摘要:SDSDD-矩陣是H-矩陣的一個(gè)子類,其逆的無窮范數(shù)在計(jì)算數(shù)學(xué)中有著重要的應(yīng)用價(jià)值.當(dāng)A是SDSDD-矩陣且B是一般矩陣時(shí),得到了‖A-1B‖∞的上界估計(jì)式.特別地,當(dāng)B為單位矩陣時(shí),給出了SDSDD-矩陣逆的無窮范數(shù)的上界和最小奇異值的下界,且新估計(jì)式只利用矩陣A的元素表示.數(shù)值算例表明了新估計(jì)式的有效性.
關(guān)鍵詞:SDSDD-矩陣;H-矩陣;無窮范數(shù);上界;下界;奇異值
中圖分類號(hào):O151.21 文獻(xiàn)標(biāo)志碼:A
Estimation of Upper Bound for Infinity Norm of A-1B
LIU Yan, AO Di-zhen, LIU Lan-lan, WANG Feng
(College of Data Science and Information Engineering, Guizhou Minzu University, Guiyang 550025, China)
Abstract: SDSDD-"matrices are a subclass of H-"matrices whose inverse infinite norm has important applications in computational mathematics. When A"is a SDSDD-"matrix and B"is a general matrix, the upper bound estimator for ‖A-1B‖∞"is obtained. In particular, when B"is an unit matrix, we present an upper bound for the infinite norm of inverse of SDSDD-"matrices and a lower bound for the minimum singular value of SDSDD-"matrices, and these new estimations are only based on the elements of the matrix. Numerical examples show the validity of the new estimators.
Key words: SDSDD-"matrices; H-matrices; infinite norms; upper bound; lower bound; singular value
0 引言
1 基礎(chǔ)知識(shí)
2 主要結(jié)果
3 數(shù)值例子
4 結(jié)語
參考文獻(xiàn):
[1] BERMAN A,PLEMMONS R J.Nonnegative matrices in the mathematical sciences[M].New York:Academic Press,1979.
[2] 趙仁慶,何建鋒.A-1B的無窮大范數(shù)的上界估計(jì)[J].數(shù)學(xué)的實(shí)踐與認(rèn)識(shí),2021,51(18):288-292.
[3] CVETKOVI L,KOSTI V.New criteria for identi-fying"H-matrices [J].Journal of Computational and Applied Mathematics,2004,180(2).
[4]陳公寧.矩陣?yán)碚撆c應(yīng)用[M].北京:科學(xué)出版社,2007.
[5] LI C Q,PEI H,GAO A N,et al.Improvements on the infinity norm bound for the inverse of Nekrasov matrices [J].Numer Algorithms,2016,71:613-630.
[6] 李艷艷.Nekrasov矩陣逆的無窮范數(shù)改進(jìn)的估計(jì)式[J].云南大學(xué)學(xué)報(bào),2018,40(4):632-637.
[7] KOLOTILINA L Y.New classes of nonsingular matrices and upper bounds for their inverses [J].Journal of Mathematical Sciences,2020,249(2):231-241.
[8] KOLOTILINA L Y.Nekrasov type matrices and upper bounds for their inverses [J].Journal of Mathematical Sciences,2020,249(2):221-230.
[9] ORERA H,PENA J M.Infinity norm bounds for the inverse of Nekrasov matrices using scaling matrices [J].Applied Mathematics and Computation,2019,358(1):119-127.
[10] 佘麗麗,趙建興.最終Nekrasov矩陣A的‖A-1‖∞的上界[J].黑龍江大學(xué)自然科學(xué)學(xué)報(bào),2019,36(4):387-390.
[11] 高磊,井霞,王亞強(qiáng).S-Nekrasov矩陣的逆矩陣無窮范數(shù)的新上界[J].高等學(xué)校計(jì)算數(shù)學(xué)學(xué)報(bào),2018,40(2):97-109.
[12] VARAH J M.A lower bound for the smallest singular value of matrix [J].Linear Algebra and its Applications,1975,11(1):3-5.
[責(zé)任編輯:趙慧霞]