亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        一類非線性Schr?dinger方程變號(hào)解的存在性

        2023-04-29 00:00:00陳瑾范馨香

        摘要:研究了一類非線性Schr?dinger方程:-Δu+Vxu=fx,u,x∈RN,其中f的原函數(shù)滿足的超二次條件比(AR)條件更弱.利用下降流不變集方法,證明了該方程存在變號(hào)解.

        關(guān)鍵詞:Schr?dinger方程; 下降流不變集; 變號(hào)解

        中圖分類號(hào):O175 文獻(xiàn)標(biāo)志碼:A

        Existence of Sign Changing Solution fora Class of Nonlinear Schr?dinger Equations

        CHEN Jin, FAN Xin-xiang

        (Concord University College, Fujian Normal University, Fuzhou 350117, China)

        Abstract:In this paper, we consider a class of nonlinear Schr?dinger equations -Δu+Vxu=fx,u,x∈RN, where the super-quadratic conditions satisfied by the primitive of f are weaker than Ambrosetti-Rabinowitz type condition. By using the method of invariant sets of descending flow, we prove the existence of sign changing solution for this equation.

        Key words:Schr?dinger equation; invariant set of descending flow; sign changing solution

        0 引言

        1 預(yù)備知識(shí)

        2 主要定理的證明

        2.1 算子A的定義和性質(zhì)

        2.2 下降流不變集

        2.3 變號(hào)解的存在性

        參考文獻(xiàn):

        [1] BARTSCH T,WILLEM M?.Infinitely many nonradial solutions of a euclidean scalar field equation [J].Journal of Functional Analysis,1993,117(2):447-460.

        [2] BARTSCH T,WILLEM M.Infinitely many radial solutions of a semilinear elliptic problem onRN [J].Archive for Rational Mechanics and Analysis,1993,124(3):261-276.

        [3] ZHANG Q Y,XU B.Multiplicity of solutions for a class of semilinear Schr?dinger equations with sign-changing potential [J].Journal of Mathematical Analysis and Applications,2011,377(2):834-840.

        [4] TANG X H.Infinitely many solutions for semilinear Schr?dinger equations with sign-changing potential and nonlinearity [J].Journal of Mathematical Analysis and Applications,2013,401(1):407-415.

        [5] CHENG R,WU Y.Remarks on infinitely many solutions for a class of Schr?dinger equations with sublinear nonlinearity [J\].Mathematical Methods in the Applied Sciences,2020,1(1):1-11.

        [6] BARTSCH T,WANG Z Q.Existence and multiplicity results for some superlinear elliptic problems on RN [J].Communications in Partial Differential Equations,1995,20(9-10):1725-1741.

        [7] 呂定洋.具有變號(hào)位勢(shì)和非線性項(xiàng)的薛定諤方程的無(wú)窮多解 [J].湖南第一師范學(xué)院學(xué)報(bào),2016,16(2):97-99.

        [8] BARTSCH T,LIU Z L,WETH T.Sign changing solutions of superlinear Schr?dinger equations [J].Communications in Partial Differential Equations,2005,29(1-2):25-42.

        [9] CHIPOT P,QUITTNER P.Handbook of Differential Equations-Stationary Partial Differential Equations[M].North Holland:Elsevier,2005.

        [10] LIU Z L,WANG Z Q,ZHANG J.Infinitely many sign-changing solutions for the nonlinear Schr?dinger-Poisson system[J].Annali di Matematica Pura ed Applicata,2016,195(3):775-794.

        [11] BARTSCH T,WANG Z Q.On the existence of sign changing solutions for semilinear Dirichlet problems[J].Topological Methods in Nonlinear Analysis,1996,7(1):115-131.

        [12] BARTSCH T,LIU Z L,WETH T.Nodal solutions of a p-Laplacian equation [J].Proceedings of the London Mathematical Society,2005,91(1):129-152.

        [13] LIU J Q,LIU X,WANG Z Q.Multiple mixed states of nodal solutions for nonlinear Schr?dinger systems [J].Calculus of Variations and Partial Differential Equations,2015,52(3/4):565-586.

        [責(zé)任編輯:趙慧霞]

        伊人大杳焦在线| av东京热一区二区三区| 日本免费三片在线视频| 精品亚洲一区二区三区四| 日夜啪啪一区二区三区| 免费视频一区二区| 国产精品丝袜一区二区三区在线 | 精品国产车一区二区三区| 人妻少妇进入猛烈时中文字幕| 午夜色大片在线观看| 亚洲午夜精品a区| 一本色道久久88综合| 最新中文字幕一区二区| 精品水蜜桃久久久久久久| 国产香蕉尹人综合在线观| 中文字幕久区久久中文字幕| 精品国产一区二区三区三| 国产在线精品一区二区在线看 | 又长又大又粗又硬3p免费视频| 色综合另类小说图片区| 最新亚洲视频一区二区| 国产精品婷婷久久爽一下| 影音先锋每日av色资源站| 国内精品福利在线视频| 激情亚洲不卡一区二区| 后入到高潮免费观看| 人禽无码视频在线观看| 国产在线一区二区视频免费观看| 日本免费一二三区在线| 精东天美麻豆果冻传媒mv| 久久青草免费视频| 日本人妻三级在线观看| 日韩经典午夜福利发布| 台湾佬娱乐中文22vvvv| 亚洲AV手机专区久久精品| 国内嫩模自拍偷拍视频| 色avav色av爱avav亚洲色拍| 国产成人av综合亚洲色欲| 一本到亚洲av日韩av在线天堂| 国产精品 无码专区| 国产精品久久久久久久久鸭|