波動(dòng)性較強(qiáng)且波動(dòng)幅度較大,尤其在DAP處理下,從第11次灌水開始出現(xiàn)持續(xù)波動(dòng)下降趨勢(shì),第20次灌水時(shí)相對(duì)流量小于75%。E3整體波動(dòng)性不強(qiáng),灌水結(jié)束后,未見明顯堵塞,但在UREA處理下,相對(duì)平均流量從第17次灌水開始出現(xiàn)持續(xù)下降趨勢(shì)。
雖然施用UREA處理下最終未見明顯堵塞情況,但相對(duì)平均流量從第17次灌水開始出現(xiàn)持續(xù)下降趨勢(shì)。為進(jìn)一步探究UREA處理下灌水器抗堵塞性能,補(bǔ)充了1.6 g/L濃度處理下UREA灌溉試驗(yàn),發(fā)現(xiàn)確實(shí)存在堵塞風(fēng)險(xiǎn),故也將UREA處理納入研究。因此,針對(duì)UREA和DAP兩種肥料和其對(duì)應(yīng)的灌水器(E2和E3)分別進(jìn)行不同濃度的抗堵塞試驗(yàn)。
2.2.1 內(nèi)鑲貼片式灌水器E2
圖3給出不同濃度DAP灌溉下E2的Q和C變化情況。灌水結(jié)束時(shí),0(CK)、0.4、0.8、1.0、1.2 g/L濃度下相對(duì)流量相較初始流量(100%)分別降低4.68、2.80、14.39、17.93、30.68個(gè)百分點(diǎn)。隨著濃度升高,相對(duì)流量減小,流量恢復(fù)現(xiàn)象減少,間歇灌水沖洗作用逐漸減弱。
圖2 較高肥料濃度(1.2 g·L-1)下各灌水器的相對(duì)流量和灌溉均勻系數(shù)變化
圖3 不同濃度磷酸二銨滴灌下E2相對(duì)流量和灌溉均勻系數(shù)變化
灌水結(jié)束后,0(CK)、0.4、0.8、1.0、1.2 g/L均勻系數(shù)降幅分別為1.71、14.61、23.56、54.25個(gè)百分點(diǎn),灌溉均勻系數(shù)隨灌水次數(shù)增加而減小,且減小幅度隨肥液濃度增大而增大。
2.2.2 側(cè)翼迷宮式灌水器E3
圖4給出不同濃度UREA灌溉下E3的Q和C變化情況。灌水結(jié)束后,0(CK)、0.4、0.8、1.0、1.2 g/L對(duì)應(yīng)相對(duì)流量分別為99.26%、97.71%、94.57%、92.90%、90.48%,即肥液濃度越大,相對(duì)流量下降速率越快。0.4~1.0 g/L濃度范圍內(nèi),隨著濃度增加灌水器堵塞發(fā)生時(shí)間提前,堵塞持續(xù)時(shí)間延長(zhǎng)。大部分灌水器堵塞具有持續(xù)性,部分灌水器堵塞部位被沖開,再次灌水時(shí)堵塞物重新積累,故出現(xiàn)堵塞程度下降-上升-下降的現(xiàn)象。
圖4 不同濃度尿素滴灌下E3相對(duì)流量和灌溉均勻系數(shù)的變化
2.3.1 堵塞物質(zhì)質(zhì)量及堵塞位置分布
圖5給出UREA(E3)及DAP(E2)在1.2 g/L處理下灌水器堵塞物質(zhì)質(zhì)量在時(shí)間和空間維度的變化。兩種灌水器的堵塞物質(zhì)量均隨灌水次數(shù)增加而增加,E2灌水前10次質(zhì)量增加幅度較大(0.101 g),后10次灌水質(zhì)量增加幅度逐漸減?。坏?0次灌水時(shí)首部的堵塞物質(zhì)質(zhì)量最大,灌水結(jié)束時(shí)首部和尾部堵塞物質(zhì)量基本相同。E3灌水前15次質(zhì)量增加幅度較小,后5次灌水質(zhì)量增加幅度最大(1.978 g)。而其各個(gè)位置的堵塞物質(zhì)量隨著灌水次數(shù)增加而波動(dòng),前15次灌水首部質(zhì)量均大于中部,灌水結(jié)束時(shí),中部堵塞物質(zhì)量最大,首部次之,尾部最小。
注:不同字母代表不同位置處堵塞物質(zhì)質(zhì)量存在顯著的差異(P<0.05)。
2.3.2 堵塞物質(zhì)表面形貌及組成成分
通過場(chǎng)發(fā)射掃描電鏡得到的灌水器內(nèi)部堵塞物質(zhì)表面形貌(圖6、圖7)。灌水器內(nèi)壁附著的堵塞物質(zhì)表面基本相似且堵塞物質(zhì)外層呈現(xiàn)鱗片狀高低分布,隨著灌水次數(shù)增多,這種特征表現(xiàn)得逐漸明顯。初始堵塞物質(zhì)表面較為光滑,僅出現(xiàn)局部凸起,且大部分呈現(xiàn)緩升緩降的丘陵形態(tài)。灌溉過程中,堵塞物質(zhì)表面的局部凸起逐漸高于初始狀態(tài),附著物質(zhì)較薄,鱗片狀結(jié)構(gòu)增多,表面粗糙度增大;灌溉結(jié)束后,附著物質(zhì)層加厚,堵塞物質(zhì)表面粗糙程度更大,鱗片結(jié)構(gòu)逐漸加密,由寬大鱗片轉(zhuǎn)為細(xì)密鱗片結(jié)構(gòu)。灌溉水源中的化學(xué)物質(zhì)形成的沉淀、絮凝被微生物吸附或粘附于流道表面,使得堵塞物質(zhì)表面變得較為粗糙,凸起增加,堵塞物質(zhì)表面結(jié)構(gòu)更加緊密,空隙較少,表面的“溝壑”多。且堵塞物質(zhì)的平均厚度較灌水之前有所增加,這是由灌溉水中的營養(yǎng)鹽、有機(jī)物及大量的陰陽離子發(fā)生化學(xué)反應(yīng)形成不可溶的沉淀物質(zhì)包裹所致。
a. 第5次灌溉后a. After 5th irrigationb. 第10次灌溉后b. After 10th irrigationc. 第15次灌溉后c. After 15th irrigationd. 第20次灌溉后d. After 20th irrigation
a. 第5次灌溉后a. After 5th irrigationb. 第10次灌溉后b. After 10th irrigationc. 第15次灌溉后c. After 15th irrigationd. 第20次灌溉后d. After 20th irrigation
經(jīng)由能譜分析(EDS)得到,灌水器內(nèi)部堵塞物質(zhì)組成元素除含量較多的O和C外,還有Si、P、Na、Mg、Al、N、K、Se等元素。同時(shí)結(jié)合衍射儀(XRD)分析結(jié)果,灌水器內(nèi)部堵塞物質(zhì)主要礦物成分為石英(SiO2)、銨石膏((NH4)2Ca(SO4)2H2O)、白云母(K,Ba,Na)0.75(Al,Mg,Cr,V)2(Si,Al,V)4O10(OH,O)2、板磷鋁礦(AlPO4)、硫氰酸鎘硒脲(C4H8CdN6S2Se2)、硫氰酸鎘硫脲(C4H8CdN6S4)以及鐵鋰云母(KAl(FeLi)(Si3Al)O10F2)、二硫化硅(SiS2)和碳(C)。其中UREA處理下,堵塞物質(zhì)成分主要包括石英、銨石膏、白云母、硫氰酸鎘硒脲、硫氰酸鎘硫脲;DAP處理下,堵塞物質(zhì)成分主要包括石英、銨石膏、鎘硒脲硫氰酸、鎘硫脲硫氰酸、板磷鋁礦(AlPO4)、鐵鋰云母(KAl(FeLi)(Si3Al)O10F2)、二硫化硅(SiS2)和碳(C)。相較于UREA處理,DAP處理下較多的P元素,則來自于局部形成的板磷鋁礦(AlPO4)。而堵塞物質(zhì)中的C元素,則主要作為其余沉淀和鹽類礦物的構(gòu)成部分。
通過滴灌施肥堵塞試驗(yàn),測(cè)試常見肥料種類及濃度對(duì)灌水器堵塞性能的影響。堵塞物質(zhì)的表面形貌特征是環(huán)境多重因素共同影響下的整體體現(xiàn)[31]。整體堵塞過程呈現(xiàn)動(dòng)態(tài)波動(dòng)且逐漸降低的趨勢(shì),并伴隨一定的可恢復(fù)性。由于在灌溉間隙肥液中的不溶物質(zhì)及反應(yīng)形成的各項(xiàng)沉淀淤積在灌水器流道內(nèi),造成堵塞,相對(duì)流量隨之減小;但再次灌水時(shí),在灌水器內(nèi)的部分堵塞物質(zhì)受到水流剪切力剝落排出,相對(duì)流量在不同灌水次數(shù)間波動(dòng)。不同肥料灌溉下灌水器堵塞程度不同,需基于水肥一體化滴灌系統(tǒng)的堵塞過程和特征,提出相應(yīng)的防治措施。
在肥料選擇方面,建議采用盡量避免使用磷酸二銨和尿素進(jìn)行灌溉。已有研究表明,磷酸二銨、磷酸二鉀和磷酸鈣的施用加重了堵塞問題[32-33],多磷酸銨的應(yīng)用也會(huì)造成堵塞風(fēng)險(xiǎn)。雖然磷酸可以用來避免灌水器堵塞,但是,磷酸的儲(chǔ)存和田間應(yīng)用可能會(huì)對(duì)農(nóng)民的健康造成毒害,并腐蝕滴灌設(shè)備。
試驗(yàn)結(jié)果表明,在1.2 g/L濃度下,各肥料溶解后的pH值不同;MOP、UREA、MAP、SOP、DAP處理下,肥液pH值分別為7.70、7.89、5.69、6.95、8.17。試驗(yàn)灌溉水(楊凌當(dāng)?shù)厮槿鯄A性水,肥料溶解前灌溉水pH值為7.89。尿素處理和DAP處理后,灌溉水分別呈現(xiàn)中性和弱堿性,導(dǎo)致鹽分沉淀增多。其余處理灌溉水呈酸性,抑制鹽沉淀的形成,從而降低堵塞的風(fēng)險(xiǎn)。其中,MAP處理的灌水器堵塞相對(duì)較輕;在低濃度條件下,灌水器堵塞的風(fēng)險(xiǎn)較低。MAP和DAP價(jià)格相近,分別為2 600和2 400元/t[33],故或可使用MAP代替DAP進(jìn)行水肥一體化滴灌以補(bǔ)充作物所需磷養(yǎng)分。另外,雖然尿素灌溉時(shí)E3未見明顯堵塞現(xiàn)象,但由于在最后4次灌溉過程中,其相對(duì)流量已產(chǎn)生持續(xù)下降趨勢(shì)。即使用小尺寸灌水器灌溉時(shí),尿素灌溉存在一定堵塞風(fēng)險(xiǎn)。因此,在滿足作物養(yǎng)分所需情況下,建議使用銨態(tài)氮肥代替尿素。
在肥料濃度選擇方面,研究結(jié)果表明,低于1.2 g/L的施肥濃度可以保持灌水器較為穩(wěn)定的抗堵塞性能,有效緩解灌區(qū)灌水器堵塞問題。然而,不同作物施用肥料的最佳濃度不同。因此,建議在滿足灌水器抗堵塞能力的基礎(chǔ)上(≤1.2 g/L),綜合考慮作物生長(zhǎng)及土壤肥力等因素進(jìn)行選擇。
在灌水器選擇方面,由于灌水器流道結(jié)構(gòu)是影響灌水器堵塞的最直接因素之一,灌水器(E1)流道尺寸大,對(duì)于各種肥料的抗堵塞能力較強(qiáng),但成本較高;而小尺寸流道灌水器(E2、E3)對(duì)于不同肥料種類抗堵塞敏感性不同。針對(duì)不同尺寸灌水器,實(shí)際應(yīng)用時(shí),對(duì)于需要長(zhǎng)期或輪換種植的作物,大流道灌水器或許更加合適;而對(duì)于單季作物,則需衡量抗堵塞性能和系統(tǒng)投入成本之間的關(guān)系,以確定合適的灌水器種類。
水源中的固體顆粒物、有機(jī)質(zhì)及化學(xué)沉淀等多物質(zhì)在水動(dòng)力學(xué)條件下通過碰撞、絮凝、生物粘附過程附著在堵塞物質(zhì)表面,并不斷吸附或捕捉固體顆粒及其他絮凝體形成膜結(jié)構(gòu)。灌水器流道內(nèi)壁的水流一方面為膜結(jié)構(gòu)的形成輸送基質(zhì),另一方面已經(jīng)形成的膜在水力剪切力的作用下不斷發(fā)生脫落;同時(shí),隨著系統(tǒng)運(yùn)行,水中化學(xué)反應(yīng)逐漸發(fā)生,沉淀物質(zhì)沉積及絮凝團(tuán)聚體附著在灌水器流道內(nèi)壁,增加壁面粗糙度,改變固體泥沙顆粒與壁面的碰撞特性,加劇顆粒物及化學(xué)沉淀的附著沉積。因此,需要采取措施對(duì)流道中的堵塞物質(zhì)進(jìn)行控制。
堵塞物質(zhì)含有大量的石英,需要進(jìn)一步提高灌溉水的過濾效率,降低灌溉水中固體懸浮物的含量。CAPRA等[34]指出灌溉水中總懸浮物濃度不應(yīng)大于50 mg/L,但這一閾值并未考慮到施肥的影響。水中的懸浮物可以作為物理絮凝和化學(xué)吸附之間的橋梁。因此,需要進(jìn)行更多的研究來量化總懸浮固體的控制閾值。此外,大多數(shù)固體可以排放到灌水器通道的外部[35]。通過優(yōu)化灌水器的通道結(jié)構(gòu),可以提高灌水器的自行排沙能力[36]。另外,堵塞物質(zhì)中還含有銨石膏((NH4)2Ca(SO4)2·H2O)、白云母(K,Ba,Na)0.75(Al,Mg,Cr,V)2(Si,Al,V)4O10(OH,O)2、板磷鋁礦(AlPO4)、硫氰酸鎘硒脲(C4H8CdN6S2Se2)、硫氰酸鎘硫脲(C4H8CdN6S4)以及鐵鋰云母(KAl(FeLi)(Si3Al)O10F2),進(jìn)一步加劇灌水器堵塞問題。由于Ca2+。Mg2+、Al3+等鹽離子、硅酸鹽和微生物的存在,水質(zhì)成為影響磷肥滴灌系統(tǒng)堵塞行為的重要因素。因此,對(duì)水質(zhì)進(jìn)行合理完善的評(píng)估也可減少化學(xué)堵塞的發(fā)生。
1)不同肥料種類對(duì)滴灌帶的水力特性影響不同,鉀肥對(duì)內(nèi)鑲圓柱滴灌管(E1)、內(nèi)鑲片狀滴灌帶(E2)的水力性能基本沒有影響,對(duì)側(cè)翼迷宮滴灌帶(E3)的抗堵塞性能影響較小。磷酸一銨對(duì)E1的水力性能沒有影響,對(duì)內(nèi)E2、E3會(huì)造成輕微堵塞。磷酸二銨對(duì)E1的水力性能沒有影響,對(duì)E3會(huì)造成輕微堵塞,對(duì)E2會(huì)造成嚴(yán)重堵塞。尿素對(duì)E1、E2的水力性能基本沒有影響,對(duì)E3會(huì)造成嚴(yán)重堵塞。建議避免使用尿素和磷酸二銨進(jìn)行灌溉。
2)施用尿素和磷酸二銨時(shí),隨著堵塞濃度增大,堵塞程度嚴(yán)重。隨著尿素濃度的增加,側(cè)翼迷宮滴灌帶的相對(duì)流量減小越快,在0.4~0.8 g/L范圍內(nèi),均勻系數(shù)隨著濃度的增加而上升,而1.0~1.2 g/L區(qū)間均勻系數(shù)隨著濃度的增加而下降。隨著磷酸二銨的濃度增加,片狀滴灌帶相對(duì)平均流量和灌溉均勻系數(shù)隨灌水次數(shù)增加而降低,且降幅隨肥液濃度增大而增大。建議磷酸二銨的施肥濃度以不超過1.2 g/L為宜。
3)堵塞物干質(zhì)量隨著灌水次數(shù)的增加而增加,與灌水器的相對(duì)流量和灌溉均勻系數(shù)隨著灌水次數(shù)的增加而降低的趨勢(shì)吻合。肥液濃度越高,化學(xué)堵塞物質(zhì)增加得越多,水流剪切力作用對(duì)其影響越小。需要進(jìn)一步提高灌溉水的過濾效率,降低灌溉水中固體懸浮物的含量,并對(duì)水質(zhì)進(jìn)行合理完善的評(píng)估,從而減少水肥一體化滴灌系統(tǒng)化學(xué)堵塞的發(fā)生。
[1] 吳婉瑩. 石羊河流域水肥一體化對(duì)滴灌灌水器堵塞和施肥均勻性的影響研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2019.
WU Wanying. Affecting Factors about Clogging of Irrigation Emitter and Fertilizer Efficiency under Fertigation in Shiyang River Basin[D]. Yangling: Northwest Agriculture and Forestry University, 2019. (in Chinese with English abstract)
[2] JACKSON R C, KAY M G. Use of pulse irrigation for reducing clogging problems in trickle emitters[J]. Journal of Agricultural Engineering Research, 1987, 37(3): 223-227.
[3] TAYLOR H D, BASTOS R K X, PEARSON H W, et al. Drip irrigation with waste stabilisation pond effluents: Solving the problem of emitter fouling[J]. Water Science and Technology, 1995, 31(12): 417-424.
[4] 康紹忠. 農(nóng)業(yè)水土工程概論[M]. 北京:中國農(nóng)業(yè)出版社,2007.
[5] 李久生,李益農(nóng),栗巖峰,等. 現(xiàn)代灌溉水肥精量調(diào)控原理與應(yīng)用[J]. 中國水利水電科學(xué)研究院學(xué)報(bào),2018,16(5):373-384.
LI Jiusheng, LI Yinong, LI Yanfeng, et al. Principle and application of precise regulating water and fertilizers for modernized irrigation technologies[J]. Journal of China Institute of Water Resources and Hydropower Research, 2018, 16(5): 373-384. (in Chinese with English abstract)
[6] 官雅輝. 肥料類型及濃度對(duì)水肥一體化渾水滴灌滴頭輸沙能力的影響[D]. 北京:中國科學(xué)院大學(xué),2018.
GUAN Yahui. Effect of Fertilizer Type and Concentration on Sediment Transport Capacity of Dripper in Drip Fertigation with Muddy Water[D]. Beijing: University of Chinese Academy of Sciences, 2018. (in Chinese with English abstract)
[7] 李康勇,牛文全,張若嬋,等. 施肥對(duì)渾水灌溉滴頭堵塞的加速作用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(17):81-90.
LI Kangyong, NIU Wenquan, ZHANG Ruochan, et al. Accelerative effect of fertigation on emitter clogging by muddy water irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(17): 81-90. (in Chinese with English abstract)
[8] 王慧蕓,陳俊英,王耀民,等. 微咸水加肥灌溉下陶瓷灌水器與迷宮流道灌水器的抗堵塞性能[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(13):84-94.
WANG Huiyun, CHEN Junying, WANG Yaomin, et al. Anti-clogging performance of the ceramic emitters and labyrinth channel emitters under brackish water and fertilizer irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(13): 84-94. (in Chinese with English abstract)
[9] 劉璐,牛文全,武志廣,等. 施肥滴灌加速滴頭堵塞風(fēng)險(xiǎn)與誘發(fā)機(jī)制研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(1):228-236.
LIU Lu, NIU Wenquan, WU Zhiguang, et al. Risk and inducing mechanism of acceleration emitter clogging with fertigation through drip irrigation systems[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(1): 228-236. (in Chinese with English abstract)
[10] 王睿,李鵬,王文娥. 水肥一體化下不同滴灌帶配置對(duì)玉米產(chǎn)量的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(5):327-333.
WANG Rui, LI Peng, WANG Wen’e. Effects of different drip irrigation belts distributions on maize yield under water and fertilizer integration[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(5): 327-333. (in Chinese with English abstract)
[11] WANG Z Y, LI W J, ZHANG K N, et al. Observations of the distribution and flocculation of suspended particulate matter in the North Yellow Sea cold water mass[J]. Continental Shelf Research, 2020, 204: 104187.
[12] NAKAYAMA F S, BUCKS D A. Water quality in drip/trickle irrigation: A review[J]. Irrigation Science, 1991, 12(4): 187-192.
[13] 夏彬蕓,陳紅,李善軍,等. 滴灌條件下水溶性肥料對(duì)灌水器堵塞影響[J]. 中國農(nóng)業(yè)科技導(dǎo)報(bào),2019,21(7):120-127.
XIA Binyun, CHEN Hong, LI Shanjun, et al. Effect of emitter clogging on water-soluble fertilizerin drip irrigation system[J]. Journal of Agricultural Science and Technology, 2019, 21(7): 120-127. (in Chinese with English abstract)
[14] MA C J, XIAO Y, PUIG-BARGUéS J, et al. Using phosphate fertilizer to reduce emitter clogging of drip fertigation systems with high salinity water[J]. Journal of Environmental Management, 2020, 263: 110366.
[15] TAO R, HU B W, CHU G X. Impacts of organic fertilization with a drip irrigation system on bacterial and fungal communities in cotton field[J]. Agricultural Systems, 2020, 182: 102820.
[16] XIAO Y, SEO Y, LIN Y F, et al. Electromagnetic fields for biofouling mitigation in reclaimed water distribution systems[J]. Water Research, 2020, 173: 115562.
[17] 王心陽. 迷宮流道灌水器抗堵塞性能影響因素研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2015.
WANG Xinyang. Affecting Factors Aboutanti-Clogging Performance on Emitterwith Labyrinth Channel[D]. Yangling: Northwest Agriculture and Forestry University, 2015. (in Chinese with English abstract)
[18] 陳紅,夏彬蕓,邵顯,等. 沼液滴灌系統(tǒng)灌水器堵塞模型構(gòu)建及系統(tǒng)參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(3):99-106.
CHEN Hong, XIA Binyun, SHAO Xian, et al. Development of emitter clogging predication model for drip irrigation system with biogas slurry and optimization of its system parameters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(3): 99-106. (in Chinese with English abstract)
[19] SUAREZ-REY E M, CHOI C Y, MCCLOSKEY W B, et al. Effects of chemicals on root intrusion into subsurface drip emitters[J]. Irrigation and Drainage, 2006, 55(5): 501-509.
[20] SONG P, LI Y K, ZHOU B, et al. Controlling mechanism of chlorination on emitter bio-clogging for drip irrigation using reclaimed water[J]. Agricultural Water Management, 2017, 184: 36-45.
[21] ZHANG Z L L, YANG P L, ZHEN W G, et al. A kinetic model for the chemical clogging of drip irrigation system using saline water[J]. Agricultural Water Management, 2019, 223: 105696.
[22] GILBERT R G, NAKAYAMA F S, BUCKS D A, et al. Trickle irrigation: Emitter clogging and other flow problems[J]. Agricultural Water Management, 1981, 3(3): 159-178.
[23] 郝鋒珍. 化學(xué)處理對(duì)再生水滴灌灌水器堵塞及土壤環(huán)境與作物生長(zhǎng)的影響[D]. 北京:中國水利水電科學(xué)研究院,2018.
HAO Fengzhen. Effects of chemical injection on emitter clogging and soil-plantsystem under drip irrigation applying sewage effluent[D]. Beijing: China Institute of Water Resources and Hydropower Research, 2018. (in Chinese with English abstract)
[24] SONG P, XIAO Y, REN Z Y J, et al. Electrochemical biofilm control by reconstructing microbial community in agricultural water distribution systems[J]. Journal of Hazardous Materials, 2021, 403: 123616.
[25] 喻黎明,余興嬌,李娜,等. 不同沖洗措施下迷宮流道灌水器泥沙運(yùn)行分布機(jī)理研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(7):304-312.
YU Liming, YU Xingjiao, LI Na, et al. Sediment distribution mechanism of labyrinth-channel emitters under different flushing measures[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(7):304-312. (in Chinese with English abstract)
[26] 王逍遙. 沼液滴灌系統(tǒng)灌水器堵塞的微納米氣泡控制機(jī)理及應(yīng)用研究[D]. 石河子:石河子大學(xué),2020.
WANG Xiaoyao. Mechanism and Application Research of the Emitters Clogging Control Method by Micro-nano Bubbles of Drip Irrigation Systemswith Biogas Slurry[D]. Shihezi: Shihezi University, 2020. (in Chinese with English abstract)
[27] 譚思源, 沈巖, 劉雁征, 等. 納米氣泡對(duì)沼液滴灌系統(tǒng)灌水器的防堵塞效應(yīng)與機(jī)理[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(14):79-87.
TAN Siyuan, SHEN Yan, LIU Yanzheng, et al. Effects and mechanism of using Nanobubble to inhibit biofouling and scaling in biogas slurry drip irrigation emitters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(14): 79-87. (in Chinese with English abstract)
[28] XIAO Y, LIU Y Z, MA C J, et al. Using electromagnetic fields to inhibit biofouling and scaling in biogas slurry drip irrigation emitters[J]. Journal of Hazardous Materials, 2021, 401: 123265.
[29] 胡仁,肖大康,丁紫娟,等. 根區(qū)施氮對(duì)水稻苗期根系生長(zhǎng)及分布的影響[J]. 江蘇農(nóng)業(yè)科學(xué),2022,50(22):93-99.
HU Ren, XIAO Dakang, DING Zijuan, et al. Effects of nitrogen application in root zone on root growth and distribution of rice seedlings[J]. Jiangsu Agricultural Sciences, 2022, 50(22): 93-99. (in Chinese with English abstract)
[30] PEI Y T, LI Y K, LIU Y Z, et al. Eight emitters clogging characteristics and its suitability under on-site reclaimed water drip irrigation[J]. Irrigation Science, 2014, 32(2): 141-157.
[31] 陳明洪. 泥沙顆粒吸附磷的規(guī)律及微觀形貌變化的研究[D]. 清華大學(xué),2008.
CHEN Minghong. The Phosphorus Adsorption Rule and Surface Micro-topography Change of Sediment Particle[D]. Beijing: Tsinghua University, 2008. (in Chinese with English abstract)
[32] 楊曉奇,王珍,劉宏權(quán),等. 微咸水滴灌條件下氮磷肥協(xié)同施入對(duì)灌水器堵塞的影響[J]. 灌溉排水學(xué)報(bào),2020,39(7):68-76.
YANG Xiaoqi, WANG Zhen, LIU Hongquan, et al. Effect of phosphorus and nitrogen fertigation on clogging in drip emitters applying saline water[J]. Journal of Irrigation and Drainage, 2020, 39(7): 68-76. (in Chinese with English abstract)
[33] XIAO Y, PUIG-BARGUéS J, ZHOU B, et al. Increasing phosphorus availability by reducing clogging in drip fertigation systems[J]. Journal of Cleaner Production, 2020, 262: 121319.
[34] CAPRA A, SCICOLONE B. Recycling of poor quality urban wastewater by drip irrigation systems[J]. Journal of Cleaner Production, 2007, 15(16): 1529-1534.
[35] 侯鵬,肖洋,吳乃陽,等. 黃河水滴灌系統(tǒng)灌水器結(jié)構(gòu)-泥沙淤積-堵塞行為的相關(guān)關(guān)系研究[J]. 水利學(xué)報(bào),2020,51(11):1372-1382.
HOU Peng, XIAO Yang, WU Naiyang, et al. Cascade relationship between the emitter structure sedimentation clogging behavior in drip irrigation systems with Yellow River water[J]. Journal of Hydraulic Engineering, 2020, 51(11): 1372-1382. (in Chinese with English abstract)
[36] 胡宇祥,彭軍志,殷飛,等. 基于MATLAB與COMSOL聯(lián)合仿真的梯形迷宮滴頭流道優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2020,36(22):158-164.
HU Yuxiang, PENG Junzhi, YIN Fei, et al. Optimization of trapezoidal labyrinth emitter channel based on MATLAB and COMSOL co-simulation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(22): 158-164. (in Chinese with English abstract)
Effects of fertilizer type and concentration on the clogging characteristics of emitters and anti-clogging strategies
WANG Hui, LING Gang, ZHA Qing, ZHONG Huali, WANG Wen’e※, HU Xiaotao
(,,,712100,)
Water-saving irrigation area has increased steadily in China, with the rapid development of mechanized farming and land transfer. Among them, drip irrigation can greatly contribute to agricultural water-saving and high efficiency in northwest and northeast China. Drip irrigation can directly transport the fertilizer with water to the root zone of crops, and then effectively improve the fertilizer utilization rate. But the improper fertilization can lead to emitter blockage and a decrease in fertilization uniformity, resulting in crop yield loss. It is a high demand to implement chemical blockage in the field, due to the high requirements. In this study, the clogging performance was tested using commonly-used emitters (Inlaid cylindrical labyrinth emitter, E1; Inlaid patch labyrinth emitter, E2; Flanking labyrinth emitter, E3) with the Urea (UREA), Sulphate of potassium (SOP), Muriate of potash (MOP), Monoammonium phosphate (MAP), Diammonium phosphate (DAP) under different concentrations (0, 0.4, 0.8, 1.0, 1.2 g/L). The morphology and composition of clogged substances inside the emitter were analyzed to combine with field emission scanning electron microscopy (FESEM), surface energy spectrum analysis (EDS), and X-ray diffractometer (XRD). The sensitive fertilizer and emitter were then determined for the reasonable suggestions of fertigation. A theoretical basis was provided to inhibit the chemical clogging by an indoor simulated irrigation acceleration experiment. The results showed that there were different effects of fertilizers on the hydraulic properties and clog development of drip irrigation tape. There was no influence of potassium fertilizer on the hydraulic properties of E1 and E2, but little effect was found on the clogging degree of E3. Little influence was found in the mono-ammonium phosphate on the hydraulic performance of E1, but there was a slight blockage to E2 and E3. Diammonium phosphate was irrelated to the hydraulic performance of E1, but there was a slight blockage to E3, and a serious blockage to E2. Urea did not affect E1 and E2, but there was a clogging risk to E3. Therefore, the UREA and DAP were recommended to be avoided in irrigation. The uniformity increased with the increase of urea concentration in the range of 0.4-0.8 g/L, while the uniformity decreased in the range of 1.0-1.2 g/L. By contrast, the relative average discharge and irrigation uniformity of E3 decreased with the increase of irrigation times, whereas, the decrease rate increased with the increase of fertilizer concentration, as the diammonium phosphate concentration increased. Thus, the fertilization concentration of diammonium phosphate should not exceed 1.2 g/L. The local bulges on the surface of clogged substances were gradually higher than the initial state in the process of irrigation. The attached fouling was thinner, whereas, there was an increase in the scaly structures and the surface roughness. After irrigation, the attached fouling layer thickened, the surface roughness developed completely, and the structure was encrypted gradually from wide-scale structure to fine-scale structure. The dry weight of the clogged substance increased with the increase in the irrigation time. There was the consistency with the trend that the relative average discharge and uniformity of the emitter decreased with the increase in irrigation times. The more chemical fouling increased, the less the effect of water shear force on it, as the concentration of fertilizer solution increased. It is necessary to further improve the filtration efficiency of irrigation water, and reduce the content of suspended solids in irrigation water. A reasonable and perfect evaluation of water quality can also be conducted to reduce the occurrence of chemical blockage in fertigation systems.
irrigation; fertilizers; fertigation; drip irrigation; emitters; anti-clogging performance
10.11975/j.issn.1002-6819.202212095
S275.6
A
1002-6819(2023)-05-0053-08
王惠,凌剛,查晴,等. 肥料種類與濃度對(duì)灌水器堵塞特征的影響及防堵策略[J]. 農(nóng)業(yè)工程學(xué)報(bào),2023,39(5):53-60.doi:10.11975/j.issn.1002-6819.202212095 http://www.tcsae.org
WANG Hui, LING Gang, ZHA Qing, et al. Effects of fertilizer type and concentration on the clogging characteristics of emitters and anti-clogging strategies[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(5): 53-60. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.202212095 http://www.tcsae.org
2022-12-13
2023-02-24
國家自然科學(xué)基金項(xiàng)目(52079113,U2243235)
王惠,博士生,研究方向?yàn)楣?jié)水灌溉理論與技術(shù)。Email:huiwang_@nwsuaf.edu.cn
王文娥,博士,教授,研究方向?yàn)榱黧w機(jī)械與流體動(dòng)力學(xué)、節(jié)水灌溉理論與技術(shù)。Email:wangwene@nwsuaf.edu.cn