闞家強(qiáng),劉玉,周治國(guó),陳兵林,趙文青,胡偉,胡少鴻,陳陽(yáng),王友華
蕾鈴脫落對(duì)棉花果枝葉光合產(chǎn)物積累及“源”潛力的影響
南京農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/農(nóng)業(yè)農(nóng)村部作物生理生態(tài)與生產(chǎn)管理重點(diǎn)實(shí)驗(yàn)室/江蘇省現(xiàn)代作物生產(chǎn)協(xié)同創(chuàng)新中心,南京 210095
【目的】棉花蕾鈴脫落率常超過(guò)60%,蕾鈴脫落后的果枝葉常作為“輔助源”對(duì)其鄰位鈴的發(fā)育起重要作用。探明棉花果枝葉在其對(duì)位蕾鈴脫落后作為“輔助源”的潛力及其變化趨勢(shì),豐富棉花產(chǎn)量形成的“源-庫(kù)”調(diào)控理論,為棉花補(bǔ)償性生長(zhǎng)的栽培管理提供理論依據(jù)?!痉椒ā恳灾忻?25為材料于2021年分2個(gè)播期(5月10日、6月1日)在江蘇南京(118°50′E,32°02′N(xiāo))南京農(nóng)業(yè)大學(xué)牌樓試驗(yàn)站開(kāi)展田間試驗(yàn),研究果枝韌皮部阻斷條件下,去庫(kù)(化學(xué)法阻斷第四、五、六果枝第一果節(jié)“蕾-對(duì)位葉”系統(tǒng)與主莖連接的韌皮部,同時(shí)去除該系統(tǒng)蕾/花,模擬蕾鈴脫落條件)后棉花果枝葉形態(tài)特征、氣體交換參數(shù)、碳氮物質(zhì)及內(nèi)源激素含量等葉片源能力相關(guān)指標(biāo)的變化?!窘Y(jié)果】(1)去庫(kù)處理顯著增加了果枝葉中果糖、蔗糖、淀粉、纖維素含量,卻顯著降低了其葡萄糖含量。隨著時(shí)間的推延,去庫(kù)后1 d,淀粉的增幅最大,纖維素增幅則主要在去庫(kù)后3 d明顯變大;去庫(kù)后5 d,蔗糖、纖維素、淀粉的增幅較大。(2)去庫(kù)后,糖分更多地以非還原性糖形式積累;光合產(chǎn)物更多地向淀粉形式分配;多聚糖/低聚糖呈先降低后升高的趨勢(shì),而果枝葉C/N則呈現(xiàn)先升高后下降的趨勢(shì)。(3)去庫(kù)處理顯著降低了果枝葉凈光合速率和葉綠素含量。(4)果枝葉局部呈現(xiàn)紫紅色且花青素含量較對(duì)照升高了約2倍。(5)去庫(kù)后,果枝葉中ABA含量呈上升趨勢(shì)且顯著高于對(duì)照,IAA含量呈先上升后下降的趨勢(shì);GA3含量在去庫(kù)處理后顯著低于對(duì)照,而JA與SA含量則顯著高于對(duì)照。(6)果枝葉內(nèi)源激素動(dòng)態(tài)平衡在去庫(kù)后改變,ABA/IAA、JA/IAA呈現(xiàn)先減小后增大的趨勢(shì),而ABA/GA3、JA/GA3則不斷增大?!窘Y(jié)論】蕾鈴脫落后,果枝葉中糖分積累和分配形式及內(nèi)源激素信號(hào)發(fā)生顯著改變,并對(duì)其葉源能力產(chǎn)生顯著影響。短期內(nèi)(1—3 d),果枝葉中糖類(lèi)物質(zhì)整體含量增加,尤其是非還原性糖累積幅度較大,源能力快速增強(qiáng);但隨著時(shí)間推移,源能力增強(qiáng)幅度下降,同時(shí)葉片有早衰趨勢(shì),葉綠素降解加速。即蕾鈴脫落后,脫落蕾鈴的果枝葉對(duì)其鄰位鈴的“輔助源”功能短期內(nèi)(3 d左右)快速上升,之后快速下降,后期其對(duì)鄰位鈴發(fā)育的貢獻(xiàn)很小。
棉花;蕾鈴脫落;果枝韌皮部阻斷;糖;激素
【研究意義】蕾鈴脫落是棉花的一個(gè)生物學(xué)特性,一般蕾鈴脫落率占總果節(jié)數(shù)的70%,嚴(yán)重時(shí)可達(dá)80%以上,而成鈴僅占總果節(jié)數(shù)的30%[1]。早期的蕾鈴脫落改變了棉花光合產(chǎn)物運(yùn)輸分配狀態(tài),促使棉花果枝上產(chǎn)生更多節(jié)位的蕾鈴,而脫落蕾鈴的對(duì)位葉則成為“輔助源”對(duì)相鄰節(jié)位蕾鈴(鄰位蕾鈴)的發(fā)育起到重要作用[2]。接收“輔助源”光合產(chǎn)物的蕾鈴常被稱(chēng)為“補(bǔ)償庫(kù)”,其成鈴率的增加和鈴重的上升一定程度上彌補(bǔ)了先前蕾鈴脫落導(dǎo)致的產(chǎn)量損失[3-4]。因此,棉花果枝葉在其對(duì)位蕾鈴脫落后源能力的研究對(duì)于揭示棉花自身調(diào)節(jié)能力及其補(bǔ)償性生長(zhǎng)具有重要意義?!厩叭搜芯窟M(jìn)展】放射性同位素試驗(yàn)表明,棉花果枝結(jié)鈴后,果枝葉產(chǎn)生的光合產(chǎn)物大部分轉(zhuǎn)運(yùn)至同果枝蕾鈴中,向其對(duì)位鈴輸送占85.6%,向其鄰位蕾鈴輸送占12.2%[5-6]。而蕾鈴脫落后,其鄰位蕾鈴將接收到果枝葉更多的光合產(chǎn)物[7],其成鈴率以及鈴重也將大大增加[8]。Kerby等[9]發(fā)現(xiàn)果枝第一果節(jié)花蕾脫落后,第二果節(jié)的成鈴率增長(zhǎng)了17%—33%;Constable[10]認(rèn)為第一果節(jié)鈴的脫落促使第二或三果節(jié)鈴增大。前人通過(guò)早期去蕾和去花發(fā)現(xiàn),棉鈴更多地在頂端以及果枝遠(yuǎn)端產(chǎn)生,但棉花單株鈴數(shù)和產(chǎn)量與對(duì)照相比無(wú)明顯差異[11-12]。國(guó)外的此類(lèi)研究多集中于群體和整株水平上的“鈴-葉”關(guān)系分析,對(duì)于更為精細(xì)的基于獨(dú)立的“單鈴(蕾)-對(duì)位葉”及蕾鈴脫落后源能力動(dòng)態(tài)變化等精細(xì)生理層面上的研究幾無(wú)報(bào)道。國(guó)內(nèi)有少量關(guān)于無(wú)鈴果枝葉的生理學(xué)研究,但有限的報(bào)道中對(duì)無(wú)鈴果枝葉作為“輔助源”的功能及其源能力的變化趨勢(shì)及存在較大分歧。陳源等[6]認(rèn)為,無(wú)鈴果枝葉中可溶性糖含量比有鈴果枝葉要高,且其光合生產(chǎn)效率和光合產(chǎn)物轉(zhuǎn)運(yùn)速率要比無(wú)鈴對(duì)位葉更低,源能力很低;孫紅春等[13]則認(rèn)為,減庫(kù)處理造成果枝葉中可溶性糖、淀粉含量增加,但單個(gè)棉鈴的庫(kù)容相對(duì)增大,說(shuō)明無(wú)鈴果枝葉“輔助源”功能顯著?!颈狙芯壳腥朦c(diǎn)】目前許多研究都發(fā)現(xiàn),蕾鈴脫落后其對(duì)位果枝葉對(duì)其鄰位蕾鈴的生長(zhǎng)發(fā)育具有積極作用,但蕾鈴脫落后無(wú)鈴果枝葉源能力變化特征及原因尚不明確?!緮M解決的關(guān)鍵問(wèn)題】本研究為減少多源多庫(kù)間復(fù)雜的物質(zhì)傳遞、信息串?dāng)_對(duì)研究結(jié)果產(chǎn)生的影響,在采用韌皮部化學(xué)阻斷[14-15]獨(dú)立出“同果枝鈴(蕾)-葉系統(tǒng)”的條件下,通過(guò)人工去庫(kù)來(lái)模擬蕾鈴脫落,分析了蕾鈴脫落后果枝葉碳水化合物積累及內(nèi)源激素變化對(duì)葉源能力產(chǎn)生的影響,探討了無(wú)鈴果枝葉作為“輔助源”的源能力變化特征及其調(diào)節(jié)機(jī)制,為豐富棉花蕾鈴脫落調(diào)控理論和棉花補(bǔ)償性調(diào)控栽培技術(shù)研發(fā)提供理論依據(jù)。
試驗(yàn)于2021年在江蘇南京(118°50′E,32°02′N(xiāo))南京農(nóng)業(yè)大學(xué)牌樓試驗(yàn)站進(jìn)行。該區(qū)域土壤屬于黃棕壤土,呈弱酸性(pH=6.7),0—20 cm土層的基礎(chǔ)土壤數(shù)據(jù)分別為速效氮15.16 mg·kg-1、速效磷17.55 mg·kg-1、速效鉀138.45 mg·kg-1,有機(jī)質(zhì)11.12 g·kg-1,全氮0.91 g·kg-1。
供試品種為中棉425,分別于2021年5月10日、6月1日,在試驗(yàn)區(qū)田間進(jìn)行直播,田間管理按高產(chǎn)栽培要求進(jìn)行。當(dāng)棉株第四果枝第一果節(jié)開(kāi)花時(shí)對(duì)四、五、六果枝進(jìn)行果枝韌皮部阻斷及去庫(kù)處理,韌皮部阻斷采用的試劑為15%三氯乙酸,將試劑均勻滴在棉片上,用棉片包裹住果枝40—60 min后取下棉片。試驗(yàn)處理如圖1所示,以果枝韌皮部阻斷處理(留蕾/花)的對(duì)位葉片作對(duì)照(CK),去庫(kù)(defruiting,DF)處理為果枝韌皮部阻斷+去蕾/花。果枝韌皮部阻斷旨在將果枝與其他植物器官有效隔離,形成獨(dú)立的“同果枝鈴(蕾)-葉系統(tǒng)”以減少不可控因素對(duì)本研究結(jié)果產(chǎn)生的干擾。
圖1 試驗(yàn)處理示意圖
1.2.1 氣象資料 圖2為棉花生長(zhǎng)季試驗(yàn)地氣象資料(氣象數(shù)據(jù)來(lái)源于南京市氣象站),播期1和2棉花的第四果枝第一果節(jié)開(kāi)花時(shí)間分別為2021年7月19日和8月3日。播期1和2棉花的取樣時(shí)間分別為2021年7月19日—7月24日和8月3日—8月8日。
1.2.2 棉花對(duì)位葉比葉重的測(cè)定 分別于處理后0、1、3和5 d取長(zhǎng)勢(shì)一致且有代表性棉株的對(duì)位葉,每個(gè)處理各果枝對(duì)位葉均取3片,并將取得的葉片放入冰盒中,立即帶回實(shí)驗(yàn)室,進(jìn)行清洗、分樣。去除葉片主葉脈后,一半葉片放入-80℃冰箱,用于后續(xù)指標(biāo)測(cè)定,另一半葉片,放入Li-3100葉面積儀(Li-Cor 公司,美國(guó))中進(jìn)行葉面積測(cè)量,測(cè)量結(jié)束后放入105℃烘箱殺青0.5 h,并于70℃烘干至恒重。烘干后計(jì)算比葉重(specific leaf weight,SLW),公式如下:
藍(lán)色和紅色虛線分別表示播期1和2棉花的取樣時(shí)間
比葉重(g/cm2)=干重/葉面積。
1.2.3 氣體交換參數(shù)的測(cè)定 采用Li-6400XT(Li-Cor 公司,美國(guó))便攜式光合儀進(jìn)行葉片氣體交換參數(shù)的測(cè)定。使用開(kāi)放式氣路,儀器參數(shù)設(shè)定為:光合有效輻射(PAR)1 500 μmol·m-2·s-1,流速為300 μmol·s-1。記錄凈光合速率(n)、氣孔導(dǎo)度(s)、蒸騰速率(r)等參數(shù)。
1.2.4 葉綠素及花青素含量的測(cè)定 葉綠素含量測(cè)定參照Arnon[16]的方法,采用丙酮和無(wú)水乙醇的混合液(體積比1﹕1)于黑暗中浸提至葉片完全變白。用紫外可見(jiàn)分光光度計(jì)測(cè)定663 nm及645 nm吸光值,并按照公式計(jì)算葉綠素濃度。
花青素含量測(cè)定參照袁明等[17]的方法,以1%鹽酸甲醇作為提取液,用紫外可見(jiàn)分光光度計(jì)測(cè)定652 nm及530 nm吸光值,計(jì)算公式為A=A530-0.25A652,其中A為花青素相對(duì)含量(色素單位)。
1.2.5 碳水化合物及游離氨基酸含量測(cè)定 采用蒽酮比色法[18]測(cè)定可溶性糖、淀粉含量;間苯二酚比色法[19]測(cè)定果糖、蔗糖含量;酶制劑法[19]測(cè)定葡萄糖含量;半微量法[20]定纖維素含量;采用茚三酮比色法[21]測(cè)定葉片游離氨基酸含量。
1.2.6 內(nèi)源激素含量測(cè)定 參照Pan等[22]的方法使用液相色譜串聯(lián)質(zhì)譜儀測(cè)定ABA(脫落酸)、生長(zhǎng)素(IAA)、赤霉素(GA3)、茉莉酸(JA)、水楊酸(SA)含量。
采用Excel 2019進(jìn)行相關(guān)指標(biāo)的計(jì)算,SPSS 25.0進(jìn)行差異顯著性分析(LSD法),Origin 2021進(jìn)行線性回歸分析及圖表的繪制。
去庫(kù)處理5 d后,對(duì)照組葉片并未見(jiàn)明顯葉色變化,去庫(kù)組葉片則出現(xiàn)明顯的花青素積累,局部呈現(xiàn)紫紅色且主要位于葉片邊緣位置(圖3-A)。通過(guò)對(duì)葉片中花青素含量測(cè)定后發(fā)現(xiàn),去庫(kù)后對(duì)位葉花青素含量較對(duì)照提高了約2倍(圖3-C)。說(shuō)明糖積累顯著促進(jìn)了葉片中次生代謝物質(zhì)的合成。
去庫(kù)處理引起的糖積累顯著增加了對(duì)位葉的比葉重,且隨著處理天數(shù)的增加比葉重的增幅逐漸增大,兩播期趨勢(shì)相一致。播期1、2對(duì)位葉的比葉重較對(duì)照的最大增幅分別為53.8%、43.6%(圖3-B)。說(shuō)明去庫(kù)后果枝葉中的干物質(zhì)不斷累積。
如圖4所示,去庫(kù)處理引起的糖積累顯著降低了對(duì)位葉的凈光合速率、氣孔導(dǎo)度及蒸騰速率,兩播期結(jié)果一致,但降低程度略有不同,播期1、2對(duì)位葉的上述3種指標(biāo)較對(duì)照的最大降幅分別為81.4%、76.3%、68.6%和89.2%、95.2%、92.0%。說(shuō)明庫(kù)強(qiáng)減弱導(dǎo)致的光合產(chǎn)物積累反饋抑制了葉片的凈光合速率,降低了光合產(chǎn)物的合成能力。
*表示不同處理在0.05水平上差異顯著;**表示線性回歸方程在0.01水平上顯著。下同
圖4 糖積累后果枝葉氣體交換參數(shù)的變幅
如圖5所示,去庫(kù)處理引起的糖分積累顯著降低了對(duì)位葉總?cè)~綠素、葉綠素a及葉綠素b含量,且隨著處理天數(shù)的增加,總?cè)~綠素、葉綠素a及葉綠素b含量的降幅不斷變大,兩播期上述3種指標(biāo)較對(duì)照的最大降幅分別為41.8%、44.7%、34.2%和25.4%、25.8%、27.8%。說(shuō)明糖分積累的同時(shí)會(huì)減少葉片中的葉綠素含量,影響葉片對(duì)于光能的捕獲、利用。
圖5 糖積累后果枝葉葉綠素的變幅
去庫(kù)處理后果枝葉中果糖、蔗糖、淀粉、纖維素含量顯著增加,葡萄糖含量卻顯著下降。去庫(kù)后1 d,以淀粉含量的增幅為最大,纖維素含量增幅則在去庫(kù)3 d后明顯變大,兩播期結(jié)果一致。去庫(kù)后5 d,蔗糖、纖維素、淀粉含量的增幅較大,而果糖與可溶性糖的增幅相對(duì)較小,兩播期趨勢(shì)相同。此外,去庫(kù)后播期1對(duì)位葉蔗糖、淀粉、纖維素含量較對(duì)照的增幅呈先升高后下降的趨勢(shì),并于去庫(kù)后3 d達(dá)到極大值(圖6-B-1);播期2對(duì)位葉蔗糖、淀粉、纖維素含量的增幅則在去庫(kù)后5 d內(nèi)不斷增大(圖6-B-2)。這可能由播期1對(duì)位葉中糖累積速率要大于播期2導(dǎo)致,進(jìn)而造成播期1對(duì)位葉的比葉重增幅大于播期2。
去庫(kù)處理后,對(duì)位葉的糖類(lèi)物質(zhì)分配形式發(fā)生了顯著變化(圖7)。去庫(kù)組對(duì)位葉的還原性糖/非還原性糖較對(duì)照不斷減小,表明糖分的積累以非還原性糖為主;蔗糖/可溶性糖不斷增加,說(shuō)明蔗糖含量的增加是可溶性糖含量升高的主要原因,同時(shí)可溶性糖也在向淀粉不斷轉(zhuǎn)化;淀粉/蔗糖呈上升趨勢(shì),說(shuō)明去庫(kù)后更多的光合產(chǎn)物向淀粉方向分配;多聚糖/低聚糖呈先減后增的趨勢(shì),去庫(kù)前期(3 d內(nèi))多聚糖/低聚糖略小于對(duì)照,而3 d后,多聚糖/低聚糖較對(duì)照迅速增加,說(shuō)明此階段低聚糖快速向多聚糖轉(zhuǎn)化。去庫(kù)組對(duì)位葉C/N則呈現(xiàn)先增后減的趨勢(shì),去庫(kù)3 d內(nèi)C/N增加,而3 d后C/N較對(duì)照減小。
對(duì)位葉中的淀粉、蔗糖分別作為光合產(chǎn)物主要的儲(chǔ)存、運(yùn)輸形式與光合作用關(guān)系密切,在去庫(kù)處理導(dǎo)致光合產(chǎn)物積累的條件下,將淀粉、蔗糖與凈光合速率進(jìn)行相關(guān)性分析后發(fā)現(xiàn),淀粉、蔗糖與對(duì)位葉凈光合速率呈顯著負(fù)相關(guān)(表1),表明凈光合速率的降低另一方面是由光合產(chǎn)物的負(fù)反饋調(diào)節(jié)所致。
圖6 果枝葉碳水化合物含量的變幅
圖7 糖積累后果枝葉碳、氮物質(zhì)比值的變幅
表1 果枝葉蔗糖、淀粉與凈光合速率的相關(guān)性分析
*表示2個(gè)指標(biāo)在0.05水平上顯著相關(guān)(n=8,R0.05=0.707,R0.01=0.834)
* indicates that the two indicators are significantly correlated at 0.05 probability level (n=8, R0.05=0.707, R0.01=0.834)
去庫(kù)處理后,對(duì)位葉中ABA含量呈上升趨勢(shì)且顯著高于對(duì)照;IAA含量則呈先升后降的趨勢(shì),去庫(kù)后短時(shí)間(3 d)內(nèi)顯著高于對(duì)照,3 d后則顯著低于對(duì)照;GA3含量在去庫(kù)處理后也顯著低于對(duì)照,而SA與JA含量則在去庫(kù)后5 d顯著高于對(duì)照(圖8)。
葉片內(nèi)源激素的動(dòng)態(tài)平衡在去庫(kù)后被打破。ABA/IAA、JA/IAA呈現(xiàn)先減后增的趨勢(shì),在去庫(kù)前期(3 d內(nèi))減小,3 d后增大,ABA/GA3、JA/GA3則持續(xù)增大。去庫(kù)后5 d對(duì)位葉ABA/IAA、JA/IAA、 ABA/GA3、JA/GA3較對(duì)照的增幅分別為207.2%、175.1%、345.3%、297.9%(圖9)。
圖8 糖積累時(shí)果枝葉內(nèi)源激素含量的變幅
圖9 糖積累時(shí)果枝葉內(nèi)源激素比值的變幅
源器官合成的光合產(chǎn)物是作物生長(zhǎng)和產(chǎn)量、質(zhì)量形成的物質(zhì)基礎(chǔ)[23],許多研究表明,庫(kù)強(qiáng)對(duì)源器官的糖分累積、同化物運(yùn)輸與分配具有調(diào)動(dòng)作用,蕾鈴脫落會(huì)引起植物源葉中碳水化合物積累,同時(shí)伴隨光合速率降低,從而造成源能力的下降[24-26]。本研究中,蕾鈴脫落(庫(kù)強(qiáng)減弱)后,淀粉在無(wú)鈴果枝葉中優(yōu)先積累,蔗糖也大量累積,可溶性糖含量的升高主要?dú)w因于蔗糖含量的升高。葡萄糖則是維持葉片生長(zhǎng)代謝主要消耗的能源物質(zhì)。植物細(xì)胞壁也能夠作為“庫(kù)”在一定程度上影響庫(kù)強(qiáng)度[27],本研究中,非結(jié)構(gòu)性碳水化合物積累到一定水平后,結(jié)構(gòu)性碳水化合物(如纖維素)開(kāi)始大量合成,說(shuō)明此時(shí)葉肉細(xì)胞壁充當(dāng)了“庫(kù)”的角色,接收了部分冗余的糖分。從葉中糖分配形式來(lái)看,蕾鈴脫落后非還原性糖是糖分積累的主要形式,光合產(chǎn)物更多地向淀粉分配;當(dāng)?shù)途厶抢鄯e一定量后,其快速向多聚糖轉(zhuǎn)化;葉片中先升后降的可溶性糖/可溶性氨基酸(C/N)也與糖分配形式的變化有關(guān)。
糖類(lèi)物質(zhì)(淀粉、蔗糖、纖維素)的積累造成葉片單位面積干物重顯著增加。于巖等[28]的去果及枝條環(huán)剝?cè)囼?yàn)表明去果顯著降低了葉片的凈光合速率,增加了可溶性糖含量,蔡貴芳等[29]的研究發(fā)現(xiàn)去果降低庫(kù)強(qiáng),減少光合產(chǎn)物向果實(shí)的運(yùn)輸與分配后,葉片中淀粉含量顯著提高。本研究結(jié)果與其相似,但本研究進(jìn)一步闡明了無(wú)鈴果枝葉光合速率下降的原因及果實(shí)脫落后其光合能力、源能力的動(dòng)態(tài)變化趨勢(shì)。
葉片凈光合速率的顯著降低一方面是由葉綠素的部分降解引起,另一方面是由光合產(chǎn)物的反饋抑制導(dǎo)致,大量淀粉在葉綠體內(nèi)累積會(huì)導(dǎo)致葉綠體變形,降低光化學(xué)反應(yīng)的光子數(shù)量和葉肉導(dǎo)度,進(jìn)而造成凈光合速率降低[30],無(wú)鈴果枝葉合成光合產(chǎn)物的能力減弱,輔助源能力下降。此外,對(duì)位葉花青素的顯現(xiàn)也是糖分積累過(guò)度的一種表現(xiàn)。
棉鈴干物質(zhì)的積累與同果枝葉的碳氮代謝關(guān)系密切,而C/N是果枝葉碳氮代謝狀況的直觀體現(xiàn),其對(duì)棉鈴干物質(zhì)積累起到重要作用[31-32]。本研究中,當(dāng)?shù)途厶欠e累時(shí)(蕾鈴脫落后1—3 d),無(wú)鈴果枝葉中C/N較高,碳代謝較為旺盛,葉片中蔗糖含量的短期升高能夠促進(jìn)光合產(chǎn)物的輸出[33],改善輔助源能力,提高鄰位鈴干物質(zhì)積累能力及成鈴率;而當(dāng)糖分的過(guò)度累積尤其是多聚糖大量合成時(shí)(脫落3 d后),C/N降低,蛋白質(zhì)與氨基酸平衡向氨基酸方向移動(dòng),蛋白質(zhì)整體有降解趨勢(shì),低聚態(tài)氮含量增加,將降低光合產(chǎn)物的轉(zhuǎn)運(yùn)勢(shì)能,使得光合產(chǎn)物向庫(kù)器官分配受抑制,輔助源能力下降,對(duì)鄰位鈴鈴重增加的貢獻(xiàn)快速下降。
此外,葉片中的糖類(lèi)物質(zhì)還是影響葉片衰老啟動(dòng)及衰老進(jìn)程的重要信號(hào)因子。蔗糖通常在葉片衰老早期不斷增加[34],而葉片中淀粉累積能為成熟、衰老的啟動(dòng)提供能量,其他糖類(lèi)物質(zhì)則更多的是在衰老進(jìn)程中發(fā)揮作用,如葡萄糖和果糖在葉片衰老起始后含量增加[35],因而在衰老啟動(dòng)前葉片中蔗糖和淀粉含量一般呈上升趨勢(shì)。本研究發(fā)現(xiàn),脫落后無(wú)鈴果枝葉蔗糖和淀粉含量持續(xù)增加且增幅均相對(duì)較大,蔗糖、淀粉的大量積累誘導(dǎo)了葉片的早衰,減弱了棉花產(chǎn)量補(bǔ)償與自我調(diào)節(jié)能力。
蕾鈴脫落后,源庫(kù)關(guān)系的改變對(duì)葉片發(fā)育及功能發(fā)揮產(chǎn)生重要影響,內(nèi)源激素在葉片同化物轉(zhuǎn)運(yùn)、器官發(fā)育進(jìn)程中發(fā)揮著不可忽視的作用[36-37]。有研究認(rèn)為,在一定濃度范圍內(nèi),IAA能夠促進(jìn)葉片中蔗糖合成并向韌皮部裝載,ABA則有利于同化物輸出及其向生殖器官分配[27, 38]。Setter等[39]的試驗(yàn)表明去果或葉柄環(huán)剝使得源葉中ABA含量增加,光合能力下降,本研究結(jié)果與其相一致。本研究中,蕾鈴脫落后1—3 d,即無(wú)鈴果枝葉中低聚糖積累,碳代謝旺盛時(shí),光合產(chǎn)物積累導(dǎo)致ABA和IAA含量均升高,同時(shí)ABA/IAA較對(duì)照降低,此時(shí)能促進(jìn)葉片光合產(chǎn)物向韌皮部中的裝載,葉片有著較高的同化物轉(zhuǎn)運(yùn)潛力,有利于輔助源能力的短期提高,促進(jìn)光合產(chǎn)物向“補(bǔ)償庫(kù)”分配;而脫落3 d后,即葉片中低聚糖向多聚糖快速轉(zhuǎn)化時(shí),ABA含量持續(xù)增加,但I(xiàn)AA含量開(kāi)始降低,導(dǎo)致ABA/IAA大幅升高,不利于光合產(chǎn)物的裝載與運(yùn)輸,輔助源能力有減弱的趨勢(shì)。
在葉片衰老啟動(dòng)后,ABA含量不斷增加;衰老的保衛(wèi)細(xì)胞和葉肉細(xì)胞中衰老相關(guān)蛋白NAP和SAG113都受到ABA的調(diào)控[40-41],這都說(shuō)明ABA能夠促進(jìn)葉片衰老;而JA可以通過(guò)誘導(dǎo)衰老特異性基因的表達(dá)以及抑制Rubisco活化酶的轉(zhuǎn)錄翻譯來(lái)促進(jìn)葉片衰老[42];外源GAs的應(yīng)用能夠有效抑制葉片中葉綠素及相關(guān)蛋白的降解,降低氧自由基含量,從而顯著抑制植株地上部衰老[43]。本研究中,蕾鈴脫落后5 d,無(wú)鈴果枝葉中ABA、JA含量較對(duì)照顯著增加,而GA3含量較對(duì)照顯著降低,同時(shí)ABA/GA3、JA/ GA3較對(duì)照大幅上升,造成葉綠素降解加快,加劇了葉片的早衰,進(jìn)一步縮短了“輔助源”功能期。
基于上述研究結(jié)果,在棉田發(fā)生蕾鈴大量脫落的初期,應(yīng)充分發(fā)揮無(wú)鈴果枝葉“輔助源”功能,采用水肥管理或化學(xué)調(diào)控等措施減少脫落,促進(jìn)蕾花發(fā)育,增加庫(kù)容。蕾鈴大量脫落15 d左右后,應(yīng)采用化控等手段延緩功能葉早衰,延長(zhǎng)果枝葉功能期,為鄰位鈴的生長(zhǎng)發(fā)育提供良好的物質(zhì)基礎(chǔ),增加鄰位鈴的成鈴率及鈴重,彌補(bǔ)脫落造成的產(chǎn)量損失。而對(duì)于脫落較久(約30 d以上)的無(wú)鈴果枝葉可去除,來(lái)提高冠層通風(fēng)透光性。
蕾鈴脫落后的初期,果枝葉中糖分快速累積且主要以不活躍、可運(yùn)輸?shù)姆沁€原性糖(淀粉、蔗糖)形式累積,同時(shí)C/N的增加、ABA/IAA的減小也有利于同化物的外運(yùn),此時(shí),其“輔助源”活性很強(qiáng)。隨著蕾鈴等庫(kù)器官脫落天數(shù)的增加,無(wú)鈴葉片中光合產(chǎn)物的累積不僅反饋抑制其光合能力,同時(shí)光合產(chǎn)物向不可往外轉(zhuǎn)運(yùn)的多聚糖(淀粉、纖維素)形式分配比例升高,源活力不斷下降;此外,累積的糖還作為衰老信號(hào)誘導(dǎo)葉片葉綠素降解,降低維持葉片活力的GA3、IAA含量,加速衰老相關(guān)物質(zhì)(花青素、低聚態(tài)氮有機(jī)物、ABA、JA)的形成,不僅導(dǎo)致其“輔助源”能力持續(xù)下降,而且縮短其功能期。綜上,無(wú)鈴/蕾果枝葉衰老加速、功能期縮短,僅可在蕾鈴脫落后的較短時(shí)間內(nèi)發(fā)揮著較強(qiáng)的“輔助源”作用。
[1] 中國(guó)農(nóng)業(yè)科學(xué)院棉花研究所. 中國(guó)棉花栽培學(xué). 上海: 上??茖W(xué)技術(shù)出版社, 2019: 236-238.
Instituteof Cotton Researchof Chinese Academy of Agricultural Sciences. Cotton Cultivation in China. Shanghai: Shanghai Scientific & Technical Press, 2019: 236-238. (in Chinese)
[2] KAUL A, DEOL J, BRAR A S. Within-plant yield distribution in Bt cotton following fruiting form removal. Journal of Crop and Weed, 2017, 13(2): 73-78.
[3] SADRAS V O. Compensatory growth in cotton after loss of reproductive organs. Field Crops Research, 1995, 40(1): 1-18.
[4] DALE J E. Some effects of the continuous removal of floral buds on the growth of the cotton plant. Annals of Botany, 1959, 23(4): 636-649.
[5] ASHLEY D A.14C-labelled photosynthate translocation and utilization in cotton plants. Crop Science, 1972, 12(1): 69-74.
[6] 陳源, 顧萬(wàn)榮, 王汝利, 陳德華, 王余龍, 吳云康. 棉花葉系質(zhì)量劃分及葉層配置的研究. 棉花學(xué)報(bào), 2004, 16(5): 313-318.
CHEN Y, GU W R, WANG R L, CHEN D H, WANG Y L, WU Y K. Studies on classification of the leaf systematic quality and leaf area distribution in cotton. Acta Gossypii Sinica, 2004, 16(5): 313-318. (in Chinese)
[7] GUINN G. Abscission of cotton floral buds and bolls as influenced by factors affecting photosynthesis and respiration. Crop Science, 1974, 14(2): 291-293.
[8] KLETTER E, WALLACH D. Effects of fruiting form removal on cotton reproductive development. Field Crops Research, 1982, 5: 69-84.
[9] KERBY T A, BUXTON D R. Competition between adjacent fruiting forms in cotton. Agronomy Journal, 1981, 73(5): 867-871.
[10] CONSTABLE G A. Mapping the production and survival of fruit on field-grown cotton. Agronomy Journal, 1991, 83(2): 374-378.
[11] JONES M A, WELLS R, GUTHRIE D S. Cotton response to seasonal patterns of flower removal: II. Growth and dry matter allocation. Crop Science, 1996, 36(3): 639-645.
[12] BEDNARZ C W, ROBERTS P M. Spatial yield distribution in cotton following early-season floral bud removal. Crop Science, 2001, 41(6): 1800-1808.
[13] 孫紅春, 李存東, 張?jiān)鲁? 路文靜. 棉花源庫(kù)比對(duì)中、下部果枝葉生理活性及鈴重的影響. 作物學(xué)報(bào), 2008, 34(8): 1459-1463.
SUN H C, LI C D, ZHANG Y C, LU W J. Effects of source/sink ratio on boll weight and physiological activities of leaves at middle and lower fruiting branches in cotton. Acta Agronomica Sinica, 2008, 34(8): 1459-1463. (in Chinese)
[14] 黃劭理, 周冀衡, 邱堯, 李爽. 韌皮部化學(xué)損傷對(duì)烤煙生長(zhǎng)及煙堿、鉀素積累的影響. 湖南農(nóng)業(yè)科學(xué), 2015(9): 79-82.
HUANG S L, ZHOU J H, QIU Y, LI S. Effects of phloem chemical damage on tobacco growth, nicotine and K accumulation. Hunan Agricultural Sciences, 2015(9): 79-82. (in Chinese)
[15] 徐文正. 不同熱敏感性棉花品種棉鈴對(duì)位葉源能力對(duì)花鈴期短期高溫脅迫的響應(yīng)差異[D]. 南京: 南京農(nóng)業(yè)大學(xué), 2019.
XU W Z. Response of subtending leaf source capability of cotton cultivars to shortterm high temperature stress during flowering and boll-forminging stage[D]. Nanjing: Nanjing Agricultural University, 2019. (in Chinese)
[16] Arnon D I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta vulgaris. Plant physiology, 1949, 24(1): 1-15.
[17] 袁明, 萬(wàn)興智, 杜蕾, 袁澍, 林宏輝. 紅花檵木葉色變化機(jī)理的初步研究. 園藝學(xué)報(bào), 2010, 37(6): 949-956.
YUAN M, WAN X Z, DU L, YUAN S, LIN H H. Mechanism on leaf color transformation ofolive var.. Acta Horticulturae Sinica, 2010, 37(6): 949-956. (in Chinese)
[18] LIU J R, MA Y N, LV F J, CHEN J, ZHOU Z G, WANG Y H, ABUDUREZIKE A, OOSTERHUIS D M. Changes of sucrose metabolism in leaf subtending to cotton boll under cool temperature due to late planting. Field Crops Research, 2013, 144: 200-211.
[19] 張志良, 瞿偉菁, 李小方. 植物生理學(xué)實(shí)驗(yàn)指導(dǎo). 4版. 北京: 高等教育出版社, 2009: 106-108.
ZHANG Z L, QU W J, LI X F. Experimental Instruction of Plant Physiology. 4th ed. Beijing: Higher Education Press, 2009: 106-108. (in Chinese)
[20] UPDEGRAFF D M. Semimicro determination of cellulose inbiological materials. Analytical Biochemistry, 1969, 32(3): 420-424.
[21] 李合生. 植物生理生化實(shí)驗(yàn)原理和技術(shù). 北京: 高等教育出版社, 2000: 192-197.
LI H S. Principles and Techniques of Plant Physiological Biochemical Experiment. Beijing: Higher Education Press, 2000: 192-197. (in Chinese)
[22] PAN X Q, WELTI R, WANG X M. Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry. Nature Protocols, 2010, 5(6): 986-992.
[23] 陳年來(lái). 作物庫(kù)源關(guān)系研究進(jìn)展. 甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào), 2019, 54(1): 1-10.
CHEN N L. Research advances on source-sink interaction of the crops. Journal of Gansu Agricultural University, 2019, 54(1): 1-10.(in Chinese)
[24] FOYER C. Feedback inhibition of photosynthesis through source- sink regulation in leaves. Plant Physiology and Biochemistry, 1988, 26: 483-492.
[25] FABRE D, YIN X Y, DINGKUHN M, CLéMENT-VIDAL A, ROQUES S, ROUAN L, SOUTIRAS A, LUQUET D. Is triose phosphate utilization involved in the feedback inhibition of photosynthesis in rice under conditions of sink limitation? Journal of Experimental Botany, 2019, 70(20): 5773-5785.
[26] 張國(guó)偉, 李凱, 李思嘉, 王曉婧, 楊長(zhǎng)琴, 劉瑞顯. 減庫(kù)對(duì)大豆葉片碳代謝的影響. 作物學(xué)報(bào), 2022, 48(2): 529-537.
ZHANG G W, LI K, LI S J, WANG X J, YANG C Q, LIU R X. Effects of sink-limiting treatments on leaf carbon metabolism in soybean. Acta Agronomica Sinica, 2022, 48(2): 529-537. (in Chinese)
[27] KUMAR R, BISHOP E, BRIDGES W C, THARAYIL N, SEKHON R S. Sugar partitioning and source-sink interaction are key determinants of leaf senescence in maize. Plant, Cell & Environment, 2019, 42(9): 2597-2611.
[28] 于巖, 孫秀波, 車(chē)遠(yuǎn)遠(yuǎn), 辛秀琛. 去果、枝條環(huán)剝和新梢套袋后桃樹(shù)葉片可溶性糖含量的變化對(duì)光合作用的影響. 西北農(nóng)業(yè)學(xué)報(bào), 2011, 20(3): 168-174, 179.
YU Y, SUN X B, CHE Y Y, XIN X C. Effects of fruit removal, shoot girdling and new shoot bagging on leaf soluble sugar content and photosynthesis of peach leaves. Acta Agriculturae Boreali-occidentalis Sinica, 2011, 20(3): 168-174, 179. (in Chinese)
[29] 蔡貴芳, 劉艷, 白立華, 杜瑞霞, 陳聰. 去果河套蜜瓜源葉碳水化合物及其相關(guān)酶晝夜變化特征. 西北植物學(xué)報(bào), 2012, 32(9): 1774-1780.
CAI G F, LIU Y, BAI L H, DU R X, CHEN C. Day and night variations of carbohydrate contents and activities of related enzymes in source leaves of defruitingL. cv. Hetao. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(9): 1774-1780. (in Chinese)
[30] GRUB A, MACHLER F. Photosynthesis and light activation of ribulose 1,5-bisphosphate carboxylase in the presence of starch. Journal of Experimental Botany, 1990, 41(10): 1293-1301.
[31] MOLL R H, JACKSON W A, MIKKELSEN R L. Recurrent selection for maize grain yield: Dry matter and nitrogen accumulation and partitioning changes. Crop Science, 1994, 34(4): 874-881.
[32] 胡宏標(biāo), 張文靜, 陳兵林, 王友華, 束紅梅, 周治國(guó). 棉鈴對(duì)位葉C/N的變化及其與棉鈴干物質(zhì)積累和分配的關(guān)系. 作物學(xué)報(bào), 2008, 34(2): 254-260.
HU H B, ZHANG W J, CHEN B L, WANG Y H, SHU H M, ZHOU Z G. Changes of C/N ratio in the subtending leaf of cotton boll and its relationship to cotton boll dry matter accumulation and distribution. Acta Agronomica Sinica, 2008, 34(2): 254-260. (in Chinese)
[33] 賀明榮, 王振林, 曹鴻鳴. 源庫(kù)關(guān)系改變對(duì)小麥灌漿期植株光合速率及14C同化物運(yùn)轉(zhuǎn)分配的影響. 西北植物學(xué)報(bào), 1998, 18(4): 555-560.
He M R, Wang Z L, Cao H M. Effect of source sink manipulation on photosynthetic rate and partitioning of14C assimilate during grain filling in winter wheat plant. Acta Botanica Boreali-Occidentalia Sinica, 1998, 18(4): 555-560. (in Chinese)
[34] WINGLER A, PURDY S, MACLEAN J A, POURTAU N. The role of sugars in integrating environmental signals during the regulation of leaf senescence. Journal of Experimental Botany, 2006, 57(2): 391-399.
[35] KIM J. Sugar metabolism as input signals and fuel for leaf senescence. Genes & Genomics, 2019, 41(7): 737-746.
[36] GUINN G, DUNLAP J R, BRUMMETT D L. Influence of water deficits on the abscisic acid and indole-3-acetic acid contents of cotton flower buds and flowers. Plant Physiology, 1990, 93(3): 1117-1120.
[37] 段留生, 何鐘佩. 源庫(kù)關(guān)系改變對(duì)棉葉內(nèi)源激素的影響. 西北植物學(xué)報(bào), 1999, 19(6): 116-121.
DUAN L S, HE Z P. Effect of alteration of source-sink relationship on endogenous hormones in cotton leaves. Acta Botanica Boreali- Occidentalia Sinica, 1999, 19(6): 116-121. (in Chinese)
[38] Davies P J. Plant Hormones: Physiology, Biochemistry and Molecular Biology. Dordrecht Netherlands: Kluwer Academic Publishers, 1995: 39-45.
[39] Setter T L, Brun W A, Brenner M L. Effect of obstructed translocation on leaf abscisic Acid, and associated stomatal closure and photosynthesis decline. Plant Physiology, 1980, 65(6): 1111-1115.
[40] ZHANG K W, GAN S S. An abscisic acid-AtNAP transcription factor-SAG113 protein phosphatase 2C regulatory chain for controlling dehydration in senescingleaves. Plant Physiology, 2012, 158(2): 961-969.
[41] ZHANG K W, XIA X Y, ZHANG Y Y, GAN S S. An ABA-regulated and Golgi-localized protein phosphatase controls water loss during leaf senescence in. The Plant Journal, 2012, 69(4): 667-678.
[42] HU Y R, JIANG Y J, HAN X, WANG H P, PAN J J, YU D Q. Jasmonate regulates leaf senescence and tolerance to cold stress: crosstalk with other phytohormones. Journal of Experimental Botany, 2017, 68(6): 1361-1369.
[43] YU K, WEI J R, MA Q, YU D, LI J R. Senescence of aerial parts is impeded by exogenous gibberellic acid in herbaceous perennial Paris polyphylla. Journal of Plant Physiology, 2009, 166(8): 819-830.
Effects of Squares and Bolls Abscission on Photosynthate Accumulation and Its Strength as an Auxiliary Source of Cotton Sympodial Leaves
College of Agriculture, Nanjing Agricultural University/Key Laboratory of Crop Ecophysiology and Management, Ministry of Agriculture and Rural Affairs/Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Nanjing 210095
【Objective】The abscission rate of squares and bolls is often more than 60%, and the sympodial leaves after squares and bolls shedding are often used as “auxiliary sources” to play an important role in the development of adjacent bolls. In order to enrich the “source-sink” regulation theory and provide theoretical basis for the regulation of cotton yield compensatory development, the activity changing characters of the “auxiliary sources” was explored after the shedding of their squares or bolls.【Method】In this study, two sowing dates (May 10 and June 1, 2021) of Zhongmian 425 were used to carry out a field experiment at the Pailou Experimental Station of Nanjing Agricultural University in Nanjing, Jiangsu province (118° 50′ E, 32° 02′ N). Under the conditions of fruiting branch phloem blocking, the changes of related indicators of leaf source capacity, such as cotton sympodial leaves morphological characteristics, gas exchange parameters, carbon and nitrogen substances and endogenous hormone content, were studied after defruiting (isolate the “source-sink” system on the first node at the fourth, fifth or sixth fruiting branches by chemical blocked the phloem, and then simulated the boll abscission condition by manual remove the bud or young bolls of the system) .【Result】(1) the defruiting treatment significantly increased the content of fructose, sucrose, starch and cellulose in sympodial leaves, but significantly decreased the glucose content. With the extension of time, the increase of starch was the largest at 1 day after treatment (DAT), while that of cellulose was significantly larger at 3 DAT and that of sucrose, cellulose and starch was relatively larger at 5 DAT. (2) After treatment, carbohydrates accumulated more in the form of non-reducing sugars; photosynthates were more distributed to starch; polysaccharides/oligosaccharides decreased at first and then increased; while the C/N of sympodial leaves increased at first and then decreased. (3) The defruiting treatment significantly decreased the net photosynthetic rate and chlorophyll content of sympodial leaves. (4) The sympodial leaves showed purplish red locally, and compared with the control, the anthocyanin content increased by about 2 times. (5) After treatment, the content of ABA, JA, SA in sympodial leaves significantly increased compared with the control, and the content of IAA increased at first and then decreased, while the content of GA3was significantly lower than the control. (6) The dynamic balance of endogenous hormones in sympodial leaves changed after treatment: ABA/IAA and JA/IAA decreased at first and then increased, while ABA/GA3and JA/GA3increased continuously. 【Conclusion】After squares and bolls shedding, the forms of sugar accumulation and distribution as well as endogenous hormone signals in sympodial leaves changed significantly and had a significant effect on source capacity. In a short period of time (1-3 days), the overall content of sugars in sympodial leaves increased, especially the accumulation of non-reducing sugars, and the source capacity strengthen rapidly. However, with the passage of time, the enhancement of source capacity diminished, and the leaves had a tendency of senescence, while chlorophyll degradation accelerated. That was, after abscission, the “auxiliary source” function of the sympodial leaves increased rapidly in a short period of time (about 3 days), then decreased rapidly, and made limited contribution to the development of the adjacent bolls in the later stage.
cotton; squares and bolls shedding; phloem blocking; sugar; hormone
:2022-08-08;
2022-10-12
國(guó)家自然科學(xué)基金(31871574)
闞家強(qiáng),E-mail:906308697@qq.com。通信作者王友華,E-mail:w_youhua@njau.edu.cn
10.3864/j.issn.0578-1752.2023.09.004
(責(zé)任編輯 楊鑫浩,李莉)
中國(guó)農(nóng)業(yè)科學(xué)2023年9期