摘要:研究了一類非線性Schr?dinger方程:-Δu+Vxu=fx,u,x∈RN,其中f的原函數(shù)滿足的超二次條件比(AR)條件更弱.利用下降流不變集方法,證明了該方程存在變號(hào)解.
關(guān)鍵詞:Schr?dinger方程; 下降流不變集; 變號(hào)解
中圖分類號(hào):O175 文獻(xiàn)標(biāo)志碼:A
Existence of Sign Changing Solution fora Class of Nonlinear Schr?dinger Equations
CHEN Jin, FAN Xin-xiang
(Concord University College, Fujian Normal University, Fuzhou 350117, China)
Abstract:In this paper, we consider a class of nonlinear Schr?dinger equations -Δu+Vxu=fx,u,x∈RN, where the super-quadratic conditions satisfied by the primitive of f are weaker than Ambrosetti-Rabinowitz type condition. By using the method of invariant sets of descending flow, we prove the existence of sign changing solution for this equation.
Key words:Schr?dinger equation; invariant set of descending flow; sign changing solution
0 引言
1 預(yù)備知識(shí)
2 主要定理的證明
2.1 算子A的定義和性質(zhì)
2.2 下降流不變集
2.3 變號(hào)解的存在性
參考文獻(xiàn):
[1] BARTSCH T,WILLEM M?.Infinitely many nonradial solutions of a euclidean scalar field equation [J].Journal of Functional Analysis,1993,117(2):447-460.
[2] BARTSCH T,WILLEM M.Infinitely many radial solutions of a semilinear elliptic problem onRN [J].Archive for Rational Mechanics and Analysis,1993,124(3):261-276.
[3] ZHANG Q Y,XU B.Multiplicity of solutions for a class of semilinear Schr?dinger equations with sign-changing potential [J].Journal of Mathematical Analysis and Applications,2011,377(2):834-840.
[4] TANG X H.Infinitely many solutions for semilinear Schr?dinger equations with sign-changing potential and nonlinearity [J].Journal of Mathematical Analysis and Applications,2013,401(1):407-415.
[5] CHENG R,WU Y.Remarks on infinitely many solutions for a class of Schr?dinger equations with sublinear nonlinearity [J\].Mathematical Methods in the Applied Sciences,2020,1(1):1-11.
[6] BARTSCH T,WANG Z Q.Existence and multiplicity results for some superlinear elliptic problems on RN [J].Communications in Partial Differential Equations,1995,20(9-10):1725-1741.
[7] 呂定洋.具有變號(hào)位勢(shì)和非線性項(xiàng)的薛定諤方程的無(wú)窮多解 [J].湖南第一師范學(xué)院學(xué)報(bào),2016,16(2):97-99.
[8] BARTSCH T,LIU Z L,WETH T.Sign changing solutions of superlinear Schr?dinger equations [J].Communications in Partial Differential Equations,2005,29(1-2):25-42.
[9] CHIPOT P,QUITTNER P.Handbook of Differential Equations-Stationary Partial Differential Equations[M].North Holland:Elsevier,2005.
[10] LIU Z L,WANG Z Q,ZHANG J.Infinitely many sign-changing solutions for the nonlinear Schr?dinger-Poisson system[J].Annali di Matematica Pura ed Applicata,2016,195(3):775-794.
[11] BARTSCH T,WANG Z Q.On the existence of sign changing solutions for semilinear Dirichlet problems[J].Topological Methods in Nonlinear Analysis,1996,7(1):115-131.
[12] BARTSCH T,LIU Z L,WETH T.Nodal solutions of a p-Laplacian equation [J].Proceedings of the London Mathematical Society,2005,91(1):129-152.
[13] LIU J Q,LIU X,WANG Z Q.Multiple mixed states of nodal solutions for nonlinear Schr?dinger systems [J].Calculus of Variations and Partial Differential Equations,2015,52(3/4):565-586.
[責(zé)任編輯:趙慧霞]